src/HOL/Power.thy
author huffman
Thu May 17 08:53:57 2007 +0200 (2007-05-17)
changeset 22988 f6b8184f5b4a
parent 22957 82a799ae7579
child 22991 b9e2a133e84e
permissions -rw-r--r--
generalize some lemmas from field to division_ring
paulson@3390
     1
(*  Title:      HOL/Power.thy
paulson@3390
     2
    ID:         $Id$
paulson@3390
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3390
     4
    Copyright   1997  University of Cambridge
paulson@3390
     5
paulson@3390
     6
*)
paulson@3390
     7
nipkow@16733
     8
header{*Exponentiation*}
paulson@14348
     9
nipkow@15131
    10
theory Power
haftmann@21413
    11
imports Nat
nipkow@15131
    12
begin
paulson@14348
    13
krauss@21199
    14
subsection{*Powers for Arbitrary Monoids*}
paulson@14348
    15
haftmann@22390
    16
class recpower = monoid_mult + power +
haftmann@22390
    17
  assumes power_0 [simp]: "a \<^loc>^ 0       = \<^loc>1"
haftmann@22390
    18
  assumes power_Suc:      "a \<^loc>^ Suc n = a \<^loc>* (a \<^loc>^ n)"
paulson@14348
    19
krauss@21199
    20
lemma power_0_Suc [simp]: "(0::'a::{recpower,semiring_0}) ^ (Suc n) = 0"
paulson@14348
    21
by (simp add: power_Suc)
paulson@14348
    22
paulson@14348
    23
text{*It looks plausible as a simprule, but its effect can be strange.*}
krauss@21199
    24
lemma power_0_left: "0^n = (if n=0 then 1 else (0::'a::{recpower,semiring_0}))"
paulson@15251
    25
by (induct "n", auto)
paulson@14348
    26
paulson@15004
    27
lemma power_one [simp]: "1^n = (1::'a::recpower)"
paulson@15251
    28
apply (induct "n")
wenzelm@14577
    29
apply (auto simp add: power_Suc)
paulson@14348
    30
done
paulson@14348
    31
paulson@15004
    32
lemma power_one_right [simp]: "(a::'a::recpower) ^ 1 = a"
paulson@14348
    33
by (simp add: power_Suc)
paulson@14348
    34
krauss@21199
    35
lemma power_commutes: "(a::'a::recpower) ^ n * a = a * a ^ n"
krauss@21199
    36
by (induct "n") (simp_all add:power_Suc mult_assoc)
krauss@21199
    37
paulson@15004
    38
lemma power_add: "(a::'a::recpower) ^ (m+n) = (a^m) * (a^n)"
krauss@21199
    39
apply (induct "m")
paulson@14348
    40
apply (simp_all add: power_Suc mult_ac)
paulson@14348
    41
done
paulson@14348
    42
paulson@15004
    43
lemma power_mult: "(a::'a::recpower) ^ (m*n) = (a^m) ^ n"
krauss@21199
    44
apply (induct "n") 
paulson@14348
    45
apply (simp_all add: power_Suc power_add)
paulson@14348
    46
done
paulson@14348
    47
krauss@21199
    48
lemma power_mult_distrib: "((a::'a::{recpower,comm_monoid_mult}) * b) ^ n = (a^n) * (b^n)"
paulson@15251
    49
apply (induct "n")
paulson@14348
    50
apply (auto simp add: power_Suc mult_ac)
paulson@14348
    51
done
paulson@14348
    52
paulson@14348
    53
lemma zero_less_power:
paulson@15004
    54
     "0 < (a::'a::{ordered_semidom,recpower}) ==> 0 < a^n"
paulson@15251
    55
apply (induct "n")
avigad@16775
    56
apply (simp_all add: power_Suc zero_less_one mult_pos_pos)
paulson@14348
    57
done
paulson@14348
    58
paulson@14348
    59
lemma zero_le_power:
paulson@15004
    60
     "0 \<le> (a::'a::{ordered_semidom,recpower}) ==> 0 \<le> a^n"
paulson@14348
    61
apply (simp add: order_le_less)
wenzelm@14577
    62
apply (erule disjE)
paulson@14348
    63
apply (simp_all add: zero_less_power zero_less_one power_0_left)
paulson@14348
    64
done
paulson@14348
    65
paulson@14348
    66
lemma one_le_power:
paulson@15004
    67
     "1 \<le> (a::'a::{ordered_semidom,recpower}) ==> 1 \<le> a^n"
paulson@15251
    68
apply (induct "n")
paulson@14348
    69
apply (simp_all add: power_Suc)
wenzelm@14577
    70
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
wenzelm@14577
    71
apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
paulson@14348
    72
done
paulson@14348
    73
obua@14738
    74
lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
paulson@14348
    75
  by (simp add: order_trans [OF zero_le_one order_less_imp_le])
paulson@14348
    76
paulson@14348
    77
lemma power_gt1_lemma:
paulson@15004
    78
  assumes gt1: "1 < (a::'a::{ordered_semidom,recpower})"
wenzelm@14577
    79
  shows "1 < a * a^n"
paulson@14348
    80
proof -
wenzelm@14577
    81
  have "1*1 < a*1" using gt1 by simp
wenzelm@14577
    82
  also have "\<dots> \<le> a * a^n" using gt1
wenzelm@14577
    83
    by (simp only: mult_mono gt1_imp_ge0 one_le_power order_less_imp_le
wenzelm@14577
    84
        zero_le_one order_refl)
wenzelm@14577
    85
  finally show ?thesis by simp
paulson@14348
    86
qed
paulson@14348
    87
paulson@14348
    88
lemma power_gt1:
paulson@15004
    89
     "1 < (a::'a::{ordered_semidom,recpower}) ==> 1 < a ^ (Suc n)"
paulson@14348
    90
by (simp add: power_gt1_lemma power_Suc)
paulson@14348
    91
paulson@14348
    92
lemma power_le_imp_le_exp:
paulson@15004
    93
  assumes gt1: "(1::'a::{recpower,ordered_semidom}) < a"
wenzelm@14577
    94
  shows "!!n. a^m \<le> a^n ==> m \<le> n"
wenzelm@14577
    95
proof (induct m)
paulson@14348
    96
  case 0
wenzelm@14577
    97
  show ?case by simp
paulson@14348
    98
next
paulson@14348
    99
  case (Suc m)
wenzelm@14577
   100
  show ?case
wenzelm@14577
   101
  proof (cases n)
wenzelm@14577
   102
    case 0
wenzelm@14577
   103
    from prems have "a * a^m \<le> 1" by (simp add: power_Suc)
wenzelm@14577
   104
    with gt1 show ?thesis
wenzelm@14577
   105
      by (force simp only: power_gt1_lemma
wenzelm@14577
   106
          linorder_not_less [symmetric])
wenzelm@14577
   107
  next
wenzelm@14577
   108
    case (Suc n)
wenzelm@14577
   109
    from prems show ?thesis
wenzelm@14577
   110
      by (force dest: mult_left_le_imp_le
wenzelm@14577
   111
          simp add: power_Suc order_less_trans [OF zero_less_one gt1])
wenzelm@14577
   112
  qed
paulson@14348
   113
qed
paulson@14348
   114
wenzelm@14577
   115
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
paulson@14348
   116
lemma power_inject_exp [simp]:
paulson@15004
   117
     "1 < (a::'a::{ordered_semidom,recpower}) ==> (a^m = a^n) = (m=n)"
wenzelm@14577
   118
  by (force simp add: order_antisym power_le_imp_le_exp)
paulson@14348
   119
paulson@14348
   120
text{*Can relax the first premise to @{term "0<a"} in the case of the
paulson@14348
   121
natural numbers.*}
paulson@14348
   122
lemma power_less_imp_less_exp:
paulson@15004
   123
     "[| (1::'a::{recpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
wenzelm@14577
   124
by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
wenzelm@14577
   125
              power_le_imp_le_exp)
paulson@14348
   126
paulson@14348
   127
paulson@14348
   128
lemma power_mono:
paulson@15004
   129
     "[|a \<le> b; (0::'a::{recpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
paulson@15251
   130
apply (induct "n")
paulson@14348
   131
apply (simp_all add: power_Suc)
paulson@14348
   132
apply (auto intro: mult_mono zero_le_power order_trans [of 0 a b])
paulson@14348
   133
done
paulson@14348
   134
paulson@14348
   135
lemma power_strict_mono [rule_format]:
paulson@15004
   136
     "[|a < b; (0::'a::{recpower,ordered_semidom}) \<le> a|]
wenzelm@14577
   137
      ==> 0 < n --> a^n < b^n"
paulson@15251
   138
apply (induct "n")
paulson@14348
   139
apply (auto simp add: mult_strict_mono zero_le_power power_Suc
paulson@14348
   140
                      order_le_less_trans [of 0 a b])
paulson@14348
   141
done
paulson@14348
   142
paulson@14348
   143
lemma power_eq_0_iff [simp]:
paulson@15004
   144
     "(a^n = 0) = (a = (0::'a::{ordered_idom,recpower}) & 0<n)"
paulson@15251
   145
apply (induct "n")
paulson@14348
   146
apply (auto simp add: power_Suc zero_neq_one [THEN not_sym])
paulson@14348
   147
done
paulson@14348
   148
paulson@14348
   149
lemma field_power_eq_0_iff [simp]:
huffman@22988
   150
     "(a^n = 0) = (a = (0::'a::{division_ring,recpower}) & 0<n)"
paulson@15251
   151
apply (induct "n")
paulson@14348
   152
apply (auto simp add: power_Suc field_mult_eq_0_iff zero_neq_one[THEN not_sym])
paulson@14348
   153
done
paulson@14348
   154
huffman@22988
   155
lemma field_power_not_zero: "a \<noteq> (0::'a::{division_ring,recpower}) ==> a^n \<noteq> 0"
paulson@14348
   156
by force
paulson@14348
   157
paulson@14353
   158
lemma nonzero_power_inverse:
huffman@22988
   159
  "a \<noteq> 0 ==> inverse ((a::'a::{division_ring,recpower}) ^ n) = (inverse a) ^ n"
paulson@15251
   160
apply (induct "n")
huffman@22988
   161
apply (auto simp add: power_Suc nonzero_inverse_mult_distrib power_commutes)
paulson@14353
   162
done
paulson@14353
   163
paulson@14348
   164
text{*Perhaps these should be simprules.*}
paulson@14348
   165
lemma power_inverse:
paulson@15004
   166
  "inverse ((a::'a::{field,division_by_zero,recpower}) ^ n) = (inverse a) ^ n"
paulson@15251
   167
apply (induct "n")
paulson@14348
   168
apply (auto simp add: power_Suc inverse_mult_distrib)
paulson@14348
   169
done
paulson@14348
   170
avigad@16775
   171
lemma power_one_over: "1 / (a::'a::{field,division_by_zero,recpower})^n = 
avigad@16775
   172
    (1 / a)^n"
avigad@16775
   173
apply (simp add: divide_inverse)
avigad@16775
   174
apply (rule power_inverse)
avigad@16775
   175
done
avigad@16775
   176
wenzelm@14577
   177
lemma nonzero_power_divide:
paulson@15004
   178
    "b \<noteq> 0 ==> (a/b) ^ n = ((a::'a::{field,recpower}) ^ n) / (b ^ n)"
paulson@14353
   179
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
paulson@14353
   180
wenzelm@14577
   181
lemma power_divide:
paulson@15004
   182
    "(a/b) ^ n = ((a::'a::{field,division_by_zero,recpower}) ^ n / b ^ n)"
paulson@14353
   183
apply (case_tac "b=0", simp add: power_0_left)
wenzelm@14577
   184
apply (rule nonzero_power_divide)
wenzelm@14577
   185
apply assumption
paulson@14353
   186
done
paulson@14353
   187
paulson@15004
   188
lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,recpower}) ^ n"
paulson@15251
   189
apply (induct "n")
paulson@14348
   190
apply (auto simp add: power_Suc abs_mult)
paulson@14348
   191
done
paulson@14348
   192
paulson@14353
   193
lemma zero_less_power_abs_iff [simp]:
paulson@15004
   194
     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,recpower}) | n=0)"
paulson@14353
   195
proof (induct "n")
paulson@14353
   196
  case 0
paulson@14353
   197
    show ?case by (simp add: zero_less_one)
paulson@14353
   198
next
paulson@14353
   199
  case (Suc n)
paulson@14353
   200
    show ?case by (force simp add: prems power_Suc zero_less_mult_iff)
paulson@14353
   201
qed
paulson@14353
   202
paulson@14353
   203
lemma zero_le_power_abs [simp]:
paulson@15004
   204
     "(0::'a::{ordered_idom,recpower}) \<le> (abs a)^n"
huffman@22957
   205
by (rule zero_le_power [OF abs_ge_zero])
paulson@14353
   206
paulson@15004
   207
lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{comm_ring_1,recpower}) ^ n"
paulson@14348
   208
proof -
paulson@14348
   209
  have "-a = (- 1) * a"  by (simp add: minus_mult_left [symmetric])
paulson@14348
   210
  thus ?thesis by (simp only: power_mult_distrib)
paulson@14348
   211
qed
paulson@14348
   212
paulson@14348
   213
text{*Lemma for @{text power_strict_decreasing}*}
paulson@14348
   214
lemma power_Suc_less:
paulson@15004
   215
     "[|(0::'a::{ordered_semidom,recpower}) < a; a < 1|]
paulson@14348
   216
      ==> a * a^n < a^n"
paulson@15251
   217
apply (induct n)
wenzelm@14577
   218
apply (auto simp add: power_Suc mult_strict_left_mono)
paulson@14348
   219
done
paulson@14348
   220
paulson@14348
   221
lemma power_strict_decreasing:
paulson@15004
   222
     "[|n < N; 0 < a; a < (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   223
      ==> a^N < a^n"
wenzelm@14577
   224
apply (erule rev_mp)
paulson@15251
   225
apply (induct "N")
wenzelm@14577
   226
apply (auto simp add: power_Suc power_Suc_less less_Suc_eq)
wenzelm@14577
   227
apply (rename_tac m)
paulson@14348
   228
apply (subgoal_tac "a * a^m < 1 * a^n", simp)
wenzelm@14577
   229
apply (rule mult_strict_mono)
paulson@14348
   230
apply (auto simp add: zero_le_power zero_less_one order_less_imp_le)
paulson@14348
   231
done
paulson@14348
   232
paulson@14348
   233
text{*Proof resembles that of @{text power_strict_decreasing}*}
paulson@14348
   234
lemma power_decreasing:
paulson@15004
   235
     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   236
      ==> a^N \<le> a^n"
wenzelm@14577
   237
apply (erule rev_mp)
paulson@15251
   238
apply (induct "N")
wenzelm@14577
   239
apply (auto simp add: power_Suc  le_Suc_eq)
wenzelm@14577
   240
apply (rename_tac m)
paulson@14348
   241
apply (subgoal_tac "a * a^m \<le> 1 * a^n", simp)
wenzelm@14577
   242
apply (rule mult_mono)
paulson@14348
   243
apply (auto simp add: zero_le_power zero_le_one)
paulson@14348
   244
done
paulson@14348
   245
paulson@14348
   246
lemma power_Suc_less_one:
paulson@15004
   247
     "[| 0 < a; a < (1::'a::{ordered_semidom,recpower}) |] ==> a ^ Suc n < 1"
wenzelm@14577
   248
apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
paulson@14348
   249
done
paulson@14348
   250
paulson@14348
   251
text{*Proof again resembles that of @{text power_strict_decreasing}*}
paulson@14348
   252
lemma power_increasing:
paulson@15004
   253
     "[|n \<le> N; (1::'a::{ordered_semidom,recpower}) \<le> a|] ==> a^n \<le> a^N"
wenzelm@14577
   254
apply (erule rev_mp)
paulson@15251
   255
apply (induct "N")
wenzelm@14577
   256
apply (auto simp add: power_Suc le_Suc_eq)
paulson@14348
   257
apply (rename_tac m)
paulson@14348
   258
apply (subgoal_tac "1 * a^n \<le> a * a^m", simp)
wenzelm@14577
   259
apply (rule mult_mono)
paulson@14348
   260
apply (auto simp add: order_trans [OF zero_le_one] zero_le_power)
paulson@14348
   261
done
paulson@14348
   262
paulson@14348
   263
text{*Lemma for @{text power_strict_increasing}*}
paulson@14348
   264
lemma power_less_power_Suc:
paulson@15004
   265
     "(1::'a::{ordered_semidom,recpower}) < a ==> a^n < a * a^n"
paulson@15251
   266
apply (induct n)
wenzelm@14577
   267
apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
paulson@14348
   268
done
paulson@14348
   269
paulson@14348
   270
lemma power_strict_increasing:
paulson@15004
   271
     "[|n < N; (1::'a::{ordered_semidom,recpower}) < a|] ==> a^n < a^N"
wenzelm@14577
   272
apply (erule rev_mp)
paulson@15251
   273
apply (induct "N")
wenzelm@14577
   274
apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
paulson@14348
   275
apply (rename_tac m)
paulson@14348
   276
apply (subgoal_tac "1 * a^n < a * a^m", simp)
wenzelm@14577
   277
apply (rule mult_strict_mono)
paulson@14348
   278
apply (auto simp add: order_less_trans [OF zero_less_one] zero_le_power
paulson@14348
   279
                 order_less_imp_le)
paulson@14348
   280
done
paulson@14348
   281
paulson@15066
   282
lemma power_increasing_iff [simp]: 
paulson@15066
   283
     "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x \<le> b ^ y) = (x \<le> y)"
paulson@15066
   284
  by (blast intro: power_le_imp_le_exp power_increasing order_less_imp_le) 
paulson@15066
   285
paulson@15066
   286
lemma power_strict_increasing_iff [simp]:
paulson@15066
   287
     "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x < b ^ y) = (x < y)"
paulson@15066
   288
  by (blast intro: power_less_imp_less_exp power_strict_increasing) 
paulson@15066
   289
paulson@14348
   290
lemma power_le_imp_le_base:
paulson@14348
   291
  assumes le: "a ^ Suc n \<le> b ^ Suc n"
huffman@22624
   292
      and ynonneg: "(0::'a::{ordered_semidom,recpower}) \<le> b"
paulson@14348
   293
  shows "a \<le> b"
paulson@14348
   294
 proof (rule ccontr)
paulson@14348
   295
   assume "~ a \<le> b"
paulson@14348
   296
   then have "b < a" by (simp only: linorder_not_le)
paulson@14348
   297
   then have "b ^ Suc n < a ^ Suc n"
wenzelm@14577
   298
     by (simp only: prems power_strict_mono)
paulson@14348
   299
   from le and this show "False"
paulson@14348
   300
      by (simp add: linorder_not_less [symmetric])
paulson@14348
   301
 qed
wenzelm@14577
   302
huffman@22853
   303
lemma power_less_imp_less_base:
huffman@22853
   304
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22853
   305
  assumes less: "a ^ n < b ^ n"
huffman@22853
   306
  assumes nonneg: "0 \<le> b"
huffman@22853
   307
  shows "a < b"
huffman@22853
   308
proof (rule contrapos_pp [OF less])
huffman@22853
   309
  assume "~ a < b"
huffman@22853
   310
  hence "b \<le> a" by (simp only: linorder_not_less)
huffman@22853
   311
  hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)
huffman@22853
   312
  thus "~ a ^ n < b ^ n" by (simp only: linorder_not_less)
huffman@22853
   313
qed
huffman@22853
   314
paulson@14348
   315
lemma power_inject_base:
wenzelm@14577
   316
     "[| a ^ Suc n = b ^ Suc n; 0 \<le> a; 0 \<le> b |]
paulson@15004
   317
      ==> a = (b::'a::{ordered_semidom,recpower})"
paulson@14348
   318
by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
paulson@14348
   319
huffman@22955
   320
lemma power_eq_imp_eq_base:
huffman@22955
   321
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22955
   322
  shows "\<lbrakk>a ^ n = b ^ n; 0 \<le> a; 0 \<le> b; 0 < n\<rbrakk> \<Longrightarrow> a = b"
huffman@22955
   323
by (cases n, simp_all, rule power_inject_base)
huffman@22955
   324
paulson@14348
   325
paulson@14348
   326
subsection{*Exponentiation for the Natural Numbers*}
paulson@3390
   327
haftmann@21456
   328
instance nat :: power ..
haftmann@21456
   329
wenzelm@8844
   330
primrec (power)
paulson@3390
   331
  "p ^ 0 = 1"
paulson@3390
   332
  "p ^ (Suc n) = (p::nat) * (p ^ n)"
wenzelm@14577
   333
paulson@15004
   334
instance nat :: recpower
paulson@14348
   335
proof
paulson@14438
   336
  fix z n :: nat
paulson@14348
   337
  show "z^0 = 1" by simp
paulson@14348
   338
  show "z^(Suc n) = z * (z^n)" by simp
paulson@14348
   339
qed
paulson@14348
   340
paulson@14348
   341
lemma nat_one_le_power [simp]: "1 \<le> i ==> Suc 0 \<le> i^n"
paulson@14348
   342
by (insert one_le_power [of i n], simp)
paulson@14348
   343
haftmann@21413
   344
lemma nat_zero_less_power_iff [simp]: "(0 < x^n) = (x \<noteq> (0::nat) | n=0)"
haftmann@21413
   345
by (induct "n", auto)
paulson@14348
   346
paulson@14348
   347
text{*Valid for the naturals, but what if @{text"0<i<1"}?
paulson@14348
   348
Premises cannot be weakened: consider the case where @{term "i=0"},
paulson@14348
   349
@{term "m=1"} and @{term "n=0"}.*}
haftmann@21413
   350
lemma nat_power_less_imp_less:
haftmann@21413
   351
  assumes nonneg: "0 < (i\<Colon>nat)"
haftmann@21413
   352
  assumes less: "i^m < i^n"
haftmann@21413
   353
  shows "m < n"
haftmann@21413
   354
proof (cases "i = 1")
haftmann@21413
   355
  case True with less power_one [where 'a = nat] show ?thesis by simp
haftmann@21413
   356
next
haftmann@21413
   357
  case False with nonneg have "1 < i" by auto
haftmann@21413
   358
  from power_strict_increasing_iff [OF this] less show ?thesis ..
haftmann@21413
   359
qed
paulson@14348
   360
ballarin@17149
   361
lemma power_diff:
ballarin@17149
   362
  assumes nz: "a ~= 0"
ballarin@17149
   363
  shows "n <= m ==> (a::'a::{recpower, field}) ^ (m-n) = (a^m) / (a^n)"
ballarin@17149
   364
  by (induct m n rule: diff_induct)
ballarin@17149
   365
    (simp_all add: power_Suc nonzero_mult_divide_cancel_left nz)
ballarin@17149
   366
ballarin@17149
   367
paulson@14348
   368
text{*ML bindings for the general exponentiation theorems*}
paulson@14348
   369
ML
paulson@14348
   370
{*
paulson@14348
   371
val power_0 = thm"power_0";
paulson@14348
   372
val power_Suc = thm"power_Suc";
paulson@14348
   373
val power_0_Suc = thm"power_0_Suc";
paulson@14348
   374
val power_0_left = thm"power_0_left";
paulson@14348
   375
val power_one = thm"power_one";
paulson@14348
   376
val power_one_right = thm"power_one_right";
paulson@14348
   377
val power_add = thm"power_add";
paulson@14348
   378
val power_mult = thm"power_mult";
paulson@14348
   379
val power_mult_distrib = thm"power_mult_distrib";
paulson@14348
   380
val zero_less_power = thm"zero_less_power";
paulson@14348
   381
val zero_le_power = thm"zero_le_power";
paulson@14348
   382
val one_le_power = thm"one_le_power";
paulson@14348
   383
val gt1_imp_ge0 = thm"gt1_imp_ge0";
paulson@14348
   384
val power_gt1_lemma = thm"power_gt1_lemma";
paulson@14348
   385
val power_gt1 = thm"power_gt1";
paulson@14348
   386
val power_le_imp_le_exp = thm"power_le_imp_le_exp";
paulson@14348
   387
val power_inject_exp = thm"power_inject_exp";
paulson@14348
   388
val power_less_imp_less_exp = thm"power_less_imp_less_exp";
paulson@14348
   389
val power_mono = thm"power_mono";
paulson@14348
   390
val power_strict_mono = thm"power_strict_mono";
paulson@14348
   391
val power_eq_0_iff = thm"power_eq_0_iff";
paulson@14348
   392
val field_power_eq_0_iff = thm"field_power_eq_0_iff";
paulson@14348
   393
val field_power_not_zero = thm"field_power_not_zero";
paulson@14348
   394
val power_inverse = thm"power_inverse";
paulson@14353
   395
val nonzero_power_divide = thm"nonzero_power_divide";
paulson@14353
   396
val power_divide = thm"power_divide";
paulson@14348
   397
val power_abs = thm"power_abs";
paulson@14353
   398
val zero_less_power_abs_iff = thm"zero_less_power_abs_iff";
paulson@14353
   399
val zero_le_power_abs = thm "zero_le_power_abs";
paulson@14348
   400
val power_minus = thm"power_minus";
paulson@14348
   401
val power_Suc_less = thm"power_Suc_less";
paulson@14348
   402
val power_strict_decreasing = thm"power_strict_decreasing";
paulson@14348
   403
val power_decreasing = thm"power_decreasing";
paulson@14348
   404
val power_Suc_less_one = thm"power_Suc_less_one";
paulson@14348
   405
val power_increasing = thm"power_increasing";
paulson@14348
   406
val power_strict_increasing = thm"power_strict_increasing";
paulson@14348
   407
val power_le_imp_le_base = thm"power_le_imp_le_base";
paulson@14348
   408
val power_inject_base = thm"power_inject_base";
paulson@14348
   409
*}
wenzelm@14577
   410
paulson@14348
   411
text{*ML bindings for the remaining theorems*}
paulson@14348
   412
ML
paulson@14348
   413
{*
paulson@14348
   414
val nat_one_le_power = thm"nat_one_le_power";
paulson@14348
   415
val nat_power_less_imp_less = thm"nat_power_less_imp_less";
paulson@14348
   416
val nat_zero_less_power_iff = thm"nat_zero_less_power_iff";
paulson@14348
   417
*}
paulson@3390
   418
paulson@3390
   419
end
paulson@3390
   420