src/HOL/Quotient.thy
author huffman
Fri Apr 20 15:34:33 2012 +0200 (2012-04-20)
changeset 47626 f7b1034cb9ce
parent 47579 28f6f4ad69bf
child 48891 c0eafbd55de3
permissions -rw-r--r--
move definition of set_rel into Library/Quotient_Set.thy
wenzelm@41959
     1
(*  Title:      HOL/Quotient.thy
kaliszyk@35222
     2
    Author:     Cezary Kaliszyk and Christian Urban
kaliszyk@35222
     3
*)
kaliszyk@35222
     4
huffman@35294
     5
header {* Definition of Quotient Types *}
huffman@35294
     6
kaliszyk@35222
     7
theory Quotient
kuncar@47308
     8
imports Plain Hilbert_Choice Equiv_Relations Lifting
wenzelm@46950
     9
keywords
kuncar@47308
    10
  "print_quotmapsQ3" "print_quotientsQ3" "print_quotconsts" :: diag and
wenzelm@46950
    11
  "quotient_type" :: thy_goal and "/" and
kuncar@47091
    12
  "quotient_definition" :: thy_goal
kaliszyk@35222
    13
uses
wenzelm@37986
    14
  ("Tools/Quotient/quotient_info.ML")
wenzelm@45680
    15
  ("Tools/Quotient/quotient_type.ML")
wenzelm@37986
    16
  ("Tools/Quotient/quotient_def.ML")
wenzelm@37986
    17
  ("Tools/Quotient/quotient_term.ML")
wenzelm@37986
    18
  ("Tools/Quotient/quotient_tacs.ML")
kaliszyk@35222
    19
begin
kaliszyk@35222
    20
kaliszyk@35222
    21
text {*
kaliszyk@35222
    22
  Basic definition for equivalence relations
kaliszyk@35222
    23
  that are represented by predicates.
kaliszyk@35222
    24
*}
kaliszyk@35222
    25
kaliszyk@35222
    26
text {* Composition of Relations *}
kaliszyk@35222
    27
kaliszyk@35222
    28
abbreviation
haftmann@40818
    29
  rel_conj :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" (infixr "OOO" 75)
kaliszyk@35222
    30
where
kaliszyk@35222
    31
  "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
kaliszyk@35222
    32
kaliszyk@35222
    33
lemma eq_comp_r:
kaliszyk@35222
    34
  shows "((op =) OOO R) = R"
nipkow@39302
    35
  by (auto simp add: fun_eq_iff)
kaliszyk@35222
    36
huffman@35294
    37
subsection {* Quotient Predicate *}
kaliszyk@35222
    38
kaliszyk@35222
    39
definition
kuncar@47308
    40
  "Quotient3 R Abs Rep \<longleftrightarrow>
haftmann@40814
    41
     (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. R (Rep a) (Rep a)) \<and>
haftmann@40818
    42
     (\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s)"
haftmann@40818
    43
kuncar@47308
    44
lemma Quotient3I:
haftmann@40818
    45
  assumes "\<And>a. Abs (Rep a) = a"
haftmann@40818
    46
    and "\<And>a. R (Rep a) (Rep a)"
haftmann@40818
    47
    and "\<And>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s"
kuncar@47308
    48
  shows "Quotient3 R Abs Rep"
kuncar@47308
    49
  using assms unfolding Quotient3_def by blast
kaliszyk@35222
    50
kuncar@47308
    51
lemma Quotient3_abs_rep:
kuncar@47308
    52
  assumes a: "Quotient3 R Abs Rep"
kaliszyk@35222
    53
  shows "Abs (Rep a) = a"
kaliszyk@35222
    54
  using a
kuncar@47308
    55
  unfolding Quotient3_def
kaliszyk@35222
    56
  by simp
kaliszyk@35222
    57
kuncar@47308
    58
lemma Quotient3_rep_reflp:
kuncar@47308
    59
  assumes a: "Quotient3 R Abs Rep"
haftmann@40814
    60
  shows "R (Rep a) (Rep a)"
kaliszyk@35222
    61
  using a
kuncar@47308
    62
  unfolding Quotient3_def
kaliszyk@35222
    63
  by blast
kaliszyk@35222
    64
kuncar@47308
    65
lemma Quotient3_rel:
kuncar@47308
    66
  assumes a: "Quotient3 R Abs Rep"
haftmann@40818
    67
  shows "R r r \<and> R s s \<and> Abs r = Abs s \<longleftrightarrow> R r s" -- {* orientation does not loop on rewriting *}
kaliszyk@35222
    68
  using a
kuncar@47308
    69
  unfolding Quotient3_def
kaliszyk@35222
    70
  by blast
kaliszyk@35222
    71
kuncar@47308
    72
lemma Quotient3_refl1: 
kuncar@47308
    73
  assumes a: "Quotient3 R Abs Rep" 
kuncar@47096
    74
  shows "R r s \<Longrightarrow> R r r"
kuncar@47308
    75
  using a unfolding Quotient3_def 
kuncar@47096
    76
  by fast
kuncar@47096
    77
kuncar@47308
    78
lemma Quotient3_refl2: 
kuncar@47308
    79
  assumes a: "Quotient3 R Abs Rep" 
kuncar@47096
    80
  shows "R r s \<Longrightarrow> R s s"
kuncar@47308
    81
  using a unfolding Quotient3_def 
kuncar@47096
    82
  by fast
kuncar@47096
    83
kuncar@47308
    84
lemma Quotient3_rel_rep:
kuncar@47308
    85
  assumes a: "Quotient3 R Abs Rep"
haftmann@40818
    86
  shows "R (Rep a) (Rep b) \<longleftrightarrow> a = b"
kaliszyk@35222
    87
  using a
kuncar@47308
    88
  unfolding Quotient3_def
kaliszyk@35222
    89
  by metis
kaliszyk@35222
    90
kuncar@47308
    91
lemma Quotient3_rep_abs:
kuncar@47308
    92
  assumes a: "Quotient3 R Abs Rep"
kaliszyk@35222
    93
  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
kuncar@47308
    94
  using a unfolding Quotient3_def
kuncar@47308
    95
  by blast
kuncar@47308
    96
kuncar@47308
    97
lemma Quotient3_rel_abs:
kuncar@47308
    98
  assumes a: "Quotient3 R Abs Rep"
kuncar@47308
    99
  shows "R r s \<Longrightarrow> Abs r = Abs s"
kuncar@47308
   100
  using a unfolding Quotient3_def
kaliszyk@35222
   101
  by blast
kaliszyk@35222
   102
kuncar@47308
   103
lemma Quotient3_symp:
kuncar@47308
   104
  assumes a: "Quotient3 R Abs Rep"
haftmann@40814
   105
  shows "symp R"
kuncar@47308
   106
  using a unfolding Quotient3_def using sympI by metis
kaliszyk@35222
   107
kuncar@47308
   108
lemma Quotient3_transp:
kuncar@47308
   109
  assumes a: "Quotient3 R Abs Rep"
haftmann@40814
   110
  shows "transp R"
kuncar@47308
   111
  using a unfolding Quotient3_def using transpI by (metis (full_types))
kaliszyk@35222
   112
kuncar@47308
   113
lemma Quotient3_part_equivp:
kuncar@47308
   114
  assumes a: "Quotient3 R Abs Rep"
kuncar@47308
   115
  shows "part_equivp R"
kuncar@47308
   116
by (metis Quotient3_rep_reflp Quotient3_symp Quotient3_transp a part_equivpI)
kuncar@47308
   117
kuncar@47308
   118
lemma identity_quotient3:
kuncar@47308
   119
  shows "Quotient3 (op =) id id"
kuncar@47308
   120
  unfolding Quotient3_def id_def
kaliszyk@35222
   121
  by blast
kaliszyk@35222
   122
kuncar@47308
   123
lemma fun_quotient3:
kuncar@47308
   124
  assumes q1: "Quotient3 R1 abs1 rep1"
kuncar@47308
   125
  and     q2: "Quotient3 R2 abs2 rep2"
kuncar@47308
   126
  shows "Quotient3 (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
kaliszyk@35222
   127
proof -
kuncar@47308
   128
  have "\<And>a.(rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
kuncar@47308
   129
    using q1 q2 by (simp add: Quotient3_def fun_eq_iff)
kaliszyk@35222
   130
  moreover
kuncar@47308
   131
  have "\<And>a.(R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
haftmann@40466
   132
    by (rule fun_relI)
kuncar@47308
   133
      (insert q1 q2 Quotient3_rel_abs [of R1 abs1 rep1] Quotient3_rel_rep [of R2 abs2 rep2],
kuncar@47308
   134
        simp (no_asm) add: Quotient3_def, simp)
kuncar@47308
   135
  
kaliszyk@35222
   136
  moreover
kuncar@47308
   137
  {
kuncar@47308
   138
  fix r s
kuncar@47308
   139
  have "(R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
kaliszyk@35222
   140
        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
kuncar@47308
   141
  proof -
kuncar@47308
   142
    
kuncar@47308
   143
    have "(R1 ===> R2) r s \<Longrightarrow> (R1 ===> R2) r r" unfolding fun_rel_def
kuncar@47308
   144
      using Quotient3_part_equivp[OF q1] Quotient3_part_equivp[OF q2] 
kuncar@47308
   145
      by (metis (full_types) part_equivp_def)
kuncar@47308
   146
    moreover have "(R1 ===> R2) r s \<Longrightarrow> (R1 ===> R2) s s" unfolding fun_rel_def
kuncar@47308
   147
      using Quotient3_part_equivp[OF q1] Quotient3_part_equivp[OF q2] 
kuncar@47308
   148
      by (metis (full_types) part_equivp_def)
kuncar@47308
   149
    moreover have "(R1 ===> R2) r s \<Longrightarrow> (rep1 ---> abs2) r  = (rep1 ---> abs2) s"
kuncar@47308
   150
      apply(auto simp add: fun_rel_def fun_eq_iff) using q1 q2 unfolding Quotient3_def by metis
kuncar@47308
   151
    moreover have "((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
kuncar@47308
   152
        (rep1 ---> abs2) r  = (rep1 ---> abs2) s) \<Longrightarrow> (R1 ===> R2) r s"
kuncar@47308
   153
      apply(auto simp add: fun_rel_def fun_eq_iff) using q1 q2 unfolding Quotient3_def 
kuncar@47308
   154
    by (metis map_fun_apply)
kuncar@47308
   155
  
kuncar@47308
   156
    ultimately show ?thesis by blast
kuncar@47308
   157
 qed
kuncar@47308
   158
 }
kuncar@47308
   159
 ultimately show ?thesis by (intro Quotient3I) (assumption+)
kaliszyk@35222
   160
qed
kaliszyk@35222
   161
kaliszyk@35222
   162
lemma abs_o_rep:
kuncar@47308
   163
  assumes a: "Quotient3 R Abs Rep"
kaliszyk@35222
   164
  shows "Abs o Rep = id"
nipkow@39302
   165
  unfolding fun_eq_iff
kuncar@47308
   166
  by (simp add: Quotient3_abs_rep[OF a])
kaliszyk@35222
   167
kaliszyk@35222
   168
lemma equals_rsp:
kuncar@47308
   169
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@35222
   170
  and     a: "R xa xb" "R ya yb"
kaliszyk@35222
   171
  shows "R xa ya = R xb yb"
kuncar@47308
   172
  using a Quotient3_symp[OF q] Quotient3_transp[OF q]
haftmann@40814
   173
  by (blast elim: sympE transpE)
kaliszyk@35222
   174
kaliszyk@35222
   175
lemma lambda_prs:
kuncar@47308
   176
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   177
  and     q2: "Quotient3 R2 Abs2 Rep2"
kaliszyk@35222
   178
  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
nipkow@39302
   179
  unfolding fun_eq_iff
kuncar@47308
   180
  using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]
haftmann@40814
   181
  by simp
kaliszyk@35222
   182
kaliszyk@35222
   183
lemma lambda_prs1:
kuncar@47308
   184
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   185
  and     q2: "Quotient3 R2 Abs2 Rep2"
kaliszyk@35222
   186
  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
nipkow@39302
   187
  unfolding fun_eq_iff
kuncar@47308
   188
  using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]
haftmann@40814
   189
  by simp
kaliszyk@35222
   190
kaliszyk@35222
   191
lemma rep_abs_rsp:
kuncar@47308
   192
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@35222
   193
  and     a: "R x1 x2"
kaliszyk@35222
   194
  shows "R x1 (Rep (Abs x2))"
kuncar@47308
   195
  using a Quotient3_rel[OF q] Quotient3_abs_rep[OF q] Quotient3_rep_reflp[OF q]
kaliszyk@35222
   196
  by metis
kaliszyk@35222
   197
kaliszyk@35222
   198
lemma rep_abs_rsp_left:
kuncar@47308
   199
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@35222
   200
  and     a: "R x1 x2"
kaliszyk@35222
   201
  shows "R (Rep (Abs x1)) x2"
kuncar@47308
   202
  using a Quotient3_rel[OF q] Quotient3_abs_rep[OF q] Quotient3_rep_reflp[OF q]
kaliszyk@35222
   203
  by metis
kaliszyk@35222
   204
kaliszyk@35222
   205
text{*
kaliszyk@35222
   206
  In the following theorem R1 can be instantiated with anything,
kaliszyk@35222
   207
  but we know some of the types of the Rep and Abs functions;
kaliszyk@35222
   208
  so by solving Quotient assumptions we can get a unique R1 that
kaliszyk@35236
   209
  will be provable; which is why we need to use @{text apply_rsp} and
kaliszyk@35222
   210
  not the primed version *}
kaliszyk@35222
   211
kuncar@47308
   212
lemma apply_rspQ3:
kaliszyk@35222
   213
  fixes f g::"'a \<Rightarrow> 'c"
kuncar@47308
   214
  assumes q: "Quotient3 R1 Abs1 Rep1"
kaliszyk@35222
   215
  and     a: "(R1 ===> R2) f g" "R1 x y"
kaliszyk@35222
   216
  shows "R2 (f x) (g y)"
haftmann@40466
   217
  using a by (auto elim: fun_relE)
kaliszyk@35222
   218
kuncar@47308
   219
lemma apply_rspQ3'':
kuncar@47308
   220
  assumes "Quotient3 R Abs Rep"
kuncar@47096
   221
  and "(R ===> S) f f"
kuncar@47096
   222
  shows "S (f (Rep x)) (f (Rep x))"
kuncar@47096
   223
proof -
kuncar@47308
   224
  from assms(1) have "R (Rep x) (Rep x)" by (rule Quotient3_rep_reflp)
kuncar@47096
   225
  then show ?thesis using assms(2) by (auto intro: apply_rsp')
kuncar@47096
   226
qed
kuncar@47096
   227
huffman@35294
   228
subsection {* lemmas for regularisation of ball and bex *}
kaliszyk@35222
   229
kaliszyk@35222
   230
lemma ball_reg_eqv:
kaliszyk@35222
   231
  fixes P :: "'a \<Rightarrow> bool"
kaliszyk@35222
   232
  assumes a: "equivp R"
kaliszyk@35222
   233
  shows "Ball (Respects R) P = (All P)"
kaliszyk@35222
   234
  using a
kaliszyk@35222
   235
  unfolding equivp_def
kaliszyk@35222
   236
  by (auto simp add: in_respects)
kaliszyk@35222
   237
kaliszyk@35222
   238
lemma bex_reg_eqv:
kaliszyk@35222
   239
  fixes P :: "'a \<Rightarrow> bool"
kaliszyk@35222
   240
  assumes a: "equivp R"
kaliszyk@35222
   241
  shows "Bex (Respects R) P = (Ex P)"
kaliszyk@35222
   242
  using a
kaliszyk@35222
   243
  unfolding equivp_def
kaliszyk@35222
   244
  by (auto simp add: in_respects)
kaliszyk@35222
   245
kaliszyk@35222
   246
lemma ball_reg_right:
haftmann@44553
   247
  assumes a: "\<And>x. x \<in> R \<Longrightarrow> P x \<longrightarrow> Q x"
kaliszyk@35222
   248
  shows "All P \<longrightarrow> Ball R Q"
huffman@44921
   249
  using a by fast
kaliszyk@35222
   250
kaliszyk@35222
   251
lemma bex_reg_left:
haftmann@44553
   252
  assumes a: "\<And>x. x \<in> R \<Longrightarrow> Q x \<longrightarrow> P x"
kaliszyk@35222
   253
  shows "Bex R Q \<longrightarrow> Ex P"
huffman@44921
   254
  using a by fast
kaliszyk@35222
   255
kaliszyk@35222
   256
lemma ball_reg_left:
kaliszyk@35222
   257
  assumes a: "equivp R"
kaliszyk@35222
   258
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
kaliszyk@35222
   259
  using a by (metis equivp_reflp in_respects)
kaliszyk@35222
   260
kaliszyk@35222
   261
lemma bex_reg_right:
kaliszyk@35222
   262
  assumes a: "equivp R"
kaliszyk@35222
   263
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
kaliszyk@35222
   264
  using a by (metis equivp_reflp in_respects)
kaliszyk@35222
   265
kaliszyk@35222
   266
lemma ball_reg_eqv_range:
kaliszyk@35222
   267
  fixes P::"'a \<Rightarrow> bool"
kaliszyk@35222
   268
  and x::"'a"
kaliszyk@35222
   269
  assumes a: "equivp R2"
kaliszyk@35222
   270
  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
kaliszyk@35222
   271
  apply(rule iffI)
kaliszyk@35222
   272
  apply(rule allI)
kaliszyk@35222
   273
  apply(drule_tac x="\<lambda>y. f x" in bspec)
haftmann@40466
   274
  apply(simp add: in_respects fun_rel_def)
kaliszyk@35222
   275
  apply(rule impI)
kaliszyk@35222
   276
  using a equivp_reflp_symp_transp[of "R2"]
haftmann@40814
   277
  apply (auto elim: equivpE reflpE)
kaliszyk@35222
   278
  done
kaliszyk@35222
   279
kaliszyk@35222
   280
lemma bex_reg_eqv_range:
kaliszyk@35222
   281
  assumes a: "equivp R2"
kaliszyk@35222
   282
  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
kaliszyk@35222
   283
  apply(auto)
kaliszyk@35222
   284
  apply(rule_tac x="\<lambda>y. f x" in bexI)
kaliszyk@35222
   285
  apply(simp)
haftmann@40466
   286
  apply(simp add: Respects_def in_respects fun_rel_def)
kaliszyk@35222
   287
  apply(rule impI)
kaliszyk@35222
   288
  using a equivp_reflp_symp_transp[of "R2"]
haftmann@40814
   289
  apply (auto elim: equivpE reflpE)
kaliszyk@35222
   290
  done
kaliszyk@35222
   291
kaliszyk@35222
   292
(* Next four lemmas are unused *)
kaliszyk@35222
   293
lemma all_reg:
kaliszyk@35222
   294
  assumes a: "!x :: 'a. (P x --> Q x)"
kaliszyk@35222
   295
  and     b: "All P"
kaliszyk@35222
   296
  shows "All Q"
huffman@44921
   297
  using a b by fast
kaliszyk@35222
   298
kaliszyk@35222
   299
lemma ex_reg:
kaliszyk@35222
   300
  assumes a: "!x :: 'a. (P x --> Q x)"
kaliszyk@35222
   301
  and     b: "Ex P"
kaliszyk@35222
   302
  shows "Ex Q"
huffman@44921
   303
  using a b by fast
kaliszyk@35222
   304
kaliszyk@35222
   305
lemma ball_reg:
haftmann@44553
   306
  assumes a: "!x :: 'a. (x \<in> R --> P x --> Q x)"
kaliszyk@35222
   307
  and     b: "Ball R P"
kaliszyk@35222
   308
  shows "Ball R Q"
huffman@44921
   309
  using a b by fast
kaliszyk@35222
   310
kaliszyk@35222
   311
lemma bex_reg:
haftmann@44553
   312
  assumes a: "!x :: 'a. (x \<in> R --> P x --> Q x)"
kaliszyk@35222
   313
  and     b: "Bex R P"
kaliszyk@35222
   314
  shows "Bex R Q"
huffman@44921
   315
  using a b by fast
kaliszyk@35222
   316
kaliszyk@35222
   317
kaliszyk@35222
   318
lemma ball_all_comm:
kaliszyk@35222
   319
  assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
kaliszyk@35222
   320
  shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
kaliszyk@35222
   321
  using assms by auto
kaliszyk@35222
   322
kaliszyk@35222
   323
lemma bex_ex_comm:
kaliszyk@35222
   324
  assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
kaliszyk@35222
   325
  shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
kaliszyk@35222
   326
  using assms by auto
kaliszyk@35222
   327
huffman@35294
   328
subsection {* Bounded abstraction *}
kaliszyk@35222
   329
kaliszyk@35222
   330
definition
haftmann@40466
   331
  Babs :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
kaliszyk@35222
   332
where
kaliszyk@35222
   333
  "x \<in> p \<Longrightarrow> Babs p m x = m x"
kaliszyk@35222
   334
kaliszyk@35222
   335
lemma babs_rsp:
kuncar@47308
   336
  assumes q: "Quotient3 R1 Abs1 Rep1"
kaliszyk@35222
   337
  and     a: "(R1 ===> R2) f g"
kaliszyk@35222
   338
  shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
haftmann@40466
   339
  apply (auto simp add: Babs_def in_respects fun_rel_def)
kaliszyk@35222
   340
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
haftmann@40466
   341
  using a apply (simp add: Babs_def fun_rel_def)
haftmann@40466
   342
  apply (simp add: in_respects fun_rel_def)
kuncar@47308
   343
  using Quotient3_rel[OF q]
kaliszyk@35222
   344
  by metis
kaliszyk@35222
   345
kaliszyk@35222
   346
lemma babs_prs:
kuncar@47308
   347
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   348
  and     q2: "Quotient3 R2 Abs2 Rep2"
kaliszyk@35222
   349
  shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
kaliszyk@35222
   350
  apply (rule ext)
haftmann@40466
   351
  apply (simp add:)
kaliszyk@35222
   352
  apply (subgoal_tac "Rep1 x \<in> Respects R1")
kuncar@47308
   353
  apply (simp add: Babs_def Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])
kuncar@47308
   354
  apply (simp add: in_respects Quotient3_rel_rep[OF q1])
kaliszyk@35222
   355
  done
kaliszyk@35222
   356
kaliszyk@35222
   357
lemma babs_simp:
kuncar@47308
   358
  assumes q: "Quotient3 R1 Abs Rep"
kaliszyk@35222
   359
  shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
kaliszyk@35222
   360
  apply(rule iffI)
kaliszyk@35222
   361
  apply(simp_all only: babs_rsp[OF q])
haftmann@40466
   362
  apply(auto simp add: Babs_def fun_rel_def)
kaliszyk@35222
   363
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
kaliszyk@35222
   364
  apply(metis Babs_def)
kaliszyk@35222
   365
  apply (simp add: in_respects)
kuncar@47308
   366
  using Quotient3_rel[OF q]
kaliszyk@35222
   367
  by metis
kaliszyk@35222
   368
kaliszyk@35222
   369
(* If a user proves that a particular functional relation
kaliszyk@35222
   370
   is an equivalence this may be useful in regularising *)
kaliszyk@35222
   371
lemma babs_reg_eqv:
kaliszyk@35222
   372
  shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
nipkow@39302
   373
  by (simp add: fun_eq_iff Babs_def in_respects equivp_reflp)
kaliszyk@35222
   374
kaliszyk@35222
   375
kaliszyk@35222
   376
(* 3 lemmas needed for proving repabs_inj *)
kaliszyk@35222
   377
lemma ball_rsp:
kaliszyk@35222
   378
  assumes a: "(R ===> (op =)) f g"
kaliszyk@35222
   379
  shows "Ball (Respects R) f = Ball (Respects R) g"
haftmann@40466
   380
  using a by (auto simp add: Ball_def in_respects elim: fun_relE)
kaliszyk@35222
   381
kaliszyk@35222
   382
lemma bex_rsp:
kaliszyk@35222
   383
  assumes a: "(R ===> (op =)) f g"
kaliszyk@35222
   384
  shows "(Bex (Respects R) f = Bex (Respects R) g)"
haftmann@40466
   385
  using a by (auto simp add: Bex_def in_respects elim: fun_relE)
kaliszyk@35222
   386
kaliszyk@35222
   387
lemma bex1_rsp:
kaliszyk@35222
   388
  assumes a: "(R ===> (op =)) f g"
kaliszyk@35222
   389
  shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
haftmann@40466
   390
  using a by (auto elim: fun_relE simp add: Ex1_def in_respects) 
kaliszyk@35222
   391
kaliszyk@35222
   392
(* 2 lemmas needed for cleaning of quantifiers *)
kaliszyk@35222
   393
lemma all_prs:
kuncar@47308
   394
  assumes a: "Quotient3 R absf repf"
kaliszyk@35222
   395
  shows "Ball (Respects R) ((absf ---> id) f) = All f"
kuncar@47308
   396
  using a unfolding Quotient3_def Ball_def in_respects id_apply comp_def map_fun_def
kaliszyk@35222
   397
  by metis
kaliszyk@35222
   398
kaliszyk@35222
   399
lemma ex_prs:
kuncar@47308
   400
  assumes a: "Quotient3 R absf repf"
kaliszyk@35222
   401
  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
kuncar@47308
   402
  using a unfolding Quotient3_def Bex_def in_respects id_apply comp_def map_fun_def
kaliszyk@35222
   403
  by metis
kaliszyk@35222
   404
huffman@35294
   405
subsection {* @{text Bex1_rel} quantifier *}
kaliszyk@35222
   406
kaliszyk@35222
   407
definition
kaliszyk@35222
   408
  Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
kaliszyk@35222
   409
where
kaliszyk@35222
   410
  "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
kaliszyk@35222
   411
kaliszyk@35222
   412
lemma bex1_rel_aux:
kaliszyk@35222
   413
  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
kaliszyk@35222
   414
  unfolding Bex1_rel_def
kaliszyk@35222
   415
  apply (erule conjE)+
kaliszyk@35222
   416
  apply (erule bexE)
kaliszyk@35222
   417
  apply rule
kaliszyk@35222
   418
  apply (rule_tac x="xa" in bexI)
kaliszyk@35222
   419
  apply metis
kaliszyk@35222
   420
  apply metis
kaliszyk@35222
   421
  apply rule+
kaliszyk@35222
   422
  apply (erule_tac x="xaa" in ballE)
kaliszyk@35222
   423
  prefer 2
kaliszyk@35222
   424
  apply (metis)
kaliszyk@35222
   425
  apply (erule_tac x="ya" in ballE)
kaliszyk@35222
   426
  prefer 2
kaliszyk@35222
   427
  apply (metis)
kaliszyk@35222
   428
  apply (metis in_respects)
kaliszyk@35222
   429
  done
kaliszyk@35222
   430
kaliszyk@35222
   431
lemma bex1_rel_aux2:
kaliszyk@35222
   432
  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
kaliszyk@35222
   433
  unfolding Bex1_rel_def
kaliszyk@35222
   434
  apply (erule conjE)+
kaliszyk@35222
   435
  apply (erule bexE)
kaliszyk@35222
   436
  apply rule
kaliszyk@35222
   437
  apply (rule_tac x="xa" in bexI)
kaliszyk@35222
   438
  apply metis
kaliszyk@35222
   439
  apply metis
kaliszyk@35222
   440
  apply rule+
kaliszyk@35222
   441
  apply (erule_tac x="xaa" in ballE)
kaliszyk@35222
   442
  prefer 2
kaliszyk@35222
   443
  apply (metis)
kaliszyk@35222
   444
  apply (erule_tac x="ya" in ballE)
kaliszyk@35222
   445
  prefer 2
kaliszyk@35222
   446
  apply (metis)
kaliszyk@35222
   447
  apply (metis in_respects)
kaliszyk@35222
   448
  done
kaliszyk@35222
   449
kaliszyk@35222
   450
lemma bex1_rel_rsp:
kuncar@47308
   451
  assumes a: "Quotient3 R absf repf"
kaliszyk@35222
   452
  shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
haftmann@40466
   453
  apply (simp add: fun_rel_def)
kaliszyk@35222
   454
  apply clarify
kaliszyk@35222
   455
  apply rule
kaliszyk@35222
   456
  apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
kaliszyk@35222
   457
  apply (erule bex1_rel_aux2)
kaliszyk@35222
   458
  apply assumption
kaliszyk@35222
   459
  done
kaliszyk@35222
   460
kaliszyk@35222
   461
kaliszyk@35222
   462
lemma ex1_prs:
kuncar@47308
   463
  assumes a: "Quotient3 R absf repf"
kaliszyk@35222
   464
  shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
haftmann@40466
   465
apply (simp add:)
kaliszyk@35222
   466
apply (subst Bex1_rel_def)
kaliszyk@35222
   467
apply (subst Bex_def)
kaliszyk@35222
   468
apply (subst Ex1_def)
kaliszyk@35222
   469
apply simp
kaliszyk@35222
   470
apply rule
kaliszyk@35222
   471
 apply (erule conjE)+
kaliszyk@35222
   472
 apply (erule_tac exE)
kaliszyk@35222
   473
 apply (erule conjE)
kaliszyk@35222
   474
 apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
kaliszyk@35222
   475
  apply (rule_tac x="absf x" in exI)
kaliszyk@35222
   476
  apply (simp)
kaliszyk@35222
   477
  apply rule+
kuncar@47308
   478
  using a unfolding Quotient3_def
kaliszyk@35222
   479
  apply metis
kaliszyk@35222
   480
 apply rule+
kaliszyk@35222
   481
 apply (erule_tac x="x" in ballE)
kaliszyk@35222
   482
  apply (erule_tac x="y" in ballE)
kaliszyk@35222
   483
   apply simp
kaliszyk@35222
   484
  apply (simp add: in_respects)
kaliszyk@35222
   485
 apply (simp add: in_respects)
kaliszyk@35222
   486
apply (erule_tac exE)
kaliszyk@35222
   487
 apply rule
kaliszyk@35222
   488
 apply (rule_tac x="repf x" in exI)
kaliszyk@35222
   489
 apply (simp only: in_respects)
kaliszyk@35222
   490
  apply rule
kuncar@47308
   491
 apply (metis Quotient3_rel_rep[OF a])
kuncar@47308
   492
using a unfolding Quotient3_def apply (simp)
kaliszyk@35222
   493
apply rule+
kuncar@47308
   494
using a unfolding Quotient3_def in_respects
kaliszyk@35222
   495
apply metis
kaliszyk@35222
   496
done
kaliszyk@35222
   497
kaliszyk@38702
   498
lemma bex1_bexeq_reg:
kaliszyk@38702
   499
  shows "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
kaliszyk@35222
   500
  apply (simp add: Ex1_def Bex1_rel_def in_respects)
kaliszyk@35222
   501
  apply clarify
kaliszyk@35222
   502
  apply auto
kaliszyk@35222
   503
  apply (rule bexI)
kaliszyk@35222
   504
  apply assumption
kaliszyk@35222
   505
  apply (simp add: in_respects)
kaliszyk@35222
   506
  apply (simp add: in_respects)
kaliszyk@35222
   507
  apply auto
kaliszyk@35222
   508
  done
kaliszyk@35222
   509
kaliszyk@38702
   510
lemma bex1_bexeq_reg_eqv:
kaliszyk@38702
   511
  assumes a: "equivp R"
kaliszyk@38702
   512
  shows "(\<exists>!x. P x) \<longrightarrow> Bex1_rel R P"
kaliszyk@38702
   513
  using equivp_reflp[OF a]
kaliszyk@38702
   514
  apply (intro impI)
kaliszyk@38702
   515
  apply (elim ex1E)
kaliszyk@38702
   516
  apply (rule mp[OF bex1_bexeq_reg])
kaliszyk@38702
   517
  apply (rule_tac a="x" in ex1I)
kaliszyk@38702
   518
  apply (subst in_respects)
kaliszyk@38702
   519
  apply (rule conjI)
kaliszyk@38702
   520
  apply assumption
kaliszyk@38702
   521
  apply assumption
kaliszyk@38702
   522
  apply clarify
kaliszyk@38702
   523
  apply (erule_tac x="xa" in allE)
kaliszyk@38702
   524
  apply simp
kaliszyk@38702
   525
  done
kaliszyk@38702
   526
huffman@35294
   527
subsection {* Various respects and preserve lemmas *}
kaliszyk@35222
   528
kaliszyk@35222
   529
lemma quot_rel_rsp:
kuncar@47308
   530
  assumes a: "Quotient3 R Abs Rep"
kaliszyk@35222
   531
  shows "(R ===> R ===> op =) R R"
urbanc@38317
   532
  apply(rule fun_relI)+
kaliszyk@35222
   533
  apply(rule equals_rsp[OF a])
kaliszyk@35222
   534
  apply(assumption)+
kaliszyk@35222
   535
  done
kaliszyk@35222
   536
kaliszyk@35222
   537
lemma o_prs:
kuncar@47308
   538
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   539
  and     q2: "Quotient3 R2 Abs2 Rep2"
kuncar@47308
   540
  and     q3: "Quotient3 R3 Abs3 Rep3"
kaliszyk@36215
   541
  shows "((Abs2 ---> Rep3) ---> (Abs1 ---> Rep2) ---> (Rep1 ---> Abs3)) op \<circ> = op \<circ>"
kaliszyk@36215
   542
  and   "(id ---> (Abs1 ---> id) ---> Rep1 ---> id) op \<circ> = op \<circ>"
kuncar@47308
   543
  using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2] Quotient3_abs_rep[OF q3]
haftmann@40466
   544
  by (simp_all add: fun_eq_iff)
kaliszyk@35222
   545
kaliszyk@35222
   546
lemma o_rsp:
kaliszyk@36215
   547
  "((R2 ===> R3) ===> (R1 ===> R2) ===> (R1 ===> R3)) op \<circ> op \<circ>"
kaliszyk@36215
   548
  "(op = ===> (R1 ===> op =) ===> R1 ===> op =) op \<circ> op \<circ>"
huffman@44921
   549
  by (force elim: fun_relE)+
kaliszyk@35222
   550
kaliszyk@35222
   551
lemma cond_prs:
kuncar@47308
   552
  assumes a: "Quotient3 R absf repf"
kaliszyk@35222
   553
  shows "absf (if a then repf b else repf c) = (if a then b else c)"
kuncar@47308
   554
  using a unfolding Quotient3_def by auto
kaliszyk@35222
   555
kaliszyk@35222
   556
lemma if_prs:
kuncar@47308
   557
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@36123
   558
  shows "(id ---> Rep ---> Rep ---> Abs) If = If"
kuncar@47308
   559
  using Quotient3_abs_rep[OF q]
nipkow@39302
   560
  by (auto simp add: fun_eq_iff)
kaliszyk@35222
   561
kaliszyk@35222
   562
lemma if_rsp:
kuncar@47308
   563
  assumes q: "Quotient3 R Abs Rep"
kaliszyk@36123
   564
  shows "(op = ===> R ===> R ===> R) If If"
huffman@44921
   565
  by force
kaliszyk@35222
   566
kaliszyk@35222
   567
lemma let_prs:
kuncar@47308
   568
  assumes q1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   569
  and     q2: "Quotient3 R2 Abs2 Rep2"
kaliszyk@37049
   570
  shows "(Rep2 ---> (Abs2 ---> Rep1) ---> Abs1) Let = Let"
kuncar@47308
   571
  using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]
nipkow@39302
   572
  by (auto simp add: fun_eq_iff)
kaliszyk@35222
   573
kaliszyk@35222
   574
lemma let_rsp:
kaliszyk@37049
   575
  shows "(R1 ===> (R1 ===> R2) ===> R2) Let Let"
huffman@44921
   576
  by (force elim: fun_relE)
kaliszyk@35222
   577
kaliszyk@39669
   578
lemma id_rsp:
kaliszyk@39669
   579
  shows "(R ===> R) id id"
huffman@44921
   580
  by auto
kaliszyk@39669
   581
kaliszyk@39669
   582
lemma id_prs:
kuncar@47308
   583
  assumes a: "Quotient3 R Abs Rep"
kaliszyk@39669
   584
  shows "(Rep ---> Abs) id = id"
kuncar@47308
   585
  by (simp add: fun_eq_iff Quotient3_abs_rep [OF a])
kaliszyk@39669
   586
kaliszyk@39669
   587
kaliszyk@35222
   588
locale quot_type =
kaliszyk@35222
   589
  fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
kaliszyk@44204
   590
  and   Abs :: "'a set \<Rightarrow> 'b"
kaliszyk@44204
   591
  and   Rep :: "'b \<Rightarrow> 'a set"
kaliszyk@37493
   592
  assumes equivp: "part_equivp R"
kaliszyk@44204
   593
  and     rep_prop: "\<And>y. \<exists>x. R x x \<and> Rep y = Collect (R x)"
kaliszyk@35222
   594
  and     rep_inverse: "\<And>x. Abs (Rep x) = x"
kaliszyk@44204
   595
  and     abs_inverse: "\<And>c. (\<exists>x. ((R x x) \<and> (c = Collect (R x)))) \<Longrightarrow> (Rep (Abs c)) = c"
kaliszyk@35222
   596
  and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
kaliszyk@35222
   597
begin
kaliszyk@35222
   598
kaliszyk@35222
   599
definition
haftmann@40466
   600
  abs :: "'a \<Rightarrow> 'b"
kaliszyk@35222
   601
where
kaliszyk@44204
   602
  "abs x = Abs (Collect (R x))"
kaliszyk@35222
   603
kaliszyk@35222
   604
definition
haftmann@40466
   605
  rep :: "'b \<Rightarrow> 'a"
kaliszyk@35222
   606
where
kaliszyk@44204
   607
  "rep a = (SOME x. x \<in> Rep a)"
kaliszyk@35222
   608
kaliszyk@44204
   609
lemma some_collect:
kaliszyk@37493
   610
  assumes "R r r"
kaliszyk@44204
   611
  shows "R (SOME x. x \<in> Collect (R r)) = R r"
kaliszyk@44204
   612
  apply simp
kaliszyk@44204
   613
  by (metis assms exE_some equivp[simplified part_equivp_def])
kaliszyk@35222
   614
kaliszyk@35222
   615
lemma Quotient:
kuncar@47308
   616
  shows "Quotient3 R abs rep"
kuncar@47308
   617
  unfolding Quotient3_def abs_def rep_def
kaliszyk@37493
   618
  proof (intro conjI allI)
kaliszyk@37493
   619
    fix a r s
kaliszyk@44204
   620
    show x: "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)" proof -
kaliszyk@44204
   621
      obtain x where r: "R x x" and rep: "Rep a = Collect (R x)" using rep_prop[of a] by auto
kaliszyk@44204
   622
      have "R (SOME x. x \<in> Rep a) x"  using r rep some_collect by metis
kaliszyk@44204
   623
      then have "R x (SOME x. x \<in> Rep a)" using part_equivp_symp[OF equivp] by fast
kaliszyk@44204
   624
      then show "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)"
kaliszyk@44204
   625
        using part_equivp_transp[OF equivp] by (metis `R (SOME x. x \<in> Rep a) x`)
kaliszyk@37493
   626
    qed
kaliszyk@44204
   627
    have "Collect (R (SOME x. x \<in> Rep a)) = (Rep a)" by (metis some_collect rep_prop)
kaliszyk@44204
   628
    then show "Abs (Collect (R (SOME x. x \<in> Rep a))) = a" using rep_inverse by auto
kaliszyk@44204
   629
    have "R r r \<Longrightarrow> R s s \<Longrightarrow> Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s"
haftmann@44242
   630
    proof -
haftmann@44242
   631
      assume "R r r" and "R s s"
haftmann@44242
   632
      then have "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> Collect (R r) = Collect (R s)"
haftmann@44242
   633
        by (metis abs_inverse)
haftmann@44242
   634
      also have "Collect (R r) = Collect (R s) \<longleftrightarrow> (\<lambda>A x. x \<in> A) (Collect (R r)) = (\<lambda>A x. x \<in> A) (Collect (R s))"
haftmann@44242
   635
        by rule simp_all
haftmann@44242
   636
      finally show "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s" by simp
haftmann@44242
   637
    qed
kaliszyk@44204
   638
    then show "R r s \<longleftrightarrow> R r r \<and> R s s \<and> (Abs (Collect (R r)) = Abs (Collect (R s)))"
kaliszyk@44204
   639
      using equivp[simplified part_equivp_def] by metis
kaliszyk@44204
   640
    qed
haftmann@44242
   641
kaliszyk@35222
   642
end
kaliszyk@35222
   643
kuncar@47096
   644
subsection {* Quotient composition *}
kuncar@47096
   645
kuncar@47308
   646
lemma OOO_quotient3:
kuncar@47096
   647
  fixes R1 :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
kuncar@47096
   648
  fixes Abs1 :: "'a \<Rightarrow> 'b" and Rep1 :: "'b \<Rightarrow> 'a"
kuncar@47096
   649
  fixes Abs2 :: "'b \<Rightarrow> 'c" and Rep2 :: "'c \<Rightarrow> 'b"
kuncar@47096
   650
  fixes R2' :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
kuncar@47096
   651
  fixes R2 :: "'b \<Rightarrow> 'b \<Rightarrow> bool"
kuncar@47308
   652
  assumes R1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   653
  assumes R2: "Quotient3 R2 Abs2 Rep2"
kuncar@47096
   654
  assumes Abs1: "\<And>x y. R2' x y \<Longrightarrow> R1 x x \<Longrightarrow> R1 y y \<Longrightarrow> R2 (Abs1 x) (Abs1 y)"
kuncar@47096
   655
  assumes Rep1: "\<And>x y. R2 x y \<Longrightarrow> R2' (Rep1 x) (Rep1 y)"
kuncar@47308
   656
  shows "Quotient3 (R1 OO R2' OO R1) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2)"
kuncar@47308
   657
apply (rule Quotient3I)
kuncar@47308
   658
   apply (simp add: o_def Quotient3_abs_rep [OF R2] Quotient3_abs_rep [OF R1])
kuncar@47096
   659
  apply simp
griff@47434
   660
  apply (rule_tac b="Rep1 (Rep2 a)" in relcomppI)
kuncar@47308
   661
   apply (rule Quotient3_rep_reflp [OF R1])
griff@47434
   662
  apply (rule_tac b="Rep1 (Rep2 a)" in relcomppI [rotated])
kuncar@47308
   663
   apply (rule Quotient3_rep_reflp [OF R1])
kuncar@47096
   664
  apply (rule Rep1)
kuncar@47308
   665
  apply (rule Quotient3_rep_reflp [OF R2])
kuncar@47096
   666
 apply safe
kuncar@47096
   667
    apply (rename_tac x y)
kuncar@47096
   668
    apply (drule Abs1)
kuncar@47308
   669
      apply (erule Quotient3_refl2 [OF R1])
kuncar@47308
   670
     apply (erule Quotient3_refl1 [OF R1])
kuncar@47308
   671
    apply (drule Quotient3_refl1 [OF R2], drule Rep1)
kuncar@47096
   672
    apply (subgoal_tac "R1 r (Rep1 (Abs1 x))")
griff@47434
   673
     apply (rule_tac b="Rep1 (Abs1 x)" in relcomppI, assumption)
griff@47434
   674
     apply (erule relcomppI)
kuncar@47308
   675
     apply (erule Quotient3_symp [OF R1, THEN sympD])
kuncar@47308
   676
    apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2])
kuncar@47308
   677
    apply (rule conjI, erule Quotient3_refl1 [OF R1])
kuncar@47308
   678
    apply (rule conjI, rule Quotient3_rep_reflp [OF R1])
kuncar@47308
   679
    apply (subst Quotient3_abs_rep [OF R1])
kuncar@47308
   680
    apply (erule Quotient3_rel_abs [OF R1])
kuncar@47096
   681
   apply (rename_tac x y)
kuncar@47096
   682
   apply (drule Abs1)
kuncar@47308
   683
     apply (erule Quotient3_refl2 [OF R1])
kuncar@47308
   684
    apply (erule Quotient3_refl1 [OF R1])
kuncar@47308
   685
   apply (drule Quotient3_refl2 [OF R2], drule Rep1)
kuncar@47096
   686
   apply (subgoal_tac "R1 s (Rep1 (Abs1 y))")
griff@47434
   687
    apply (rule_tac b="Rep1 (Abs1 y)" in relcomppI, assumption)
griff@47434
   688
    apply (erule relcomppI)
kuncar@47308
   689
    apply (erule Quotient3_symp [OF R1, THEN sympD])
kuncar@47308
   690
   apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2])
kuncar@47308
   691
   apply (rule conjI, erule Quotient3_refl2 [OF R1])
kuncar@47308
   692
   apply (rule conjI, rule Quotient3_rep_reflp [OF R1])
kuncar@47308
   693
   apply (subst Quotient3_abs_rep [OF R1])
kuncar@47308
   694
   apply (erule Quotient3_rel_abs [OF R1, THEN sym])
kuncar@47096
   695
  apply simp
kuncar@47308
   696
  apply (rule Quotient3_rel_abs [OF R2])
kuncar@47308
   697
  apply (rule Quotient3_rel_abs [OF R1, THEN ssubst], assumption)
kuncar@47308
   698
  apply (rule Quotient3_rel_abs [OF R1, THEN subst], assumption)
kuncar@47096
   699
  apply (erule Abs1)
kuncar@47308
   700
   apply (erule Quotient3_refl2 [OF R1])
kuncar@47308
   701
  apply (erule Quotient3_refl1 [OF R1])
kuncar@47096
   702
 apply (rename_tac a b c d)
kuncar@47096
   703
 apply simp
griff@47434
   704
 apply (rule_tac b="Rep1 (Abs1 r)" in relcomppI)
kuncar@47308
   705
  apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2])
kuncar@47308
   706
  apply (rule conjI, erule Quotient3_refl1 [OF R1])
kuncar@47308
   707
  apply (simp add: Quotient3_abs_rep [OF R1] Quotient3_rep_reflp [OF R1])
griff@47434
   708
 apply (rule_tac b="Rep1 (Abs1 s)" in relcomppI [rotated])
kuncar@47308
   709
  apply (rule Quotient3_rel[symmetric, OF R1, THEN iffD2])
kuncar@47308
   710
  apply (simp add: Quotient3_abs_rep [OF R1] Quotient3_rep_reflp [OF R1])
kuncar@47308
   711
  apply (erule Quotient3_refl2 [OF R1])
kuncar@47096
   712
 apply (rule Rep1)
kuncar@47096
   713
 apply (drule Abs1)
kuncar@47308
   714
   apply (erule Quotient3_refl2 [OF R1])
kuncar@47308
   715
  apply (erule Quotient3_refl1 [OF R1])
kuncar@47096
   716
 apply (drule Abs1)
kuncar@47308
   717
  apply (erule Quotient3_refl2 [OF R1])
kuncar@47308
   718
 apply (erule Quotient3_refl1 [OF R1])
kuncar@47308
   719
 apply (drule Quotient3_rel_abs [OF R1])
kuncar@47308
   720
 apply (drule Quotient3_rel_abs [OF R1])
kuncar@47308
   721
 apply (drule Quotient3_rel_abs [OF R1])
kuncar@47308
   722
 apply (drule Quotient3_rel_abs [OF R1])
kuncar@47096
   723
 apply simp
kuncar@47308
   724
 apply (rule Quotient3_rel[symmetric, OF R2, THEN iffD2])
kuncar@47096
   725
 apply simp
kuncar@47096
   726
done
kuncar@47096
   727
kuncar@47308
   728
lemma OOO_eq_quotient3:
kuncar@47096
   729
  fixes R1 :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
kuncar@47096
   730
  fixes Abs1 :: "'a \<Rightarrow> 'b" and Rep1 :: "'b \<Rightarrow> 'a"
kuncar@47096
   731
  fixes Abs2 :: "'b \<Rightarrow> 'c" and Rep2 :: "'c \<Rightarrow> 'b"
kuncar@47308
   732
  assumes R1: "Quotient3 R1 Abs1 Rep1"
kuncar@47308
   733
  assumes R2: "Quotient3 op= Abs2 Rep2"
kuncar@47308
   734
  shows "Quotient3 (R1 OOO op=) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2)"
kuncar@47096
   735
using assms
kuncar@47308
   736
by (rule OOO_quotient3) auto
kuncar@47096
   737
kuncar@47362
   738
subsection {* Quotient3 to Quotient *}
kuncar@47362
   739
kuncar@47362
   740
lemma Quotient3_to_Quotient:
kuncar@47362
   741
assumes "Quotient3 R Abs Rep"
kuncar@47362
   742
and "T \<equiv> \<lambda>x y. R x x \<and> Abs x = y"
kuncar@47362
   743
shows "Quotient R Abs Rep T"
kuncar@47362
   744
using assms unfolding Quotient3_def by (intro QuotientI) blast+
kuncar@47096
   745
kuncar@47362
   746
lemma Quotient3_to_Quotient_equivp:
kuncar@47362
   747
assumes q: "Quotient3 R Abs Rep"
kuncar@47362
   748
and T_def: "T \<equiv> \<lambda>x y. Abs x = y"
kuncar@47362
   749
and eR: "equivp R"
kuncar@47362
   750
shows "Quotient R Abs Rep T"
kuncar@47362
   751
proof (intro QuotientI)
kuncar@47362
   752
  fix a
kuncar@47362
   753
  show "Abs (Rep a) = a" using q by(rule Quotient3_abs_rep)
kuncar@47362
   754
next
kuncar@47362
   755
  fix a
kuncar@47362
   756
  show "R (Rep a) (Rep a)" using q by(rule Quotient3_rep_reflp)
kuncar@47362
   757
next
kuncar@47362
   758
  fix r s
kuncar@47362
   759
  show "R r s = (R r r \<and> R s s \<and> Abs r = Abs s)" using q by(rule Quotient3_rel[symmetric])
kuncar@47362
   760
next
kuncar@47362
   761
  show "T = (\<lambda>x y. R x x \<and> Abs x = y)" using T_def equivp_reflp[OF eR] by simp
kuncar@47096
   762
qed
kuncar@47096
   763
huffman@35294
   764
subsection {* ML setup *}
kaliszyk@35222
   765
kaliszyk@35222
   766
text {* Auxiliary data for the quotient package *}
kaliszyk@35222
   767
wenzelm@37986
   768
use "Tools/Quotient/quotient_info.ML"
wenzelm@41452
   769
setup Quotient_Info.setup
kaliszyk@35222
   770
kuncar@47308
   771
declare [[mapQ3 "fun" = (fun_rel, fun_quotient3)]]
kaliszyk@35222
   772
kuncar@47308
   773
lemmas [quot_thm] = fun_quotient3
haftmann@44553
   774
lemmas [quot_respect] = quot_rel_rsp if_rsp o_rsp let_rsp id_rsp
haftmann@44553
   775
lemmas [quot_preserve] = if_prs o_prs let_prs id_prs
kaliszyk@35222
   776
lemmas [quot_equiv] = identity_equivp
kaliszyk@35222
   777
kaliszyk@35222
   778
kaliszyk@35222
   779
text {* Lemmas about simplifying id's. *}
kaliszyk@35222
   780
lemmas [id_simps] =
kaliszyk@35222
   781
  id_def[symmetric]
haftmann@40602
   782
  map_fun_id
kaliszyk@35222
   783
  id_apply
kaliszyk@35222
   784
  id_o
kaliszyk@35222
   785
  o_id
kaliszyk@35222
   786
  eq_comp_r
kaliszyk@44413
   787
  vimage_id
kaliszyk@35222
   788
kaliszyk@35222
   789
text {* Translation functions for the lifting process. *}
wenzelm@37986
   790
use "Tools/Quotient/quotient_term.ML"
kaliszyk@35222
   791
kaliszyk@35222
   792
kaliszyk@35222
   793
text {* Definitions of the quotient types. *}
wenzelm@45680
   794
use "Tools/Quotient/quotient_type.ML"
kaliszyk@35222
   795
kaliszyk@35222
   796
kaliszyk@35222
   797
text {* Definitions for quotient constants. *}
wenzelm@37986
   798
use "Tools/Quotient/quotient_def.ML"
kaliszyk@35222
   799
kaliszyk@35222
   800
kaliszyk@35222
   801
text {*
kaliszyk@35222
   802
  An auxiliary constant for recording some information
kaliszyk@35222
   803
  about the lifted theorem in a tactic.
kaliszyk@35222
   804
*}
kaliszyk@35222
   805
definition
haftmann@40466
   806
  Quot_True :: "'a \<Rightarrow> bool"
haftmann@40466
   807
where
haftmann@40466
   808
  "Quot_True x \<longleftrightarrow> True"
kaliszyk@35222
   809
kaliszyk@35222
   810
lemma
kaliszyk@35222
   811
  shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
kaliszyk@35222
   812
  and   QT_ex:  "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
kaliszyk@35222
   813
  and   QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
kaliszyk@35222
   814
  and   QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
kaliszyk@35222
   815
  and   QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
kaliszyk@35222
   816
  by (simp_all add: Quot_True_def ext)
kaliszyk@35222
   817
kaliszyk@35222
   818
lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
kaliszyk@35222
   819
  by (simp add: Quot_True_def)
kaliszyk@35222
   820
kaliszyk@35222
   821
kaliszyk@35222
   822
text {* Tactics for proving the lifted theorems *}
wenzelm@37986
   823
use "Tools/Quotient/quotient_tacs.ML"
kaliszyk@35222
   824
huffman@35294
   825
subsection {* Methods / Interface *}
kaliszyk@35222
   826
kaliszyk@35222
   827
method_setup lifting =
urbanc@37593
   828
  {* Attrib.thms >> (fn thms => fn ctxt => 
wenzelm@46468
   829
       SIMPLE_METHOD' (Quotient_Tacs.lift_tac ctxt [] thms)) *}
wenzelm@42814
   830
  {* lift theorems to quotient types *}
kaliszyk@35222
   831
kaliszyk@35222
   832
method_setup lifting_setup =
urbanc@37593
   833
  {* Attrib.thm >> (fn thm => fn ctxt => 
wenzelm@46468
   834
       SIMPLE_METHOD' (Quotient_Tacs.lift_procedure_tac ctxt [] thm)) *}
wenzelm@42814
   835
  {* set up the three goals for the quotient lifting procedure *}
kaliszyk@35222
   836
urbanc@37593
   837
method_setup descending =
wenzelm@46468
   838
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_tac ctxt [])) *}
wenzelm@42814
   839
  {* decend theorems to the raw level *}
urbanc@37593
   840
urbanc@37593
   841
method_setup descending_setup =
wenzelm@46468
   842
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_procedure_tac ctxt [])) *}
wenzelm@42814
   843
  {* set up the three goals for the decending theorems *}
urbanc@37593
   844
urbanc@45782
   845
method_setup partiality_descending =
wenzelm@46468
   846
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_tac ctxt [])) *}
urbanc@45782
   847
  {* decend theorems to the raw level *}
urbanc@45782
   848
urbanc@45782
   849
method_setup partiality_descending_setup =
urbanc@45782
   850
  {* Scan.succeed (fn ctxt => 
wenzelm@46468
   851
       SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_procedure_tac ctxt [])) *}
urbanc@45782
   852
  {* set up the three goals for the decending theorems *}
urbanc@45782
   853
kaliszyk@35222
   854
method_setup regularize =
wenzelm@46468
   855
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.regularize_tac ctxt)) *}
wenzelm@42814
   856
  {* prove the regularization goals from the quotient lifting procedure *}
kaliszyk@35222
   857
kaliszyk@35222
   858
method_setup injection =
wenzelm@46468
   859
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.all_injection_tac ctxt)) *}
wenzelm@42814
   860
  {* prove the rep/abs injection goals from the quotient lifting procedure *}
kaliszyk@35222
   861
kaliszyk@35222
   862
method_setup cleaning =
wenzelm@46468
   863
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.clean_tac ctxt)) *}
wenzelm@42814
   864
  {* prove the cleaning goals from the quotient lifting procedure *}
kaliszyk@35222
   865
kaliszyk@35222
   866
attribute_setup quot_lifted =
kaliszyk@35222
   867
  {* Scan.succeed Quotient_Tacs.lifted_attrib *}
wenzelm@42814
   868
  {* lift theorems to quotient types *}
kaliszyk@35222
   869
kaliszyk@35222
   870
no_notation
kaliszyk@35222
   871
  rel_conj (infixr "OOO" 75) and
haftmann@40602
   872
  map_fun (infixr "--->" 55) and
kaliszyk@35222
   873
  fun_rel (infixr "===>" 55)
kaliszyk@35222
   874
kaliszyk@35222
   875
end
haftmann@47488
   876