src/HOL/Quickcheck_Narrowing.thy
author bulwahn
Thu Jun 09 09:07:13 2011 +0200 (2011-06-09)
changeset 43317 f9283eb3a4bf
parent 43316 3e274608f06b
child 43341 acdac535c7fa
permissions -rw-r--r--
fixing code generation test
bulwahn@41905
     1
(* Author: Lukas Bulwahn, TU Muenchen *)
bulwahn@41905
     2
bulwahn@41930
     3
header {* Counterexample generator preforming narrowing-based testing *}
bulwahn@41905
     4
bulwahn@41930
     5
theory Quickcheck_Narrowing
bulwahn@43312
     6
imports Quickcheck_Exhaustive
bulwahn@41962
     7
uses
bulwahn@43237
     8
  ("~~/src/HOL/Tools/Quickcheck/PNF_Narrowing_Engine.hs")
bulwahn@43237
     9
  ("~~/src/HOL/Tools/Quickcheck/Narrowing_Engine.hs")
bulwahn@41962
    10
  ("~~/src/HOL/Tools/Quickcheck/narrowing_generators.ML")
bulwahn@41905
    11
begin
bulwahn@41905
    12
bulwahn@41905
    13
subsection {* Counterexample generator *}
bulwahn@41905
    14
bulwahn@43308
    15
text {* We create a new target for the necessary code generation setup. *}
bulwahn@43308
    16
bulwahn@43308
    17
setup {* Code_Target.extend_target ("Haskell_Quickcheck", (Code_Haskell.target, K I)) *}
bulwahn@43308
    18
bulwahn@41909
    19
subsubsection {* Code generation setup *}
bulwahn@41909
    20
bulwahn@41909
    21
code_type typerep
bulwahn@43308
    22
  (Haskell_Quickcheck "Typerep")
bulwahn@41909
    23
bulwahn@41909
    24
code_const Typerep.Typerep
bulwahn@43308
    25
  (Haskell_Quickcheck "Typerep")
bulwahn@41909
    26
bulwahn@43308
    27
code_reserved Haskell_Quickcheck Typerep
bulwahn@41909
    28
bulwahn@43308
    29
subsubsection {* Type @{text "code_int"} for Haskell_Quickcheck's Int type *}
bulwahn@41908
    30
bulwahn@41908
    31
typedef (open) code_int = "UNIV \<Colon> int set"
bulwahn@41908
    32
  morphisms int_of of_int by rule
bulwahn@41908
    33
bulwahn@42021
    34
lemma of_int_int_of [simp]:
bulwahn@42021
    35
  "of_int (int_of k) = k"
bulwahn@42021
    36
  by (rule int_of_inverse)
bulwahn@42021
    37
bulwahn@42021
    38
lemma int_of_of_int [simp]:
bulwahn@42021
    39
  "int_of (of_int n) = n"
bulwahn@42021
    40
  by (rule of_int_inverse) (rule UNIV_I)
bulwahn@42021
    41
bulwahn@42021
    42
lemma code_int:
bulwahn@42021
    43
  "(\<And>n\<Colon>code_int. PROP P n) \<equiv> (\<And>n\<Colon>int. PROP P (of_int n))"
bulwahn@42021
    44
proof
bulwahn@42021
    45
  fix n :: int
bulwahn@42021
    46
  assume "\<And>n\<Colon>code_int. PROP P n"
bulwahn@42021
    47
  then show "PROP P (of_int n)" .
bulwahn@42021
    48
next
bulwahn@42021
    49
  fix n :: code_int
bulwahn@42021
    50
  assume "\<And>n\<Colon>int. PROP P (of_int n)"
bulwahn@42021
    51
  then have "PROP P (of_int (int_of n))" .
bulwahn@42021
    52
  then show "PROP P n" by simp
bulwahn@42021
    53
qed
bulwahn@42021
    54
bulwahn@42021
    55
bulwahn@41908
    56
lemma int_of_inject [simp]:
bulwahn@41908
    57
  "int_of k = int_of l \<longleftrightarrow> k = l"
bulwahn@41908
    58
  by (rule int_of_inject)
bulwahn@41908
    59
bulwahn@42021
    60
lemma of_int_inject [simp]:
bulwahn@42021
    61
  "of_int n = of_int m \<longleftrightarrow> n = m"
bulwahn@42021
    62
  by (rule of_int_inject) (rule UNIV_I)+
bulwahn@42021
    63
bulwahn@42021
    64
instantiation code_int :: equal
bulwahn@42021
    65
begin
bulwahn@42021
    66
bulwahn@42021
    67
definition
bulwahn@42021
    68
  "HOL.equal k l \<longleftrightarrow> HOL.equal (int_of k) (int_of l)"
bulwahn@42021
    69
bulwahn@42021
    70
instance proof
bulwahn@42021
    71
qed (auto simp add: equal_code_int_def equal_int_def eq_int_refl)
bulwahn@42021
    72
bulwahn@42021
    73
end
bulwahn@42021
    74
bulwahn@42021
    75
instantiation code_int :: number
bulwahn@42021
    76
begin
bulwahn@42021
    77
bulwahn@42021
    78
definition
bulwahn@42021
    79
  "number_of = of_int"
bulwahn@42021
    80
bulwahn@42021
    81
instance ..
bulwahn@42021
    82
bulwahn@42021
    83
end
bulwahn@42021
    84
bulwahn@42021
    85
lemma int_of_number [simp]:
bulwahn@42021
    86
  "int_of (number_of k) = number_of k"
bulwahn@42021
    87
  by (simp add: number_of_code_int_def number_of_is_id)
bulwahn@42021
    88
bulwahn@42021
    89
bulwahn@41912
    90
definition nat_of :: "code_int => nat"
bulwahn@41912
    91
where
bulwahn@41912
    92
  "nat_of i = nat (int_of i)"
bulwahn@41908
    93
bulwahn@42980
    94
bulwahn@43047
    95
code_datatype "number_of \<Colon> int \<Rightarrow> code_int"
bulwahn@42980
    96
  
bulwahn@42980
    97
  
bulwahn@42021
    98
instantiation code_int :: "{minus, linordered_semidom, semiring_div, linorder}"
bulwahn@41908
    99
begin
bulwahn@41908
   100
bulwahn@41908
   101
definition [simp, code del]:
bulwahn@41908
   102
  "0 = of_int 0"
bulwahn@41908
   103
bulwahn@41908
   104
definition [simp, code del]:
bulwahn@41908
   105
  "1 = of_int 1"
bulwahn@41908
   106
bulwahn@41908
   107
definition [simp, code del]:
bulwahn@42021
   108
  "n + m = of_int (int_of n + int_of m)"
bulwahn@42021
   109
bulwahn@42021
   110
definition [simp, code del]:
bulwahn@41908
   111
  "n - m = of_int (int_of n - int_of m)"
bulwahn@41908
   112
bulwahn@41908
   113
definition [simp, code del]:
bulwahn@42021
   114
  "n * m = of_int (int_of n * int_of m)"
bulwahn@42021
   115
bulwahn@42021
   116
definition [simp, code del]:
bulwahn@42021
   117
  "n div m = of_int (int_of n div int_of m)"
bulwahn@42021
   118
bulwahn@42021
   119
definition [simp, code del]:
bulwahn@42021
   120
  "n mod m = of_int (int_of n mod int_of m)"
bulwahn@42021
   121
bulwahn@42021
   122
definition [simp, code del]:
bulwahn@41908
   123
  "n \<le> m \<longleftrightarrow> int_of n \<le> int_of m"
bulwahn@41908
   124
bulwahn@41908
   125
definition [simp, code del]:
bulwahn@41908
   126
  "n < m \<longleftrightarrow> int_of n < int_of m"
bulwahn@41908
   127
bulwahn@41908
   128
bulwahn@42021
   129
instance proof
bulwahn@42021
   130
qed (auto simp add: code_int left_distrib zmult_zless_mono2)
bulwahn@41908
   131
bulwahn@41908
   132
end
bulwahn@42980
   133
bulwahn@41908
   134
lemma zero_code_int_code [code, code_unfold]:
bulwahn@41908
   135
  "(0\<Colon>code_int) = Numeral0"
bulwahn@42980
   136
  by (simp add: number_of_code_int_def Pls_def)
bulwahn@42980
   137
lemma [code_post]: "Numeral0 = (0\<Colon>code_int)"
bulwahn@42980
   138
  using zero_code_int_code ..
bulwahn@41908
   139
bulwahn@42980
   140
lemma one_code_int_code [code, code_unfold]:
bulwahn@41908
   141
  "(1\<Colon>code_int) = Numeral1"
bulwahn@42980
   142
  by (simp add: number_of_code_int_def Pls_def Bit1_def)
bulwahn@41908
   143
lemma [code_post]: "Numeral1 = (1\<Colon>code_int)"
bulwahn@42980
   144
  using one_code_int_code ..
bulwahn@42980
   145
bulwahn@41908
   146
bulwahn@42021
   147
definition div_mod_code_int :: "code_int \<Rightarrow> code_int \<Rightarrow> code_int \<times> code_int" where
bulwahn@42021
   148
  [code del]: "div_mod_code_int n m = (n div m, n mod m)"
bulwahn@42021
   149
bulwahn@42021
   150
lemma [code]:
bulwahn@42021
   151
  "div_mod_code_int n m = (if m = 0 then (0, n) else (n div m, n mod m))"
bulwahn@42021
   152
  unfolding div_mod_code_int_def by auto
bulwahn@42021
   153
bulwahn@42021
   154
lemma [code]:
bulwahn@42021
   155
  "n div m = fst (div_mod_code_int n m)"
bulwahn@42021
   156
  unfolding div_mod_code_int_def by simp
bulwahn@42021
   157
bulwahn@42021
   158
lemma [code]:
bulwahn@42021
   159
  "n mod m = snd (div_mod_code_int n m)"
bulwahn@42021
   160
  unfolding div_mod_code_int_def by simp
bulwahn@42021
   161
bulwahn@42021
   162
lemma int_of_code [code]:
bulwahn@42021
   163
  "int_of k = (if k = 0 then 0
bulwahn@42021
   164
    else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))"
bulwahn@42021
   165
proof -
bulwahn@42021
   166
  have 1: "(int_of k div 2) * 2 + int_of k mod 2 = int_of k" 
bulwahn@42021
   167
    by (rule mod_div_equality)
bulwahn@42021
   168
  have "int_of k mod 2 = 0 \<or> int_of k mod 2 = 1" by auto
bulwahn@42021
   169
  from this show ?thesis
bulwahn@42021
   170
    apply auto
bulwahn@42021
   171
    apply (insert 1) by (auto simp add: mult_ac)
bulwahn@42021
   172
qed
bulwahn@42021
   173
bulwahn@42021
   174
bulwahn@42021
   175
code_instance code_numeral :: equal
bulwahn@43308
   176
  (Haskell_Quickcheck -)
bulwahn@42021
   177
bulwahn@42021
   178
setup {* fold (Numeral.add_code @{const_name number_code_int_inst.number_of_code_int}
bulwahn@43308
   179
  false Code_Printer.literal_numeral) ["Haskell_Quickcheck"]  *}
bulwahn@42021
   180
bulwahn@41908
   181
code_const "0 \<Colon> code_int"
bulwahn@43308
   182
  (Haskell_Quickcheck "0")
bulwahn@41908
   183
bulwahn@41908
   184
code_const "1 \<Colon> code_int"
bulwahn@43308
   185
  (Haskell_Quickcheck "1")
bulwahn@41908
   186
bulwahn@41908
   187
code_const "minus \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> code_int"
bulwahn@43308
   188
  (Haskell_Quickcheck "(_/ -/ _)")
bulwahn@41908
   189
bulwahn@42021
   190
code_const div_mod_code_int
bulwahn@43308
   191
  (Haskell_Quickcheck "divMod")
bulwahn@42021
   192
bulwahn@42021
   193
code_const "HOL.equal \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   194
  (Haskell_Quickcheck infix 4 "==")
bulwahn@42021
   195
bulwahn@41908
   196
code_const "op \<le> \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   197
  (Haskell_Quickcheck infix 4 "<=")
bulwahn@41908
   198
bulwahn@41908
   199
code_const "op < \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   200
  (Haskell_Quickcheck infix 4 "<")
bulwahn@41908
   201
bulwahn@41908
   202
code_type code_int
bulwahn@43308
   203
  (Haskell_Quickcheck "Int")
bulwahn@41908
   204
bulwahn@42021
   205
code_abort of_int
bulwahn@42021
   206
bulwahn@41961
   207
subsubsection {* Narrowing's deep representation of types and terms *}
bulwahn@41905
   208
bulwahn@43047
   209
datatype narrowing_type = SumOfProd "narrowing_type list list"
bulwahn@43317
   210
text {*
bulwahn@43317
   211
The definition of the automatically derived equal type class instance for @{typ narrowing_type}
bulwahn@43317
   212
causes an error in the OCaml serializer.
bulwahn@43317
   213
For the moment, we delete this equation manually because we do not require an executable equality
bulwahn@43317
   214
on this type anyway.   
bulwahn@43317
   215
*}
bulwahn@43317
   216
declare Quickcheck_Narrowing.equal_narrowing_type_def[code del]
bulwahn@41905
   217
bulwahn@43047
   218
datatype narrowing_term = Var "code_int list" narrowing_type | Ctr code_int "narrowing_term list"
bulwahn@43047
   219
datatype 'a cons = C narrowing_type "(narrowing_term list => 'a) list"
bulwahn@41905
   220
bulwahn@42980
   221
subsubsection {* From narrowing's deep representation of terms to Code_Evaluation's terms *}
bulwahn@42980
   222
bulwahn@42980
   223
class partial_term_of = typerep +
bulwahn@43047
   224
  fixes partial_term_of :: "'a itself => narrowing_term => Code_Evaluation.term"
bulwahn@43047
   225
bulwahn@43047
   226
lemma partial_term_of_anything: "partial_term_of x nt \<equiv> t"
bulwahn@43047
   227
  by (rule eq_reflection) (cases "partial_term_of x nt", cases t, simp)
bulwahn@43047
   228
bulwahn@42980
   229
bulwahn@41964
   230
subsubsection {* Auxilary functions for Narrowing *}
bulwahn@41905
   231
bulwahn@41908
   232
consts nth :: "'a list => code_int => 'a"
bulwahn@41905
   233
bulwahn@43308
   234
code_const nth (Haskell_Quickcheck infixl 9  "!!")
bulwahn@41905
   235
bulwahn@41908
   236
consts error :: "char list => 'a"
bulwahn@41905
   237
bulwahn@43308
   238
code_const error (Haskell_Quickcheck "error")
bulwahn@41905
   239
bulwahn@41908
   240
consts toEnum :: "code_int => char"
bulwahn@41908
   241
bulwahn@43308
   242
code_const toEnum (Haskell_Quickcheck "toEnum")
bulwahn@41905
   243
bulwahn@43316
   244
consts marker :: "char"
bulwahn@41905
   245
bulwahn@43316
   246
code_const marker (Haskell_Quickcheck "''\\0'")
bulwahn@43316
   247
bulwahn@41961
   248
subsubsection {* Narrowing's basic operations *}
bulwahn@41905
   249
bulwahn@41961
   250
type_synonym 'a narrowing = "code_int => 'a cons"
bulwahn@41905
   251
bulwahn@41961
   252
definition empty :: "'a narrowing"
bulwahn@41905
   253
where
bulwahn@41905
   254
  "empty d = C (SumOfProd []) []"
bulwahn@41905
   255
  
bulwahn@41961
   256
definition cons :: "'a => 'a narrowing"
bulwahn@41905
   257
where
bulwahn@41905
   258
  "cons a d = (C (SumOfProd [[]]) [(%_. a)])"
bulwahn@41905
   259
bulwahn@43047
   260
fun conv :: "(narrowing_term list => 'a) list => narrowing_term => 'a"
bulwahn@41905
   261
where
bulwahn@43316
   262
  "conv cs (Var p _) = error (marker # map toEnum p)"
bulwahn@41905
   263
| "conv cs (Ctr i xs) = (nth cs i) xs"
bulwahn@41905
   264
bulwahn@43047
   265
fun nonEmpty :: "narrowing_type => bool"
bulwahn@41905
   266
where
bulwahn@41905
   267
  "nonEmpty (SumOfProd ps) = (\<not> (List.null ps))"
bulwahn@41905
   268
bulwahn@41961
   269
definition "apply" :: "('a => 'b) narrowing => 'a narrowing => 'b narrowing"
bulwahn@41905
   270
where
bulwahn@41905
   271
  "apply f a d =
bulwahn@41905
   272
     (case f d of C (SumOfProd ps) cfs =>
bulwahn@41905
   273
       case a (d - 1) of C ta cas =>
bulwahn@41905
   274
       let
bulwahn@41905
   275
         shallow = (d > 0 \<and> nonEmpty ta);
bulwahn@41905
   276
         cs = [(%xs'. (case xs' of [] => undefined | x # xs => cf xs (conv cas x))). shallow, cf <- cfs]
bulwahn@41905
   277
       in C (SumOfProd [ta # p. shallow, p <- ps]) cs)"
bulwahn@41905
   278
bulwahn@41961
   279
definition sum :: "'a narrowing => 'a narrowing => 'a narrowing"
bulwahn@41905
   280
where
bulwahn@41905
   281
  "sum a b d =
bulwahn@41905
   282
    (case a d of C (SumOfProd ssa) ca => 
bulwahn@41905
   283
      case b d of C (SumOfProd ssb) cb =>
bulwahn@41905
   284
      C (SumOfProd (ssa @ ssb)) (ca @ cb))"
bulwahn@41905
   285
bulwahn@41912
   286
lemma [fundef_cong]:
bulwahn@41912
   287
  assumes "a d = a' d" "b d = b' d" "d = d'"
bulwahn@41912
   288
  shows "sum a b d = sum a' b' d'"
bulwahn@43047
   289
using assms unfolding sum_def by (auto split: cons.split narrowing_type.split)
bulwahn@41912
   290
bulwahn@41912
   291
lemma [fundef_cong]:
bulwahn@41912
   292
  assumes "f d = f' d" "(\<And>d'. 0 <= d' & d' < d ==> a d' = a' d')"
bulwahn@41912
   293
  assumes "d = d'"
bulwahn@41912
   294
  shows "apply f a d = apply f' a' d'"
bulwahn@41912
   295
proof -
bulwahn@41912
   296
  note assms moreover
bulwahn@41930
   297
  have "int_of (of_int 0) < int_of d' ==> int_of (of_int 0) <= int_of (of_int (int_of d' - int_of (of_int 1)))"
bulwahn@41912
   298
    by (simp add: of_int_inverse)
bulwahn@41912
   299
  moreover
bulwahn@41930
   300
  have "int_of (of_int (int_of d' - int_of (of_int 1))) < int_of d'"
bulwahn@41912
   301
    by (simp add: of_int_inverse)
bulwahn@41912
   302
  ultimately show ?thesis
bulwahn@43047
   303
    unfolding apply_def by (auto split: cons.split narrowing_type.split simp add: Let_def)
bulwahn@41912
   304
qed
bulwahn@41912
   305
bulwahn@41961
   306
subsubsection {* Narrowing generator type class *}
bulwahn@41905
   307
bulwahn@41961
   308
class narrowing =
bulwahn@41961
   309
  fixes narrowing :: "code_int => 'a cons"
bulwahn@41905
   310
bulwahn@42021
   311
definition drawn_from :: "'a list => 'a cons"
bulwahn@42021
   312
where "drawn_from xs = C (SumOfProd (map (%_. []) xs)) (map (%x y. x) xs)"
bulwahn@42021
   313
bulwahn@42021
   314
instantiation int :: narrowing
bulwahn@42021
   315
begin
bulwahn@42021
   316
bulwahn@42021
   317
definition
bulwahn@42021
   318
  "narrowing_int d = (let i = Quickcheck_Narrowing.int_of d in drawn_from [-i .. i])"
bulwahn@42021
   319
bulwahn@42021
   320
instance ..
bulwahn@42021
   321
bulwahn@42021
   322
end
bulwahn@42021
   323
bulwahn@43237
   324
datatype property = Universal narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Existential narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Property bool
bulwahn@43237
   325
bulwahn@43237
   326
(* FIXME: hard-wired maximal depth of 100 here *)
bulwahn@43315
   327
definition exists :: "('a :: {narrowing, partial_term_of} => property) => property"
bulwahn@43237
   328
where
bulwahn@43237
   329
  "exists f = (case narrowing (100 :: code_int) of C ty cs => Existential ty (\<lambda> t. f (conv cs t)) (partial_term_of (TYPE('a))))"
bulwahn@43237
   330
bulwahn@43315
   331
definition "all" :: "('a :: {narrowing, partial_term_of} => property) => property"
bulwahn@43237
   332
where
bulwahn@43237
   333
  "all f = (case narrowing (100 :: code_int) of C ty cs => Universal ty (\<lambda>t. f (conv cs t)) (partial_term_of (TYPE('a))))"
bulwahn@43237
   334
wenzelm@41943
   335
subsubsection {* class @{text is_testable} *}
bulwahn@41905
   336
wenzelm@41943
   337
text {* The class @{text is_testable} ensures that all necessary type instances are generated. *}
bulwahn@41905
   338
bulwahn@41905
   339
class is_testable
bulwahn@41905
   340
bulwahn@41905
   341
instance bool :: is_testable ..
bulwahn@41905
   342
bulwahn@43047
   343
instance "fun" :: ("{term_of, narrowing, partial_term_of}", is_testable) is_testable ..
bulwahn@41905
   344
bulwahn@41905
   345
definition ensure_testable :: "'a :: is_testable => 'a :: is_testable"
bulwahn@41905
   346
where
bulwahn@41905
   347
  "ensure_testable f = f"
bulwahn@41905
   348
bulwahn@41910
   349
bulwahn@42022
   350
subsubsection {* Defining a simple datatype to represent functions in an incomplete and redundant way *}
bulwahn@42022
   351
bulwahn@42022
   352
datatype ('a, 'b) ffun = Constant 'b | Update 'a 'b "('a, 'b) ffun"
bulwahn@42022
   353
bulwahn@42022
   354
primrec eval_ffun :: "('a, 'b) ffun => 'a => 'b"
bulwahn@42022
   355
where
bulwahn@42022
   356
  "eval_ffun (Constant c) x = c"
bulwahn@42022
   357
| "eval_ffun (Update x' y f) x = (if x = x' then y else eval_ffun f x)"
bulwahn@42022
   358
bulwahn@42022
   359
hide_type (open) ffun
bulwahn@42022
   360
hide_const (open) Constant Update eval_ffun
bulwahn@42022
   361
bulwahn@42024
   362
datatype 'b cfun = Constant 'b
bulwahn@42024
   363
bulwahn@42024
   364
primrec eval_cfun :: "'b cfun => 'a => 'b"
bulwahn@42024
   365
where
bulwahn@42024
   366
  "eval_cfun (Constant c) y = c"
bulwahn@42024
   367
bulwahn@42024
   368
hide_type (open) cfun
bulwahn@42024
   369
hide_const (open) Constant eval_cfun
bulwahn@42024
   370
bulwahn@42024
   371
subsubsection {* Setting up the counterexample generator *}
bulwahn@43237
   372
bulwahn@43237
   373
setup {* Thy_Load.provide_file (Path.explode ("~~/src/HOL/Tools/Quickcheck/PNF_Narrowing_Engine.hs")) *}
bulwahn@43237
   374
setup {* Thy_Load.provide_file (Path.explode ("~~/src/HOL/Tools/Quickcheck/Narrowing_Engine.hs")) *}
bulwahn@42024
   375
use "~~/src/HOL/Tools/Quickcheck/narrowing_generators.ML"
bulwahn@42024
   376
bulwahn@42024
   377
setup {* Narrowing_Generators.setup *}
bulwahn@42024
   378
bulwahn@43315
   379
hide_type code_int narrowing_type narrowing_term cons property
bulwahn@43316
   380
hide_const int_of of_int nth error toEnum marker empty
bulwahn@43315
   381
  C cons conv nonEmpty "apply" sum ensure_testable all exists 
bulwahn@43315
   382
hide_fact empty_def cons_def conv.simps nonEmpty.simps apply_def sum_def ensure_testable_def all_def exists_def
bulwahn@42022
   383
bulwahn@41905
   384
end