src/HOL/Hilbert_Choice.thy
author nipkow
Tue Sep 07 10:05:19 2010 +0200 (2010-09-07)
changeset 39198 f967a16dfcdd
parent 39036 dff91b90d74c
child 39302 d7728f65b353
permissions -rw-r--r--
expand_fun_eq -> ext_iff
expand_set_eq -> set_ext_iff
Naming in line now with multisets
paulson@11451
     1
(*  Title:      HOL/Hilbert_Choice.thy
nipkow@32988
     2
    Author:     Lawrence C Paulson, Tobias Nipkow
paulson@11451
     3
    Copyright   2001  University of Cambridge
wenzelm@12023
     4
*)
paulson@11451
     5
paulson@14760
     6
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
paulson@11451
     7
nipkow@15131
     8
theory Hilbert_Choice
haftmann@29655
     9
imports Nat Wellfounded Plain
blanchet@39036
    10
uses ("Tools/meson.ML")
blanchet@39036
    11
     ("Tools/choice_specification.ML")
nipkow@15131
    12
begin
wenzelm@12298
    13
wenzelm@12298
    14
subsection {* Hilbert's epsilon *}
wenzelm@12298
    15
haftmann@31454
    16
axiomatization Eps :: "('a => bool) => 'a" where
wenzelm@22690
    17
  someI: "P x ==> P (Eps P)"
paulson@11451
    18
wenzelm@14872
    19
syntax (epsilon)
wenzelm@14872
    20
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
paulson@11451
    21
syntax (HOL)
wenzelm@12298
    22
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
paulson@11451
    23
syntax
wenzelm@12298
    24
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
paulson@11451
    25
translations
wenzelm@22690
    26
  "SOME x. P" == "CONST Eps (%x. P)"
nipkow@13763
    27
nipkow@13763
    28
print_translation {*
wenzelm@35115
    29
  [(@{const_syntax Eps}, fn [Abs abs] =>
wenzelm@35115
    30
      let val (x, t) = atomic_abs_tr' abs
wenzelm@35115
    31
      in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
wenzelm@35115
    32
*} -- {* to avoid eta-contraction of body *}
paulson@11451
    33
nipkow@33057
    34
definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
nipkow@33057
    35
"inv_into A f == %x. SOME y. y : A & f y = x"
paulson@11454
    36
nipkow@32988
    37
abbreviation inv :: "('a => 'b) => ('b => 'a)" where
nipkow@33057
    38
"inv == inv_into UNIV"
paulson@14760
    39
paulson@14760
    40
paulson@14760
    41
subsection {*Hilbert's Epsilon-operator*}
paulson@14760
    42
paulson@14760
    43
text{*Easier to apply than @{text someI} if the witness comes from an
paulson@14760
    44
existential formula*}
paulson@14760
    45
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)"
paulson@14760
    46
apply (erule exE)
paulson@14760
    47
apply (erule someI)
paulson@14760
    48
done
paulson@14760
    49
paulson@14760
    50
text{*Easier to apply than @{text someI} because the conclusion has only one
paulson@14760
    51
occurrence of @{term P}.*}
paulson@14760
    52
lemma someI2: "[| P a;  !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    53
by (blast intro: someI)
paulson@14760
    54
paulson@14760
    55
text{*Easier to apply than @{text someI2} if the witness comes from an
paulson@14760
    56
existential formula*}
paulson@14760
    57
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    58
by (blast intro: someI2)
paulson@14760
    59
paulson@14760
    60
lemma some_equality [intro]:
paulson@14760
    61
     "[| P a;  !!x. P x ==> x=a |] ==> (SOME x. P x) = a"
paulson@14760
    62
by (blast intro: someI2)
paulson@14760
    63
paulson@14760
    64
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a"
huffman@35216
    65
by blast
paulson@14760
    66
paulson@14760
    67
lemma some_eq_ex: "P (SOME x. P x) =  (\<exists>x. P x)"
paulson@14760
    68
by (blast intro: someI)
paulson@14760
    69
paulson@14760
    70
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x"
paulson@14760
    71
apply (rule some_equality)
paulson@14760
    72
apply (rule refl, assumption)
paulson@14760
    73
done
paulson@14760
    74
paulson@14760
    75
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x"
paulson@14760
    76
apply (rule some_equality)
paulson@14760
    77
apply (rule refl)
paulson@14760
    78
apply (erule sym)
paulson@14760
    79
done
paulson@14760
    80
paulson@14760
    81
paulson@14760
    82
subsection{*Axiom of Choice, Proved Using the Description Operator*}
paulson@14760
    83
paulson@14760
    84
text{*Used in @{text "Tools/meson.ML"}*}
paulson@14760
    85
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)"
paulson@14760
    86
by (fast elim: someI)
paulson@14760
    87
paulson@14760
    88
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)"
paulson@14760
    89
by (fast elim: someI)
paulson@14760
    90
paulson@14760
    91
paulson@14760
    92
subsection {*Function Inverse*}
paulson@14760
    93
nipkow@33014
    94
lemma inv_def: "inv f = (%y. SOME x. f x = y)"
nipkow@33057
    95
by(simp add: inv_into_def)
nipkow@33014
    96
nipkow@33057
    97
lemma inv_into_into: "x : f ` A ==> inv_into A f x : A"
nipkow@33057
    98
apply (simp add: inv_into_def)
nipkow@32988
    99
apply (fast intro: someI2)
nipkow@32988
   100
done
paulson@14760
   101
nipkow@32988
   102
lemma inv_id [simp]: "inv id = id"
nipkow@33057
   103
by (simp add: inv_into_def id_def)
paulson@14760
   104
nipkow@33057
   105
lemma inv_into_f_f [simp]:
nipkow@33057
   106
  "[| inj_on f A;  x : A |] ==> inv_into A f (f x) = x"
nipkow@33057
   107
apply (simp add: inv_into_def inj_on_def)
nipkow@32988
   108
apply (blast intro: someI2)
paulson@14760
   109
done
paulson@14760
   110
nipkow@32988
   111
lemma inv_f_f: "inj f ==> inv f (f x) = x"
huffman@35216
   112
by simp
nipkow@32988
   113
nipkow@33057
   114
lemma f_inv_into_f: "y : f`A  ==> f (inv_into A f y) = y"
nipkow@33057
   115
apply (simp add: inv_into_def)
nipkow@32988
   116
apply (fast intro: someI2)
nipkow@32988
   117
done
nipkow@32988
   118
nipkow@33057
   119
lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x"
nipkow@32988
   120
apply (erule subst)
nipkow@33057
   121
apply (fast intro: inv_into_f_f)
nipkow@32988
   122
done
nipkow@32988
   123
nipkow@32988
   124
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x"
nipkow@33057
   125
by (simp add:inv_into_f_eq)
nipkow@32988
   126
nipkow@32988
   127
lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g"
nipkow@33057
   128
by (blast intro: ext inv_into_f_eq)
paulson@14760
   129
paulson@14760
   130
text{*But is it useful?*}
paulson@14760
   131
lemma inj_transfer:
paulson@14760
   132
  assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)"
paulson@14760
   133
  shows "P x"
paulson@14760
   134
proof -
paulson@14760
   135
  have "f x \<in> range f" by auto
paulson@14760
   136
  hence "P(inv f (f x))" by (rule minor)
nipkow@33057
   137
  thus "P x" by (simp add: inv_into_f_f [OF injf])
paulson@14760
   138
qed
paulson@11451
   139
paulson@14760
   140
lemma inj_iff: "(inj f) = (inv f o f = id)"
nipkow@39198
   141
apply (simp add: o_def ext_iff)
nipkow@33057
   142
apply (blast intro: inj_on_inverseI inv_into_f_f)
paulson@14760
   143
done
paulson@14760
   144
nipkow@23433
   145
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"
nipkow@23433
   146
by (simp add: inj_iff)
nipkow@23433
   147
nipkow@23433
   148
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"
nipkow@23433
   149
by (simp add: o_assoc[symmetric])
nipkow@23433
   150
nipkow@33057
   151
lemma inv_into_image_cancel[simp]:
nipkow@33057
   152
  "inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S"
nipkow@32988
   153
by(fastsimp simp: image_def)
nipkow@32988
   154
paulson@14760
   155
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"
nipkow@33057
   156
by (blast intro: surjI inv_into_f_f)
paulson@14760
   157
paulson@14760
   158
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"
nipkow@33057
   159
by (simp add: f_inv_into_f surj_range)
paulson@14760
   160
nipkow@33057
   161
lemma inv_into_injective:
nipkow@33057
   162
  assumes eq: "inv_into A f x = inv_into A f y"
nipkow@32988
   163
      and x: "x: f`A"
nipkow@32988
   164
      and y: "y: f`A"
paulson@14760
   165
  shows "x=y"
paulson@14760
   166
proof -
nipkow@33057
   167
  have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp
nipkow@33057
   168
  thus ?thesis by (simp add: f_inv_into_f x y)
paulson@14760
   169
qed
paulson@14760
   170
nipkow@33057
   171
lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B"
nipkow@33057
   172
by (blast intro: inj_onI dest: inv_into_injective injD)
nipkow@32988
   173
nipkow@33057
   174
lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A"
nipkow@33057
   175
by (auto simp add: bij_betw_def inj_on_inv_into)
paulson@14760
   176
paulson@14760
   177
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"
nipkow@33057
   178
by (simp add: inj_on_inv_into surj_range)
paulson@14760
   179
paulson@14760
   180
lemma surj_iff: "(surj f) = (f o inv f = id)"
nipkow@39198
   181
apply (simp add: o_def ext_iff)
paulson@14760
   182
apply (blast intro: surjI surj_f_inv_f)
paulson@14760
   183
done
paulson@14760
   184
paulson@14760
   185
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g"
paulson@14760
   186
apply (rule ext)
paulson@14760
   187
apply (drule_tac x = "inv f x" in spec)
paulson@14760
   188
apply (simp add: surj_f_inv_f)
paulson@14760
   189
done
paulson@14760
   190
paulson@14760
   191
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)"
paulson@14760
   192
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
wenzelm@12372
   193
paulson@14760
   194
lemma inv_equality: "[| !!x. g (f x) = x;  !!y. f (g y) = y |] ==> inv f = g"
paulson@14760
   195
apply (rule ext)
nipkow@33057
   196
apply (auto simp add: inv_into_def)
paulson@14760
   197
done
paulson@14760
   198
paulson@14760
   199
lemma inv_inv_eq: "bij f ==> inv (inv f) = f"
paulson@14760
   200
apply (rule inv_equality)
paulson@14760
   201
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   202
done
paulson@14760
   203
paulson@14760
   204
(** bij(inv f) implies little about f.  Consider f::bool=>bool such that
paulson@14760
   205
    f(True)=f(False)=True.  Then it's consistent with axiom someI that
paulson@14760
   206
    inv f could be any function at all, including the identity function.
paulson@14760
   207
    If inv f=id then inv f is a bijection, but inj f, surj(f) and
paulson@14760
   208
    inv(inv f)=f all fail.
paulson@14760
   209
**)
paulson@14760
   210
nipkow@33057
   211
lemma inv_into_comp:
nipkow@32988
   212
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   213
  inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x"
nipkow@33057
   214
apply (rule inv_into_f_eq)
nipkow@32988
   215
  apply (fast intro: comp_inj_on)
nipkow@33057
   216
 apply (simp add: inv_into_into)
nipkow@33057
   217
apply (simp add: f_inv_into_f inv_into_into)
nipkow@32988
   218
done
nipkow@32988
   219
paulson@14760
   220
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"
paulson@14760
   221
apply (rule inv_equality)
paulson@14760
   222
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   223
done
paulson@14760
   224
paulson@14760
   225
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A"
paulson@14760
   226
by (simp add: image_eq_UN surj_f_inv_f)
paulson@14760
   227
paulson@14760
   228
lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A"
paulson@14760
   229
by (simp add: image_eq_UN)
paulson@14760
   230
paulson@14760
   231
lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X"
paulson@14760
   232
by (auto simp add: image_def)
paulson@14760
   233
paulson@14760
   234
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
paulson@14760
   235
apply auto
paulson@14760
   236
apply (force simp add: bij_is_inj)
paulson@14760
   237
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
paulson@14760
   238
done
paulson@14760
   239
paulson@14760
   240
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" 
paulson@14760
   241
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
nipkow@33057
   242
apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])
paulson@14760
   243
done
paulson@14760
   244
haftmann@31380
   245
lemma finite_fun_UNIVD1:
haftmann@31380
   246
  assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
haftmann@31380
   247
  and card: "card (UNIV :: 'b set) \<noteq> Suc 0"
haftmann@31380
   248
  shows "finite (UNIV :: 'a set)"
haftmann@31380
   249
proof -
haftmann@31380
   250
  from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2)
haftmann@31380
   251
  with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)"
haftmann@31380
   252
    by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff)
haftmann@31380
   253
  then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto
haftmann@31380
   254
  then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq)
haftmann@31380
   255
  from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI)
haftmann@31380
   256
  moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"
haftmann@31380
   257
  proof (rule UNIV_eq_I)
haftmann@31380
   258
    fix x :: 'a
nipkow@33057
   259
    from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def)
haftmann@31380
   260
    thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast
haftmann@31380
   261
  qed
haftmann@31380
   262
  ultimately show "finite (UNIV :: 'a set)" by simp
haftmann@31380
   263
qed
paulson@14760
   264
paulson@14760
   265
paulson@14760
   266
subsection {*Other Consequences of Hilbert's Epsilon*}
paulson@14760
   267
paulson@14760
   268
text {*Hilbert's Epsilon and the @{term split} Operator*}
paulson@14760
   269
paulson@14760
   270
text{*Looping simprule*}
paulson@14760
   271
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))"
haftmann@26347
   272
  by simp
paulson@14760
   273
paulson@14760
   274
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))"
haftmann@26347
   275
  by (simp add: split_def)
paulson@14760
   276
paulson@14760
   277
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)"
haftmann@26347
   278
  by blast
paulson@14760
   279
paulson@14760
   280
paulson@14760
   281
text{*A relation is wellfounded iff it has no infinite descending chain*}
paulson@14760
   282
lemma wf_iff_no_infinite_down_chain:
paulson@14760
   283
  "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))"
paulson@14760
   284
apply (simp only: wf_eq_minimal)
paulson@14760
   285
apply (rule iffI)
paulson@14760
   286
 apply (rule notI)
paulson@14760
   287
 apply (erule exE)
paulson@14760
   288
 apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
paulson@14760
   289
apply (erule contrapos_np, simp, clarify)
paulson@14760
   290
apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q")
paulson@14760
   291
 apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI)
paulson@14760
   292
 apply (rule allI, simp)
paulson@14760
   293
 apply (rule someI2_ex, blast, blast)
paulson@14760
   294
apply (rule allI)
paulson@14760
   295
apply (induct_tac "n", simp_all)
paulson@14760
   296
apply (rule someI2_ex, blast+)
paulson@14760
   297
done
paulson@14760
   298
nipkow@27760
   299
lemma wf_no_infinite_down_chainE:
nipkow@27760
   300
  assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r"
nipkow@27760
   301
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast
nipkow@27760
   302
nipkow@27760
   303
paulson@14760
   304
text{*A dynamically-scoped fact for TFL *}
wenzelm@12298
   305
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"
wenzelm@12298
   306
  by (blast intro: someI)
paulson@11451
   307
wenzelm@12298
   308
wenzelm@12298
   309
subsection {* Least value operator *}
paulson@11451
   310
haftmann@35416
   311
definition
haftmann@35416
   312
  LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where
paulson@14760
   313
  "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"
paulson@11451
   314
paulson@11451
   315
syntax
wenzelm@12298
   316
  "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   317
translations
wenzelm@35115
   318
  "LEAST x WRT m. P" == "CONST LeastM m (%x. P)"
paulson@11451
   319
paulson@11451
   320
lemma LeastMI2:
wenzelm@12298
   321
  "P x ==> (!!y. P y ==> m x <= m y)
wenzelm@12298
   322
    ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)
wenzelm@12298
   323
    ==> Q (LeastM m P)"
paulson@14760
   324
  apply (simp add: LeastM_def)
paulson@14208
   325
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   326
  done
paulson@11451
   327
paulson@11451
   328
lemma LeastM_equality:
wenzelm@12298
   329
  "P k ==> (!!x. P x ==> m k <= m x)
wenzelm@12298
   330
    ==> m (LEAST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   331
  apply (rule LeastMI2, assumption, blast)
wenzelm@12298
   332
  apply (blast intro!: order_antisym)
wenzelm@12298
   333
  done
paulson@11451
   334
paulson@11454
   335
lemma wf_linord_ex_has_least:
paulson@14760
   336
  "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k
paulson@14760
   337
    ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)"
wenzelm@12298
   338
  apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])
paulson@14208
   339
  apply (drule_tac x = "m`Collect P" in spec, force)
wenzelm@12298
   340
  done
paulson@11454
   341
paulson@11454
   342
lemma ex_has_least_nat:
paulson@14760
   343
    "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))"
wenzelm@12298
   344
  apply (simp only: pred_nat_trancl_eq_le [symmetric])
wenzelm@12298
   345
  apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
paulson@16796
   346
   apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption)
wenzelm@12298
   347
  done
paulson@11454
   348
wenzelm@12298
   349
lemma LeastM_nat_lemma:
paulson@14760
   350
    "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))"
paulson@14760
   351
  apply (simp add: LeastM_def)
wenzelm@12298
   352
  apply (rule someI_ex)
wenzelm@12298
   353
  apply (erule ex_has_least_nat)
wenzelm@12298
   354
  done
paulson@11454
   355
paulson@11454
   356
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard]
paulson@11454
   357
paulson@11454
   358
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"
paulson@14208
   359
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption)
paulson@11454
   360
paulson@11451
   361
wenzelm@12298
   362
subsection {* Greatest value operator *}
paulson@11451
   363
haftmann@35416
   364
definition
haftmann@35416
   365
  GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where
paulson@14760
   366
  "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"
wenzelm@12298
   367
haftmann@35416
   368
definition
haftmann@35416
   369
  Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where
wenzelm@12298
   370
  "Greatest == GreatestM (%x. x)"
paulson@11451
   371
paulson@11451
   372
syntax
wenzelm@35115
   373
  "_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"
wenzelm@12298
   374
      ("GREATEST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   375
translations
wenzelm@35115
   376
  "GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)"
paulson@11451
   377
paulson@11451
   378
lemma GreatestMI2:
wenzelm@12298
   379
  "P x ==> (!!y. P y ==> m y <= m x)
wenzelm@12298
   380
    ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)
wenzelm@12298
   381
    ==> Q (GreatestM m P)"
paulson@14760
   382
  apply (simp add: GreatestM_def)
paulson@14208
   383
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   384
  done
paulson@11451
   385
paulson@11451
   386
lemma GreatestM_equality:
wenzelm@12298
   387
 "P k ==> (!!x. P x ==> m x <= m k)
wenzelm@12298
   388
    ==> m (GREATEST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   389
  apply (rule_tac m = m in GreatestMI2, assumption, blast)
wenzelm@12298
   390
  apply (blast intro!: order_antisym)
wenzelm@12298
   391
  done
paulson@11451
   392
paulson@11451
   393
lemma Greatest_equality:
wenzelm@12298
   394
  "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"
paulson@14760
   395
  apply (simp add: Greatest_def)
paulson@14208
   396
  apply (erule GreatestM_equality, blast)
wenzelm@12298
   397
  done
paulson@11451
   398
paulson@11451
   399
lemma ex_has_greatest_nat_lemma:
paulson@14760
   400
  "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x))
paulson@14760
   401
    ==> \<exists>y. P y & ~ (m y < m k + n)"
paulson@15251
   402
  apply (induct n, force)
wenzelm@12298
   403
  apply (force simp add: le_Suc_eq)
wenzelm@12298
   404
  done
paulson@11451
   405
wenzelm@12298
   406
lemma ex_has_greatest_nat:
paulson@14760
   407
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   408
    ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)"
wenzelm@12298
   409
  apply (rule ccontr)
wenzelm@12298
   410
  apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)
paulson@14208
   411
    apply (subgoal_tac [3] "m k <= b", auto)
wenzelm@12298
   412
  done
paulson@11451
   413
wenzelm@12298
   414
lemma GreatestM_nat_lemma:
paulson@14760
   415
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   416
    ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))"
paulson@14760
   417
  apply (simp add: GreatestM_def)
wenzelm@12298
   418
  apply (rule someI_ex)
paulson@14208
   419
  apply (erule ex_has_greatest_nat, assumption)
wenzelm@12298
   420
  done
paulson@11451
   421
paulson@11451
   422
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard]
paulson@11451
   423
wenzelm@12298
   424
lemma GreatestM_nat_le:
paulson@14760
   425
  "P x ==> \<forall>y. P y --> m y < b
wenzelm@12298
   426
    ==> (m x::nat) <= m (GreatestM m P)"
berghofe@21020
   427
  apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])
wenzelm@12298
   428
  done
wenzelm@12298
   429
wenzelm@12298
   430
wenzelm@12298
   431
text {* \medskip Specialization to @{text GREATEST}. *}
wenzelm@12298
   432
paulson@14760
   433
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)"
paulson@14760
   434
  apply (simp add: Greatest_def)
paulson@14208
   435
  apply (rule GreatestM_natI, auto)
wenzelm@12298
   436
  done
paulson@11451
   437
wenzelm@12298
   438
lemma Greatest_le:
paulson@14760
   439
    "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"
paulson@14760
   440
  apply (simp add: Greatest_def)
paulson@14208
   441
  apply (rule GreatestM_nat_le, auto)
wenzelm@12298
   442
  done
wenzelm@12298
   443
wenzelm@12298
   444
wenzelm@12298
   445
subsection {* The Meson proof procedure *}
paulson@11451
   446
wenzelm@12298
   447
subsubsection {* Negation Normal Form *}
wenzelm@12298
   448
wenzelm@12298
   449
text {* de Morgan laws *}
wenzelm@12298
   450
wenzelm@12298
   451
lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"
wenzelm@12298
   452
  and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"
wenzelm@12298
   453
  and meson_not_notD: "~~P ==> P"
paulson@14760
   454
  and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"
paulson@14760
   455
  and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"
wenzelm@12298
   456
  by fast+
paulson@11451
   457
wenzelm@12298
   458
text {* Removal of @{text "-->"} and @{text "<->"} (positive and
wenzelm@12298
   459
negative occurrences) *}
wenzelm@12298
   460
wenzelm@12298
   461
lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"
wenzelm@12298
   462
  and meson_not_impD: "~(P-->Q) ==> P & ~Q"
wenzelm@12298
   463
  and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
wenzelm@12298
   464
  and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
wenzelm@12298
   465
    -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
paulson@18389
   466
  and meson_not_refl_disj_D: "x ~= x | P ==> P"
wenzelm@12298
   467
  by fast+
wenzelm@12298
   468
wenzelm@12298
   469
wenzelm@12298
   470
subsubsection {* Pulling out the existential quantifiers *}
wenzelm@12298
   471
wenzelm@12298
   472
text {* Conjunction *}
wenzelm@12298
   473
paulson@14760
   474
lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"
paulson@14760
   475
  and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"
wenzelm@12298
   476
  by fast+
wenzelm@12298
   477
paulson@11451
   478
wenzelm@12298
   479
text {* Disjunction *}
wenzelm@12298
   480
paulson@14760
   481
lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"
wenzelm@12298
   482
  -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
wenzelm@12298
   483
  -- {* With ex-Skolemization, makes fewer Skolem constants *}
paulson@14760
   484
  and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"
paulson@14760
   485
  and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"
wenzelm@12298
   486
  by fast+
wenzelm@12298
   487
paulson@11451
   488
wenzelm@12298
   489
subsubsection {* Generating clauses for the Meson Proof Procedure *}
wenzelm@12298
   490
wenzelm@12298
   491
text {* Disjunctions *}
wenzelm@12298
   492
wenzelm@12298
   493
lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"
wenzelm@12298
   494
  and meson_disj_comm: "P|Q ==> Q|P"
wenzelm@12298
   495
  and meson_disj_FalseD1: "False|P ==> P"
wenzelm@12298
   496
  and meson_disj_FalseD2: "P|False ==> P"
wenzelm@12298
   497
  by fast+
paulson@11451
   498
paulson@14760
   499
paulson@14760
   500
subsection{*Lemmas for Meson, the Model Elimination Procedure*}
paulson@14760
   501
paulson@14760
   502
text{* Generation of contrapositives *}
paulson@14760
   503
paulson@14760
   504
text{*Inserts negated disjunct after removing the negation; P is a literal.
paulson@14760
   505
  Model elimination requires assuming the negation of every attempted subgoal,
paulson@14760
   506
  hence the negated disjuncts.*}
paulson@14760
   507
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
paulson@14760
   508
by blast
paulson@14760
   509
paulson@14760
   510
text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
paulson@14760
   511
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
paulson@14760
   512
by blast
paulson@14760
   513
paulson@14760
   514
text{*@{term P} should be a literal*}
paulson@14760
   515
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
paulson@14760
   516
by blast
paulson@14760
   517
paulson@14760
   518
text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
paulson@14760
   519
insert new assumptions, for ordinary resolution.*}
paulson@14760
   520
paulson@14760
   521
lemmas make_neg_rule' = make_refined_neg_rule
paulson@14760
   522
paulson@14760
   523
lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
paulson@14760
   524
by blast
paulson@14760
   525
paulson@14760
   526
text{* Generation of a goal clause -- put away the final literal *}
paulson@14760
   527
paulson@14760
   528
lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
paulson@14760
   529
by blast
paulson@14760
   530
paulson@14760
   531
lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
paulson@14760
   532
by blast
paulson@14760
   533
paulson@14760
   534
paulson@14760
   535
subsubsection{* Lemmas for Forward Proof*}
paulson@14760
   536
paulson@14760
   537
text{*There is a similarity to congruence rules*}
paulson@14760
   538
paulson@14760
   539
(*NOTE: could handle conjunctions (faster?) by
paulson@14760
   540
    nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)
paulson@14760
   541
lemma conj_forward: "[| P'&Q';  P' ==> P;  Q' ==> Q |] ==> P&Q"
paulson@14760
   542
by blast
paulson@14760
   543
paulson@14760
   544
lemma disj_forward: "[| P'|Q';  P' ==> P;  Q' ==> Q |] ==> P|Q"
paulson@14760
   545
by blast
paulson@14760
   546
paulson@14760
   547
(*Version of @{text disj_forward} for removal of duplicate literals*)
paulson@14760
   548
lemma disj_forward2:
paulson@14760
   549
    "[| P'|Q';  P' ==> P;  [| Q'; P==>False |] ==> Q |] ==> P|Q"
paulson@14760
   550
apply blast 
paulson@14760
   551
done
paulson@14760
   552
paulson@14760
   553
lemma all_forward: "[| \<forall>x. P'(x);  !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"
paulson@14760
   554
by blast
paulson@14760
   555
paulson@14760
   556
lemma ex_forward: "[| \<exists>x. P'(x);  !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"
paulson@14760
   557
by blast
paulson@14760
   558
paulson@17420
   559
paulson@21999
   560
subsection {* Meson package *}
wenzelm@17893
   561
paulson@11451
   562
use "Tools/meson.ML"
paulson@11451
   563
paulson@26562
   564
setup Meson.setup
paulson@26562
   565
wenzelm@17893
   566
wenzelm@17893
   567
subsection {* Specification package -- Hilbertized version *}
wenzelm@17893
   568
wenzelm@17893
   569
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c"
wenzelm@17893
   570
  by (simp only: someI_ex)
wenzelm@17893
   571
haftmann@31723
   572
use "Tools/choice_specification.ML"
skalberg@14115
   573
haftmann@31454
   574
paulson@11451
   575
end