src/HOL/ex/coopertac.ML
author chaieb
Wed Jun 06 16:12:08 2007 +0200 (2007-06-06)
changeset 23274 f997514ad8f4
child 23318 6d68b07ab5cf
permissions -rw-r--r--
New Reflected Presburger added to HOL/ex
chaieb@23274
     1
structure LinZTac =
chaieb@23274
     2
struct
chaieb@23274
     3
chaieb@23274
     4
val trace = ref false;
chaieb@23274
     5
fun trace_msg s = if !trace then tracing s else ();
chaieb@23274
     6
chaieb@23274
     7
val cooper_ss = @{simpset};
chaieb@23274
     8
chaieb@23274
     9
val nT = HOLogic.natT;
chaieb@23274
    10
val binarith = map thm
chaieb@23274
    11
  ["Pls_0_eq", "Min_1_eq"];
chaieb@23274
    12
 val intarithrel = 
chaieb@23274
    13
     (map thm ["int_eq_number_of_eq","int_neg_number_of_BIT", 
chaieb@23274
    14
		"int_le_number_of_eq","int_iszero_number_of_0",
chaieb@23274
    15
		"int_less_number_of_eq_neg"]) @
chaieb@23274
    16
     (map (fn s => thm s RS thm "lift_bool") 
chaieb@23274
    17
	  ["int_iszero_number_of_Pls","int_iszero_number_of_1",
chaieb@23274
    18
	   "int_neg_number_of_Min"])@
chaieb@23274
    19
     (map (fn s => thm s RS thm "nlift_bool") 
chaieb@23274
    20
	  ["int_nonzero_number_of_Min","int_not_neg_number_of_Pls"]);
chaieb@23274
    21
     
chaieb@23274
    22
val intarith = map thm ["int_number_of_add_sym", "int_number_of_minus_sym",
chaieb@23274
    23
			"int_number_of_diff_sym", "int_number_of_mult_sym"];
chaieb@23274
    24
val natarith = map thm ["add_nat_number_of", "diff_nat_number_of",
chaieb@23274
    25
			"mult_nat_number_of", "eq_nat_number_of",
chaieb@23274
    26
			"less_nat_number_of"]
chaieb@23274
    27
val powerarith = 
chaieb@23274
    28
    (map thm ["nat_number_of", "zpower_number_of_even", 
chaieb@23274
    29
	      "zpower_Pls", "zpower_Min"]) @ 
chaieb@23274
    30
    [simplify (HOL_basic_ss addsimps [thm "zero_eq_Numeral0_nring", 
chaieb@23274
    31
			   thm "one_eq_Numeral1_nring"])
chaieb@23274
    32
  (thm "zpower_number_of_odd")]
chaieb@23274
    33
chaieb@23274
    34
val comp_arith = binarith @ intarith @ intarithrel @ natarith 
chaieb@23274
    35
	    @ powerarith @[thm"not_false_eq_true", thm "not_true_eq_false"];
chaieb@23274
    36
chaieb@23274
    37
chaieb@23274
    38
val zdvd_int = thm "zdvd_int";
chaieb@23274
    39
val zdiff_int_split = thm "zdiff_int_split";
chaieb@23274
    40
val all_nat = thm "all_nat";
chaieb@23274
    41
val ex_nat = thm "ex_nat";
chaieb@23274
    42
val number_of1 = thm "number_of1";
chaieb@23274
    43
val number_of2 = thm "number_of2";
chaieb@23274
    44
val split_zdiv = thm "split_zdiv";
chaieb@23274
    45
val split_zmod = thm "split_zmod";
chaieb@23274
    46
val mod_div_equality' = thm "mod_div_equality'";
chaieb@23274
    47
val split_div' = thm "split_div'";
chaieb@23274
    48
val Suc_plus1 = thm "Suc_plus1";
chaieb@23274
    49
val imp_le_cong = thm "imp_le_cong";
chaieb@23274
    50
val conj_le_cong = thm "conj_le_cong";
chaieb@23274
    51
val nat_mod_add_eq = mod_add1_eq RS sym;
chaieb@23274
    52
val nat_mod_add_left_eq = mod_add_left_eq RS sym;
chaieb@23274
    53
val nat_mod_add_right_eq = mod_add_right_eq RS sym;
chaieb@23274
    54
val int_mod_add_eq = @{thm "zmod_zadd1_eq"} RS sym;
chaieb@23274
    55
val int_mod_add_left_eq = @{thm "zmod_zadd_left_eq"} RS sym;
chaieb@23274
    56
val int_mod_add_right_eq = @{thm "zmod_zadd_right_eq"} RS sym;
chaieb@23274
    57
val nat_div_add_eq = @{thm "div_add1_eq"} RS sym;
chaieb@23274
    58
val int_div_add_eq = @{thm "zdiv_zadd1_eq"} RS sym;
chaieb@23274
    59
val ZDIVISION_BY_ZERO_MOD = @{thm "DIVISION_BY_ZERO"} RS conjunct2;
chaieb@23274
    60
val ZDIVISION_BY_ZERO_DIV = @{thm "DIVISION_BY_ZERO"} RS conjunct1;
chaieb@23274
    61
chaieb@23274
    62
(*
chaieb@23274
    63
val fn_rews = List.concat (map thms ["allpairs.simps","iupt.simps","decr.simps", "decrnum.simps","disjuncts.simps","simpnum.simps", "simpfm.simps","numadd.simps","nummul.simps","numneg_def","numsub","simp_num_pair_def","not.simps","prep.simps","qelim.simps","minusinf.simps","plusinf.simps","rsplit0.simps","rlfm.simps","\\<Upsilon>.simps","\\<upsilon>.simps","linrqe_def", "ferrack_def", "Let_def", "numsub_def", "numneg_def","DJ_def", "imp_def", "evaldjf_def", "djf_def", "split_def", "eq_def", "disj_def", "simp_num_pair_def", "conj_def", "lt_def", "neq_def","gt_def"]);
chaieb@23274
    64
*)
chaieb@23274
    65
fun prepare_for_linz q fm = 
chaieb@23274
    66
  let
chaieb@23274
    67
    val ps = Logic.strip_params fm
chaieb@23274
    68
    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
chaieb@23274
    69
    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
chaieb@23274
    70
    fun mk_all ((s, T), (P,n)) =
chaieb@23274
    71
      if 0 mem loose_bnos P then
chaieb@23274
    72
        (HOLogic.all_const T $ Abs (s, T, P), n)
chaieb@23274
    73
      else (incr_boundvars ~1 P, n-1)
chaieb@23274
    74
    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
chaieb@23274
    75
      val rhs = hs
chaieb@23274
    76
(*    val (rhs,irhs) = List.partition (relevant (rev ps)) hs *)
chaieb@23274
    77
    val np = length ps
chaieb@23274
    78
    val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
chaieb@23274
    79
      (foldr HOLogic.mk_imp c rhs, np) ps
chaieb@23274
    80
    val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
chaieb@23274
    81
      (term_frees fm' @ term_vars fm');
chaieb@23274
    82
    val fm2 = foldr mk_all2 fm' vs
chaieb@23274
    83
  in (fm2, np + length vs, length rhs) end;
chaieb@23274
    84
chaieb@23274
    85
(*Object quantifier to meta --*)
chaieb@23274
    86
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
chaieb@23274
    87
chaieb@23274
    88
(* object implication to meta---*)
chaieb@23274
    89
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
chaieb@23274
    90
chaieb@23274
    91
chaieb@23274
    92
fun linz_tac ctxt q i = ObjectLogic.atomize_tac i THEN (fn st =>
chaieb@23274
    93
  let
chaieb@23274
    94
    val g = List.nth (prems_of st, i - 1)
chaieb@23274
    95
    val thy = ProofContext.theory_of ctxt
chaieb@23274
    96
    (* Transform the term*)
chaieb@23274
    97
    val (t,np,nh) = prepare_for_linz q g
chaieb@23274
    98
    (* Some simpsets for dealing with mod div abs and nat*)
chaieb@23274
    99
    val mod_div_simpset = HOL_basic_ss 
chaieb@23274
   100
			addsimps [refl,nat_mod_add_eq, nat_mod_add_left_eq, 
chaieb@23274
   101
				  nat_mod_add_right_eq, int_mod_add_eq, 
chaieb@23274
   102
				  int_mod_add_right_eq, int_mod_add_left_eq,
chaieb@23274
   103
				  nat_div_add_eq, int_div_add_eq,
chaieb@23274
   104
				  mod_self, @{thm "zmod_self"},
chaieb@23274
   105
				  DIVISION_BY_ZERO_MOD,DIVISION_BY_ZERO_DIV,
chaieb@23274
   106
				  ZDIVISION_BY_ZERO_MOD,ZDIVISION_BY_ZERO_DIV,
chaieb@23274
   107
				  @{thm "zdiv_zero"}, @{thm "zmod_zero"}, @{thm "div_0"}, @{thm "mod_0"},
chaieb@23274
   108
				  @{thm "zdiv_1"}, @{thm "zmod_1"}, @{thm "div_1"}, @{thm "mod_1"},
chaieb@23274
   109
				  Suc_plus1]
chaieb@23274
   110
			addsimps add_ac
chaieb@23274
   111
			addsimprocs [cancel_div_mod_proc]
chaieb@23274
   112
    val simpset0 = HOL_basic_ss
chaieb@23274
   113
      addsimps [mod_div_equality', Suc_plus1]
chaieb@23274
   114
      addsimps comp_arith
chaieb@23274
   115
      addsplits [split_zdiv, split_zmod, split_div', @{thm "split_min"}, @{thm "split_max"}]
chaieb@23274
   116
    (* Simp rules for changing (n::int) to int n *)
chaieb@23274
   117
    val simpset1 = HOL_basic_ss
chaieb@23274
   118
      addsimps [nat_number_of_def, zdvd_int] @ map (fn r => r RS sym)
chaieb@23274
   119
        [int_int_eq, zle_int, zless_int, zadd_int, zmult_int]
chaieb@23274
   120
      addsplits [zdiff_int_split]
chaieb@23274
   121
    (*simp rules for elimination of int n*)
chaieb@23274
   122
chaieb@23274
   123
    val simpset2 = HOL_basic_ss
chaieb@23274
   124
      addsimps [nat_0_le, all_nat, ex_nat, number_of1, number_of2, int_0, int_1]
chaieb@23274
   125
      addcongs [conj_le_cong, imp_le_cong]
chaieb@23274
   126
    (* simp rules for elimination of abs *)
chaieb@23274
   127
    val simpset3 = HOL_basic_ss addsplits [abs_split]
chaieb@23274
   128
    val ct = cterm_of thy (HOLogic.mk_Trueprop t)
chaieb@23274
   129
    (* Theorem for the nat --> int transformation *)
chaieb@23274
   130
    val pre_thm = Seq.hd (EVERY
chaieb@23274
   131
      [simp_tac mod_div_simpset 1, simp_tac simpset0 1,
chaieb@23274
   132
       TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),
chaieb@23274
   133
       TRY (simp_tac simpset3 1), TRY (simp_tac cooper_ss 1)]
chaieb@23274
   134
      (trivial ct))
chaieb@23274
   135
    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
chaieb@23274
   136
    (* The result of the quantifier elimination *)
chaieb@23274
   137
    val (th, tac) = case (prop_of pre_thm) of
chaieb@23274
   138
        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
chaieb@23274
   139
    let val pth = linzqe_oracle thy (Pattern.eta_long [] t1)
chaieb@23274
   140
    in 
chaieb@23274
   141
          ((pth RS iffD2) RS pre_thm,
chaieb@23274
   142
            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))
chaieb@23274
   143
    end
chaieb@23274
   144
      | _ => (pre_thm, assm_tac i)
chaieb@23274
   145
  in (rtac (((mp_step nh) o (spec_step np)) th) i 
chaieb@23274
   146
      THEN tac) st
chaieb@23274
   147
  end handle Subscript => no_tac st);
chaieb@23274
   148
chaieb@23274
   149
fun linz_args meth =
chaieb@23274
   150
 let val parse_flag = 
chaieb@23274
   151
         Args.$$$ "no_quantify" >> (K (K false));
chaieb@23274
   152
 in
chaieb@23274
   153
   Method.simple_args 
chaieb@23274
   154
  (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
chaieb@23274
   155
    curry (Library.foldl op |>) true)
chaieb@23274
   156
    (fn q => fn ctxt => meth ctxt q 1)
chaieb@23274
   157
  end;
chaieb@23274
   158
chaieb@23274
   159
fun linz_method ctxt q i = Method.METHOD (fn facts =>
chaieb@23274
   160
  Method.insert_tac facts 1 THEN linz_tac ctxt q i);
chaieb@23274
   161
chaieb@23274
   162
val setup =
chaieb@23274
   163
  Method.add_method ("cooper",
chaieb@23274
   164
     linz_args linz_method,
chaieb@23274
   165
     "decision procedure for linear integer arithmetic");
chaieb@23274
   166
chaieb@23274
   167
end