src/HOL/BNF_FP_Base.thy
author desharna
Mon Jul 07 16:06:46 2014 +0200 (2014-07-07)
changeset 57525 f9dd8a33f820
parent 57489 8f0ba9f2d10f
child 57641 dc59f147b27d
permissions -rw-r--r--
generate 'rel_cases' theorem for (co)datatypes
blanchet@55059
     1
(*  Title:      HOL/BNF_FP_Base.thy
blanchet@53311
     2
    Author:     Lorenz Panny, TU Muenchen
blanchet@49308
     3
    Author:     Dmitriy Traytel, TU Muenchen
blanchet@49308
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@53311
     5
    Copyright   2012, 2013
blanchet@49308
     6
blanchet@55059
     7
Shared fixed point operations on bounded natural functors.
blanchet@49308
     8
*)
blanchet@49308
     9
blanchet@53311
    10
header {* Shared Fixed Point Operations on Bounded Natural Functors *}
blanchet@49308
    11
blanchet@53311
    12
theory BNF_FP_Base
traytel@55936
    13
imports BNF_Comp Basic_BNFs
blanchet@49308
    14
begin
blanchet@49308
    15
desharna@57525
    16
lemma False_imp_eq_True: "(False \<Longrightarrow> Q) \<equiv> Trueprop True"
desharna@57525
    17
  by default simp_all
desharna@57525
    18
desharna@57525
    19
lemma conj_imp_eq_imp_imp: "(P \<and> Q \<Longrightarrow> PROP R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> PROP R)"
desharna@57525
    20
  by default simp_all
desharna@57525
    21
blanchet@49590
    22
lemma mp_conj: "(P \<longrightarrow> Q) \<and> R \<Longrightarrow> P \<Longrightarrow> R \<and> Q"
blanchet@49590
    23
by auto
blanchet@49590
    24
desharna@57303
    25
lemma predicate2D_conj: "P \<le> Q \<and> R \<Longrightarrow> P x y \<Longrightarrow> R \<and> Q x y"
desharna@57302
    26
  by auto
desharna@57302
    27
blanchet@49591
    28
lemma eq_sym_Unity_conv: "(x = (() = ())) = x"
blanchet@49585
    29
by blast
blanchet@49585
    30
blanchet@55414
    31
lemma case_unit_Unity: "(case u of () \<Rightarrow> f) = f"
blanchet@55642
    32
by (cases u) (hypsubst, rule unit.case)
blanchet@49312
    33
blanchet@55414
    34
lemma case_prod_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p"
blanchet@49539
    35
by simp
blanchet@49539
    36
blanchet@49335
    37
lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
blanchet@49335
    38
by simp
blanchet@49335
    39
blanchet@49683
    40
lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x"
blanchet@55066
    41
unfolding comp_def fun_eq_iff by simp
blanchet@49312
    42
blanchet@49312
    43
lemma o_bij:
blanchet@49683
    44
  assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id"
blanchet@49312
    45
  shows "bij f"
blanchet@49312
    46
unfolding bij_def inj_on_def surj_def proof safe
blanchet@49312
    47
  fix a1 a2 assume "f a1 = f a2"
blanchet@49312
    48
  hence "g ( f a1) = g (f a2)" by simp
blanchet@49312
    49
  thus "a1 = a2" using gf unfolding fun_eq_iff by simp
blanchet@49312
    50
next
blanchet@49312
    51
  fix b
blanchet@49312
    52
  have "b = f (g b)"
blanchet@49312
    53
  using fg unfolding fun_eq_iff by simp
blanchet@49312
    54
  thus "EX a. b = f a" by blast
blanchet@49312
    55
qed
blanchet@49312
    56
blanchet@49312
    57
lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
blanchet@49312
    58
blanchet@55414
    59
lemma case_sum_step:
blanchet@55414
    60
"case_sum (case_sum f' g') g (Inl p) = case_sum f' g' p"
blanchet@55414
    61
"case_sum f (case_sum f' g') (Inr p) = case_sum f' g' p"
blanchet@49312
    62
by auto
blanchet@49312
    63
blanchet@49312
    64
lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
blanchet@49312
    65
by blast
blanchet@49312
    66
traytel@55803
    67
lemma type_copy_obj_one_point_absE:
traytel@55811
    68
  assumes "type_definition Rep Abs UNIV" "\<forall>x. s = Abs x \<longrightarrow> P" shows P
traytel@55811
    69
  using type_definition.Rep_inverse[OF assms(1)]
traytel@55811
    70
  by (intro mp[OF spec[OF assms(2), of "Rep s"]]) simp
traytel@55803
    71
blanchet@49312
    72
lemma obj_sumE_f:
traytel@55811
    73
  assumes "\<forall>x. s = f (Inl x) \<longrightarrow> P" "\<forall>x. s = f (Inr x) \<longrightarrow> P"
traytel@55811
    74
  shows "\<forall>x. s = f x \<longrightarrow> P"
traytel@55811
    75
proof
traytel@55811
    76
  fix x from assms show "s = f x \<longrightarrow> P" by (cases x) auto
traytel@55811
    77
qed
blanchet@49312
    78
blanchet@55414
    79
lemma case_sum_if:
blanchet@55414
    80
"case_sum f g (if p then Inl x else Inr y) = (if p then f x else g y)"
blanchet@49312
    81
by simp
blanchet@49312
    82
blanchet@49429
    83
lemma prod_set_simps:
blanchet@49429
    84
"fsts (x, y) = {x}"
blanchet@49429
    85
"snds (x, y) = {y}"
blanchet@49429
    86
unfolding fsts_def snds_def by simp+
blanchet@49429
    87
blanchet@49429
    88
lemma sum_set_simps:
blanchet@49451
    89
"setl (Inl x) = {x}"
blanchet@49451
    90
"setl (Inr x) = {}"
blanchet@49451
    91
"setr (Inl x) = {}"
blanchet@49451
    92
"setr (Inr x) = {x}"
blanchet@49451
    93
unfolding sum_set_defs by simp+
blanchet@49429
    94
desharna@57301
    95
lemma Inl_Inr_False: "(Inl x = Inr y) = False"
desharna@57301
    96
  by simp
desharna@57301
    97
desharna@57471
    98
lemma Inr_Inl_False: "(Inr x = Inl y) = False"
desharna@57471
    99
  by simp
desharna@57471
   100
traytel@52505
   101
lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y"
traytel@52505
   102
by blast
traytel@52505
   103
blanchet@56640
   104
lemma rewriteR_comp_comp: "\<lbrakk>g \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = f \<circ> r"
blanchet@55066
   105
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   106
blanchet@56640
   107
lemma rewriteR_comp_comp2: "\<lbrakk>g \<circ> h = r1 \<circ> r2; f \<circ> r1 = l\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = l \<circ> r2"
blanchet@55066
   108
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   109
blanchet@56640
   110
lemma rewriteL_comp_comp: "\<lbrakk>f \<circ> g = l\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l \<circ> h"
blanchet@55066
   111
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   112
blanchet@56640
   113
lemma rewriteL_comp_comp2: "\<lbrakk>f \<circ> g = l1 \<circ> l2; l2 \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l1 \<circ> r"
blanchet@55066
   114
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   115
blanchet@56640
   116
lemma convol_o: "<f, g> \<circ> h = <f \<circ> h, g \<circ> h>"
traytel@52913
   117
  unfolding convol_def by auto
traytel@52913
   118
blanchet@56640
   119
lemma map_prod_o_convol: "map_prod h1 h2 \<circ> <f, g> = <h1 \<circ> f, h2 \<circ> g>"
traytel@52913
   120
  unfolding convol_def by auto
traytel@52913
   121
blanchet@55932
   122
lemma map_prod_o_convol_id: "(map_prod f id \<circ> <id , g>) x = <id \<circ> f , g> x"
blanchet@55932
   123
  unfolding map_prod_o_convol id_comp comp_id ..
traytel@52913
   124
blanchet@56640
   125
lemma o_case_sum: "h \<circ> case_sum f g = case_sum (h \<circ> f) (h \<circ> g)"
blanchet@55066
   126
  unfolding comp_def by (auto split: sum.splits)
traytel@52913
   127
blanchet@56640
   128
lemma case_sum_o_map_sum: "case_sum f g \<circ> map_sum h1 h2 = case_sum (f \<circ> h1) (g \<circ> h2)"
blanchet@55066
   129
  unfolding comp_def by (auto split: sum.splits)
traytel@52913
   130
blanchet@56640
   131
lemma case_sum_o_map_sum_id: "(case_sum id g \<circ> map_sum f id) x = case_sum (f \<circ> id) g x"
blanchet@55931
   132
  unfolding case_sum_o_map_sum id_comp comp_id ..
traytel@52913
   133
blanchet@55945
   134
lemma rel_fun_def_butlast:
blanchet@55945
   135
  "rel_fun R (rel_fun S T) f g = (\<forall>x y. R x y \<longrightarrow> (rel_fun S T) (f x) (g y))"
blanchet@55945
   136
  unfolding rel_fun_def ..
traytel@52731
   137
traytel@53105
   138
lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)"
traytel@53105
   139
  by auto
traytel@53105
   140
traytel@53105
   141
lemma eq_subset: "op = \<le> (\<lambda>a b. P a b \<or> a = b)"
traytel@53105
   142
  by auto
traytel@53105
   143
blanchet@53308
   144
lemma eq_le_Grp_id_iff: "(op = \<le> Grp (Collect R) id) = (All R)"
blanchet@53308
   145
  unfolding Grp_def id_apply by blast
blanchet@53308
   146
blanchet@53308
   147
lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv>
blanchet@53308
   148
   (\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)"
blanchet@53308
   149
  unfolding Grp_def by rule auto
blanchet@53308
   150
traytel@55803
   151
lemma vimage2p_mono: "vimage2p f g R x y \<Longrightarrow> R \<le> S \<Longrightarrow> vimage2p f g S x y"
traytel@55803
   152
  unfolding vimage2p_def by blast
traytel@55803
   153
traytel@55803
   154
lemma vimage2p_refl: "(\<And>x. R x x) \<Longrightarrow> vimage2p f f R x x"
traytel@55803
   155
  unfolding vimage2p_def by auto
traytel@55803
   156
traytel@55803
   157
lemma
traytel@55803
   158
  assumes "type_definition Rep Abs UNIV"
blanchet@56640
   159
  shows type_copy_Rep_o_Abs: "Rep \<circ> Abs = id" and type_copy_Abs_o_Rep: "Abs \<circ> Rep = id"
traytel@55803
   160
  unfolding fun_eq_iff comp_apply id_apply
traytel@55803
   161
    type_definition.Abs_inverse[OF assms UNIV_I] type_definition.Rep_inverse[OF assms] by simp_all
traytel@55803
   162
traytel@55803
   163
lemma type_copy_map_comp0_undo:
traytel@55803
   164
  assumes "type_definition Rep Abs UNIV"
traytel@55803
   165
          "type_definition Rep' Abs' UNIV"
traytel@55803
   166
          "type_definition Rep'' Abs'' UNIV"
blanchet@56640
   167
  shows "Abs' \<circ> M \<circ> Rep'' = (Abs' \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> Rep'') \<Longrightarrow> M1 \<circ> M2 = M"
traytel@55803
   168
  by (rule sym) (auto simp: fun_eq_iff type_definition.Abs_inject[OF assms(2) UNIV_I UNIV_I]
traytel@55803
   169
    type_definition.Abs_inverse[OF assms(1) UNIV_I]
traytel@55803
   170
    type_definition.Abs_inverse[OF assms(3) UNIV_I] dest: spec[of _ "Abs'' x" for x])
traytel@55803
   171
blanchet@55854
   172
lemma vimage2p_id: "vimage2p id id R = R"
blanchet@55854
   173
  unfolding vimage2p_def by auto
blanchet@55854
   174
blanchet@56640
   175
lemma vimage2p_comp: "vimage2p (f1 \<circ> f2) (g1 \<circ> g2) = vimage2p f2 g2 \<circ> vimage2p f1 g1"
traytel@55803
   176
  unfolding fun_eq_iff vimage2p_def o_apply by simp
traytel@55803
   177
blanchet@56650
   178
lemma fun_cong_unused_0: "f = (\<lambda>x. g) \<Longrightarrow> f (\<lambda>x. 0) = g"
blanchet@56650
   179
  by (erule arg_cong)
blanchet@56650
   180
blanchet@56684
   181
lemma inj_on_convol_ident: "inj_on (\<lambda>x. (x, f x)) X"
blanchet@56650
   182
  unfolding inj_on_def by simp
blanchet@56650
   183
blanchet@56650
   184
lemma case_prod_app: "case_prod f x y = case_prod (\<lambda>l r. f l r y) x"
blanchet@56650
   185
  by (case_tac x) simp
blanchet@56650
   186
blanchet@56650
   187
lemma case_sum_map_sum: "case_sum l r (map_sum f g x) = case_sum (l \<circ> f) (r \<circ> g) x"
blanchet@56650
   188
  by (case_tac x) simp+
blanchet@56650
   189
blanchet@56650
   190
lemma case_prod_map_prod: "case_prod h (map_prod f g x) = case_prod (\<lambda>l r. h (f l) (g r)) x"
blanchet@56650
   191
  by (case_tac x) simp+
blanchet@56650
   192
blanchet@56650
   193
lemma prod_inj_map: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (map_prod f g)"
blanchet@56650
   194
  by (simp add: inj_on_def)
blanchet@56650
   195
desharna@57489
   196
lemma eq_ifI: "(P \<longrightarrow> t = u1) \<Longrightarrow> (\<not> P \<longrightarrow> t = u2) \<Longrightarrow> t = (if P then u1 else u2)"
desharna@57489
   197
  by simp
desharna@57489
   198
blanchet@55062
   199
ML_file "Tools/BNF/bnf_fp_util.ML"
blanchet@55062
   200
ML_file "Tools/BNF/bnf_fp_def_sugar_tactics.ML"
blanchet@56650
   201
ML_file "Tools/BNF/bnf_lfp_size.ML"
blanchet@55062
   202
ML_file "Tools/BNF/bnf_fp_def_sugar.ML"
blanchet@55062
   203
ML_file "Tools/BNF/bnf_fp_n2m_tactics.ML"
blanchet@55062
   204
ML_file "Tools/BNF/bnf_fp_n2m.ML"
blanchet@55062
   205
ML_file "Tools/BNF/bnf_fp_n2m_sugar.ML"
blanchet@55702
   206
blanchet@56650
   207
ML_file "Tools/Function/size.ML"
blanchet@56650
   208
setup Size.setup
blanchet@56650
   209
blanchet@56650
   210
lemma size_bool[code]: "size (b\<Colon>bool) = 0"
blanchet@56650
   211
  by (cases b) auto
blanchet@56650
   212
blanchet@56846
   213
lemma size_nat[simp, code]: "size (n\<Colon>nat) = n"
blanchet@56650
   214
  by (induct n) simp_all
blanchet@56650
   215
blanchet@56650
   216
declare prod.size[no_atp]
blanchet@56650
   217
blanchet@56846
   218
lemma size_sum_o_map: "size_sum g1 g2 \<circ> map_sum f1 f2 = size_sum (g1 \<circ> f1) (g2 \<circ> f2)"
blanchet@56650
   219
  by (rule ext) (case_tac x, auto)
blanchet@56650
   220
blanchet@56846
   221
lemma size_prod_o_map: "size_prod g1 g2 \<circ> map_prod f1 f2 = size_prod (g1 \<circ> f1) (g2 \<circ> f2)"
blanchet@56650
   222
  by (rule ext) auto
blanchet@56650
   223
blanchet@56650
   224
setup {*
blanchet@56846
   225
BNF_LFP_Size.register_size_global @{type_name sum} @{const_name size_sum} @{thms sum.size}
blanchet@56846
   226
  @{thms size_sum_o_map}
blanchet@56846
   227
#> BNF_LFP_Size.register_size_global @{type_name prod} @{const_name size_prod} @{thms prod.size}
blanchet@56846
   228
  @{thms size_prod_o_map}
blanchet@56650
   229
*}
blanchet@56650
   230
blanchet@49308
   231
end