src/HOL/Tools/meson.ML
author blanchet
Fri Oct 01 16:58:56 2010 +0200 (2010-10-01)
changeset 39904 f9e89d36a31a
parent 39901 75d792edf634
child 39930 61aa00205a88
permissions -rw-r--r--
tune bound names
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     3
wenzelm@9869
     4
The MESON resolution proof procedure for HOL.
wenzelm@29267
     5
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     6
*)
paulson@9840
     7
wenzelm@24300
     8
signature MESON =
paulson@15579
     9
sig
wenzelm@32955
    10
  val trace: bool Unsynchronized.ref
wenzelm@24300
    11
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    12
  val size_of_subgoals: thm -> int
blanchet@39269
    13
  val has_too_many_clauses: Proof.context -> term -> bool
paulson@24937
    14
  val make_cnf: thm list -> thm -> Proof.context -> thm list * Proof.context
wenzelm@24300
    15
  val finish_cnf: thm list -> thm list
blanchet@38089
    16
  val presimplify: thm -> thm
wenzelm@32262
    17
  val make_nnf: Proof.context -> thm -> thm
blanchet@39904
    18
  val skolemize_with_choice_thms : Proof.context -> thm list -> thm -> thm
blanchet@39904
    19
  val skolemize : Proof.context -> thm -> thm
wenzelm@24300
    20
  val is_fol_term: theory -> term -> bool
blanchet@35869
    21
  val make_clauses_unsorted: thm list -> thm list
wenzelm@24300
    22
  val make_clauses: thm list -> thm list
wenzelm@24300
    23
  val make_horns: thm list -> thm list
wenzelm@24300
    24
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    25
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    26
  val gocls: thm list -> thm list
blanchet@39900
    27
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39037
    28
  val MESON:
blanchet@39269
    29
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39269
    30
    -> int -> tactic
wenzelm@32262
    31
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    32
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    33
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    34
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    35
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    36
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    37
  val make_meta_clause: thm -> thm
wenzelm@24300
    38
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    39
  val meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@32262
    40
  val setup: theory -> theory
paulson@15579
    41
end
paulson@9840
    42
blanchet@39901
    43
structure Meson : MESON =
paulson@15579
    44
struct
paulson@9840
    45
wenzelm@32955
    46
val trace = Unsynchronized.ref false;
wenzelm@32955
    47
fun trace_msg msg = if ! trace then tracing (msg ()) else ();
wenzelm@32955
    48
paulson@26562
    49
val max_clauses_default = 60;
wenzelm@38806
    50
val (max_clauses, setup) = Attrib.config_int "meson_max_clauses" (K max_clauses_default);
paulson@26562
    51
wenzelm@38802
    52
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@38802
    53
val iter_deepen_limit = 50;
wenzelm@38802
    54
haftmann@31454
    55
val disj_forward = @{thm disj_forward};
haftmann@31454
    56
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    57
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    58
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    59
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    60
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    61
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    62
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    63
val conj_forward = @{thm conj_forward};
haftmann@31454
    64
val all_forward = @{thm all_forward};
haftmann@31454
    65
val ex_forward = @{thm ex_forward};
haftmann@31454
    66
wenzelm@39159
    67
val not_conjD = @{thm meson_not_conjD};
wenzelm@39159
    68
val not_disjD = @{thm meson_not_disjD};
wenzelm@39159
    69
val not_notD = @{thm meson_not_notD};
wenzelm@39159
    70
val not_allD = @{thm meson_not_allD};
wenzelm@39159
    71
val not_exD = @{thm meson_not_exD};
wenzelm@39159
    72
val imp_to_disjD = @{thm meson_imp_to_disjD};
wenzelm@39159
    73
val not_impD = @{thm meson_not_impD};
wenzelm@39159
    74
val iff_to_disjD = @{thm meson_iff_to_disjD};
wenzelm@39159
    75
val not_iffD = @{thm meson_not_iffD};
wenzelm@39159
    76
val conj_exD1 = @{thm meson_conj_exD1};
wenzelm@39159
    77
val conj_exD2 = @{thm meson_conj_exD2};
wenzelm@39159
    78
val disj_exD = @{thm meson_disj_exD};
wenzelm@39159
    79
val disj_exD1 = @{thm meson_disj_exD1};
wenzelm@39159
    80
val disj_exD2 = @{thm meson_disj_exD2};
wenzelm@39159
    81
val disj_assoc = @{thm meson_disj_assoc};
wenzelm@39159
    82
val disj_comm = @{thm meson_disj_comm};
wenzelm@39159
    83
val disj_FalseD1 = @{thm meson_disj_FalseD1};
wenzelm@39159
    84
val disj_FalseD2 = @{thm meson_disj_FalseD2};
paulson@9840
    85
paulson@9840
    86
paulson@15579
    87
(**** Operators for forward proof ****)
paulson@15579
    88
paulson@20417
    89
paulson@20417
    90
(** First-order Resolution **)
paulson@20417
    91
paulson@20417
    92
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    93
paulson@20417
    94
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
    95
fun first_order_resolve thA thB =
wenzelm@32262
    96
  (case
wenzelm@32262
    97
    try (fn () =>
wenzelm@32262
    98
      let val thy = theory_of_thm thA
wenzelm@32262
    99
          val tmA = concl_of thA
wenzelm@32262
   100
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   101
          val tenv =
blanchet@37410
   102
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37410
   103
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   104
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   105
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   106
    SOME th => th
blanchet@37398
   107
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   108
blanchet@39904
   109
(* Applying "choice" swaps the bound variable names. We tweak
blanchet@39904
   110
   "Thm.rename_boundvars"'s input to get the desired names. *)
blanchet@39904
   111
fun tweak_bounds (_ $ (Const (@{const_name Ex}, _)
blanchet@39904
   112
                       $ Abs (_, _, Const (@{const_name All}, _) $ _)))
blanchet@39904
   113
                 (t0 $ (Const (@{const_name All}, T1)
blanchet@39904
   114
                        $ Abs (a1, T1', Const (@{const_name Ex}, T2)
blanchet@39904
   115
                                        $ Abs (a2, T2', t')))) =
blanchet@39904
   116
    t0 $ (Const (@{const_name All}, T1)
blanchet@39904
   117
          $ Abs (a2, T1', Const (@{const_name Ex}, T2) $ Abs (a1, T2', t')))
blanchet@39904
   118
  | tweak_bounds _ t = t
blanchet@39904
   119
blanchet@39904
   120
(* Forward proof while preserving bound variables names*)
paulson@24937
   121
fun rename_bvs_RS th rl =
blanchet@39904
   122
  let
blanchet@39904
   123
    val th' = th RS rl
blanchet@39904
   124
    val t = concl_of th
blanchet@39904
   125
    val t' = concl_of th'
blanchet@39904
   126
  in Thm.rename_boundvars t' (tweak_bounds t' t) th' end
paulson@24937
   127
paulson@24937
   128
(*raises exception if no rules apply*)
wenzelm@24300
   129
fun tryres (th, rls) =
paulson@18141
   130
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@24937
   131
        | tryall (rl::rls) = (rename_bvs_RS th rl handle THM _ => tryall rls)
paulson@18141
   132
  in  tryall rls  end;
wenzelm@24300
   133
paulson@21050
   134
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   135
  e.g. from conj_forward, should have the form
paulson@21050
   136
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   137
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   138
fun forward_res ctxt nf st =
paulson@21050
   139
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   140
        | forward_tacf prems =
wenzelm@32091
   141
            error (cat_lines
wenzelm@32091
   142
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   143
                Display.string_of_thm ctxt st ::
wenzelm@32262
   144
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   145
  in
wenzelm@37781
   146
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   147
    of SOME(th,_) => th
paulson@21050
   148
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   149
  end;
paulson@15579
   150
paulson@20134
   151
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   152
fun has_conns bs =
blanchet@39328
   153
  let fun has (Const _) = false
haftmann@38557
   154
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38557
   155
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@38795
   156
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@38795
   157
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38557
   158
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38557
   159
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   160
        | has _ = false
paulson@15579
   161
  in  has  end;
wenzelm@24300
   162
paulson@9840
   163
paulson@15579
   164
(**** Clause handling ****)
paulson@9840
   165
haftmann@38557
   166
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@38795
   167
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38557
   168
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   169
  | literals P = [(true,P)];
paulson@9840
   170
paulson@15579
   171
(*number of literals in a term*)
paulson@15579
   172
val nliterals = length o literals;
paulson@9840
   173
paulson@18389
   174
paulson@18389
   175
(*** Tautology Checking ***)
paulson@18389
   176
haftmann@38795
   177
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   178
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38557
   179
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   180
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   181
paulson@18389
   182
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   183
paulson@18389
   184
(*Literals like X=X are tautologous*)
haftmann@38864
   185
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38557
   186
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   187
  | taut_poslit _ = false;
paulson@18389
   188
paulson@18389
   189
fun is_taut th =
paulson@18389
   190
  let val (poslits,neglits) = signed_lits th
paulson@18389
   191
  in  exists taut_poslit poslits
paulson@18389
   192
      orelse
wenzelm@20073
   193
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   194
  end
wenzelm@24300
   195
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   196
paulson@18389
   197
paulson@18389
   198
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   199
paulson@18389
   200
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   201
  injectivity equivalences*)
wenzelm@24300
   202
wenzelm@39159
   203
val not_refl_disj_D = @{thm meson_not_refl_disj_D};
paulson@18389
   204
paulson@20119
   205
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   206
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   207
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   208
  | eliminable _ = false;
paulson@20119
   209
paulson@18389
   210
fun refl_clause_aux 0 th = th
paulson@18389
   211
  | refl_clause_aux n th =
paulson@18389
   212
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@38795
   213
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   214
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@38864
   215
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   216
            if eliminable(t,u)
wenzelm@24300
   217
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   218
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@38795
   219
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   220
        | _ => (*not a disjunction*) th;
paulson@18389
   221
haftmann@38795
   222
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   223
      notequal_lits_count P + notequal_lits_count Q
haftmann@38864
   224
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   225
  | notequal_lits_count _ = 0;
paulson@18389
   226
paulson@18389
   227
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   228
fun refl_clause th =
paulson@18389
   229
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   230
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   231
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   232
paulson@18389
   233
paulson@24937
   234
(*** Removal of duplicate literals ***)
paulson@24937
   235
paulson@24937
   236
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39328
   237
fun forward_res2 nf hyps st =
paulson@24937
   238
  case Seq.pull
paulson@24937
   239
        (REPEAT
wenzelm@37781
   240
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   241
         st)
paulson@24937
   242
  of SOME(th,_) => th
paulson@24937
   243
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   244
paulson@24937
   245
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   246
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   247
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   248
    handle THM _ => tryres(th,rls)
blanchet@39328
   249
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   250
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   251
    handle THM _ => th;
paulson@24937
   252
paulson@24937
   253
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   254
fun nodups ctxt th =
paulson@24937
   255
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   256
    then nodups_aux ctxt [] th
paulson@24937
   257
    else th;
paulson@24937
   258
paulson@24937
   259
paulson@18389
   260
(*** The basic CNF transformation ***)
paulson@18389
   261
blanchet@39328
   262
fun estimated_num_clauses bound t =
paulson@26562
   263
 let
blanchet@39269
   264
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39269
   265
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   266
  
paulson@26562
   267
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38557
   268
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38557
   269
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@38795
   270
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32960
   271
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   272
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@38795
   273
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32960
   274
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   275
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@38786
   276
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32960
   277
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   278
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@38864
   279
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   280
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   281
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   282
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   283
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   284
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   285
        else 1
haftmann@38557
   286
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38557
   287
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   288
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39269
   289
 in signed_nclauses true t end
blanchet@39269
   290
blanchet@39269
   291
fun has_too_many_clauses ctxt t =
blanchet@39269
   292
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39328
   293
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39269
   294
  end
paulson@19894
   295
paulson@15579
   296
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   297
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   298
local  
paulson@24937
   299
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   300
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38557
   301
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   302
in  
paulson@24937
   303
  fun freeze_spec th ctxt =
paulson@24937
   304
    let
paulson@24937
   305
      val cert = Thm.cterm_of (ProofContext.theory_of ctxt);
paulson@24937
   306
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   307
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   308
    in (th RS spec', ctxt') end
paulson@24937
   309
end;
paulson@9840
   310
paulson@15998
   311
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   312
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   313
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   314
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   315
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   316
blanchet@39037
   317
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39037
   318
   and "Pure.term"? *)
haftmann@38557
   319
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   320
blanchet@37410
   321
fun apply_skolem_theorem (th, rls) =
blanchet@37398
   322
  let
blanchet@37410
   323
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37398
   324
      | tryall (rl :: rls) =
blanchet@37398
   325
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   326
  in tryall rls end
paulson@22515
   327
blanchet@37410
   328
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37410
   329
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37410
   330
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@39886
   331
fun cnf old_skolem_ths ctxt (th, ths) =
wenzelm@33222
   332
  let val ctxtr = Unsynchronized.ref ctxt   (* FIXME ??? *)
paulson@24937
   333
      fun cnf_aux (th,ths) =
wenzelm@24300
   334
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@38795
   335
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
wenzelm@32262
   336
        then nodups ctxt th :: ths (*no work to do, terminate*)
wenzelm@24300
   337
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@38795
   338
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   339
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38557
   340
          | Const (@{const_name All}, _) => (*universal quantifier*)
paulson@24937
   341
                let val (th',ctxt') = freeze_spec th (!ctxtr)
paulson@24937
   342
                in  ctxtr := ctxt'; cnf_aux (th', ths) end
haftmann@38557
   343
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   344
              (*existential quantifier: Insert Skolem functions*)
blanchet@39886
   345
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@38795
   346
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   347
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   348
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   349
              let val tac =
wenzelm@37781
   350
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   351
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   352
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
wenzelm@32262
   353
          | _ => nodups ctxt th :: ths  (*no work to do*)
paulson@19154
   354
      and cnf_nil th = cnf_aux (th,[])
blanchet@39269
   355
      val cls =
blanchet@39269
   356
            if has_too_many_clauses ctxt (concl_of th)
wenzelm@32960
   357
            then (trace_msg (fn () => "cnf is ignoring: " ^ Display.string_of_thm ctxt th); ths)
wenzelm@32960
   358
            else cnf_aux (th,ths)
paulson@24937
   359
  in  (cls, !ctxtr)  end;
paulson@22515
   360
blanchet@39886
   361
fun make_cnf old_skolem_ths th ctxt = cnf old_skolem_ths ctxt (th, [])
paulson@20417
   362
paulson@20417
   363
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   364
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   365
paulson@9840
   366
paulson@15579
   367
(**** Generation of contrapositives ****)
paulson@9840
   368
haftmann@38557
   369
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@38795
   370
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   371
  | is_left _ = false;
wenzelm@24300
   372
paulson@15579
   373
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   374
fun assoc_right th =
paulson@21102
   375
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   376
  else th;
paulson@9840
   377
paulson@15579
   378
(*Must check for negative literal first!*)
paulson@15579
   379
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   380
paulson@15579
   381
(*For ordinary resolution. *)
paulson@15579
   382
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   383
paulson@15579
   384
(*Create a goal or support clause, conclusing False*)
paulson@15579
   385
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   386
    make_goal (tryres(th, clause_rules))
paulson@15579
   387
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   388
paulson@15579
   389
(*Sort clauses by number of literals*)
paulson@15579
   390
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   391
paulson@18389
   392
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   393
blanchet@38099
   394
fun has_bool @{typ bool} = true
blanchet@38099
   395
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38099
   396
  | has_bool _ = false
blanchet@38099
   397
blanchet@38099
   398
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38099
   399
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38099
   400
  | has_fun _ = false
wenzelm@24300
   401
wenzelm@24300
   402
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   403
  since this code expects to be called on a clause form.*)
wenzelm@19875
   404
val is_conn = member (op =)
haftmann@38795
   405
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@38786
   406
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38557
   407
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   408
wenzelm@24300
   409
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   410
  of any argument contains bool.*)
wenzelm@24300
   411
val has_bool_arg_const =
paulson@15613
   412
    exists_Const
blanchet@38099
   413
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   414
wenzelm@24300
   415
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38622
   416
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   417
fun higher_inst_const thy (c,T) =
paulson@22381
   418
  case binder_types T of
paulson@22381
   419
      [] => false (*not a function type, OK*)
paulson@22381
   420
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   421
paulson@24742
   422
(*Returns false if any Vars in the theorem mention type bool.
paulson@21102
   423
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   424
fun is_fol_term thy t =
haftmann@38557
   425
    Term.is_first_order ["all", @{const_name All}, @{const_name Ex}] t andalso
blanchet@38099
   426
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@38099
   427
                           | _ => false) t orelse
blanchet@38099
   428
         has_bool_arg_const t orelse
wenzelm@24300
   429
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   430
         has_meta_conn t);
paulson@19204
   431
paulson@21102
   432
fun rigid t = not (is_Var (head_of t));
paulson@21102
   433
haftmann@38795
   434
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38557
   435
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   436
  | ok4horn _ = false;
paulson@21102
   437
paulson@15579
   438
(*Create a meta-level Horn clause*)
wenzelm@24300
   439
fun make_horn crules th =
wenzelm@24300
   440
  if ok4horn (concl_of th)
paulson@21102
   441
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   442
  else th;
paulson@9840
   443
paulson@16563
   444
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   445
  is a HOL disjunction.*)
wenzelm@33339
   446
fun add_contras crules th hcs =
blanchet@39328
   447
  let fun rots (0,_) = hcs
wenzelm@24300
   448
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   449
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   450
  in case nliterals(prop_of th) of
wenzelm@24300
   451
        1 => th::hcs
paulson@15579
   452
      | n => rots(n, assoc_right th)
paulson@15579
   453
  end;
paulson@9840
   454
paulson@15579
   455
(*Use "theorem naming" to label the clauses*)
paulson@15579
   456
fun name_thms label =
wenzelm@33339
   457
    let fun name1 th (k, ths) =
wenzelm@27865
   458
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   459
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   460
paulson@16563
   461
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   462
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   463
wenzelm@33317
   464
val neg_clauses = filter is_negative;
paulson@9840
   465
paulson@9840
   466
paulson@15579
   467
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   468
haftmann@38557
   469
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   470
           As) = rhyps(phi, A::As)
paulson@15579
   471
  | rhyps (_, As) = As;
paulson@9840
   472
paulson@15579
   473
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   474
paulson@15579
   475
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   476
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   477
paulson@15579
   478
(*detects repetitions in a list of terms*)
paulson@15579
   479
fun has_reps [] = false
paulson@15579
   480
  | has_reps [_] = false
paulson@15579
   481
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   482
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   483
paulson@15579
   484
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   485
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   486
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   487
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   488
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   489
paulson@18508
   490
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   491
paulson@15579
   492
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   493
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   494
fun check_tac st =
paulson@15579
   495
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   496
  then  Seq.empty  else  Seq.single st;
paulson@9840
   497
paulson@9840
   498
paulson@15579
   499
(* net_resolve_tac actually made it slower... *)
paulson@15579
   500
fun prolog_step_tac horns i =
paulson@15579
   501
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   502
    TRYALL_eq_assume_tac;
paulson@9840
   503
paulson@9840
   504
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   505
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   506
wenzelm@33339
   507
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   508
paulson@9840
   509
paulson@9840
   510
(*Negation Normal Form*)
paulson@9840
   511
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   512
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   513
haftmann@38557
   514
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38557
   515
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   516
  | ok4nnf _ = false;
paulson@21102
   517
wenzelm@32262
   518
fun make_nnf1 ctxt th =
wenzelm@24300
   519
  if ok4nnf (concl_of th)
wenzelm@32262
   520
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   521
    handle THM ("tryres", _, _) =>
wenzelm@32262
   522
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   523
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   524
    handle THM ("tryres", _, _) => th
blanchet@38608
   525
  else th
paulson@9840
   526
wenzelm@24300
   527
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   528
  nnf_ss also includes the one-point simprocs,
paulson@18405
   529
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   530
val nnf_simps =
blanchet@37539
   531
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37539
   532
         if_eq_cancel cases_simp}
blanchet@37539
   533
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   534
paulson@18405
   535
val nnf_ss =
wenzelm@24300
   536
  HOL_basic_ss addsimps nnf_extra_simps
wenzelm@24040
   537
    addsimprocs [defALL_regroup,defEX_regroup, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   538
blanchet@38089
   539
val presimplify =
blanchet@39900
   540
  rewrite_rule (map safe_mk_meta_eq nnf_simps) #> simplify nnf_ss
blanchet@38089
   541
wenzelm@32262
   542
fun make_nnf ctxt th = case prems_of th of
blanchet@38606
   543
    [] => th |> presimplify |> make_nnf1 ctxt
paulson@21050
   544
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   545
blanchet@39900
   546
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@39900
   547
   clauses that arise from a subgoal. *)
blanchet@39904
   548
fun skolemize_with_choice_thms ctxt choice_ths =
blanchet@39900
   549
  let
blanchet@39900
   550
    fun aux th =
blanchet@39900
   551
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@39900
   552
        th
blanchet@39900
   553
      else
blanchet@39901
   554
        tryres (th, choice_ths @
blanchet@39900
   555
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@39900
   556
        |> aux
blanchet@39900
   557
        handle THM ("tryres", _, _) =>
blanchet@39900
   558
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@39900
   559
               |> forward_res ctxt aux
blanchet@39900
   560
               |> aux
blanchet@39900
   561
               handle THM ("tryres", _, _) =>
blanchet@39900
   562
                      rename_bvs_RS th ex_forward
blanchet@39900
   563
                      |> forward_res ctxt aux
blanchet@39900
   564
  in aux o make_nnf ctxt end
paulson@29684
   565
blanchet@39904
   566
fun skolemize ctxt = skolemize_with_choice_thms ctxt (Meson_Choices.get ctxt)
blanchet@39904
   567
blanchet@39900
   568
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@39900
   569
fun try_skolemize ctxt th =
blanchet@39904
   570
  try (skolemize ctxt) th
blanchet@39900
   571
  |> tap (fn NONE => trace_msg (fn () => "Failed to skolemize " ^
blanchet@39900
   572
                                         Display.string_of_thm ctxt th)
blanchet@39900
   573
           | _ => ())
paulson@25694
   574
wenzelm@33339
   575
fun add_clauses th cls =
wenzelm@36603
   576
  let val ctxt0 = Variable.global_thm_context th
wenzelm@33339
   577
      val (cnfs, ctxt) = make_cnf [] th ctxt0
paulson@24937
   578
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   579
paulson@9840
   580
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   581
  The resulting clauses are HOL disjunctions.*)
wenzelm@39235
   582
fun make_clauses_unsorted ths = fold_rev add_clauses ths [];
blanchet@35869
   583
val make_clauses = sort_clauses o make_clauses_unsorted;
quigley@15773
   584
paulson@16563
   585
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   586
fun make_horns ths =
paulson@9840
   587
    name_thms "Horn#"
wenzelm@33339
   588
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   589
paulson@9840
   590
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   591
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   592
wenzelm@9869
   593
fun best_prolog_tac sizef horns =
paulson@9840
   594
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   595
wenzelm@9869
   596
fun depth_prolog_tac horns =
paulson@9840
   597
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   598
paulson@9840
   599
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   600
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   601
wenzelm@32262
   602
fun skolemize_prems_tac ctxt prems =
blanchet@39900
   603
  cut_facts_tac (map_filter (try_skolemize ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   604
paulson@22546
   605
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   606
  Function mkcl converts theorems to clauses.*)
blanchet@39037
   607
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   608
  SELECT_GOAL
wenzelm@35625
   609
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   610
            rtac ccontr 1,
blanchet@39269
   611
            preskolem_tac,
wenzelm@32283
   612
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39269
   613
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   614
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   615
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   616
blanchet@39037
   617
paulson@9840
   618
(** Best-first search versions **)
paulson@9840
   619
paulson@16563
   620
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   621
fun best_meson_tac sizef =
blanchet@39269
   622
  MESON all_tac make_clauses
paulson@22546
   623
    (fn cls =>
paulson@9840
   624
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   625
                         (has_fewer_prems 1, sizef)
paulson@9840
   626
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   627
paulson@9840
   628
(*First, breaks the goal into independent units*)
wenzelm@32262
   629
fun safe_best_meson_tac ctxt =
wenzelm@32262
   630
     SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN
wenzelm@32262
   631
                  TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   632
paulson@9840
   633
(** Depth-first search version **)
paulson@9840
   634
paulson@9840
   635
val depth_meson_tac =
blanchet@39269
   636
  MESON all_tac make_clauses
paulson@22546
   637
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   638
paulson@9840
   639
paulson@9840
   640
(** Iterative deepening version **)
paulson@9840
   641
paulson@9840
   642
(*This version does only one inference per call;
paulson@9840
   643
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   644
fun prolog_step_tac' horns =
blanchet@39328
   645
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   646
            take_prefix Thm.no_prems horns
paulson@9840
   647
        val nrtac = net_resolve_tac horns
paulson@9840
   648
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   649
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   650
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   651
    end;
paulson@9840
   652
wenzelm@9869
   653
fun iter_deepen_prolog_tac horns =
wenzelm@38802
   654
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   655
blanchet@39269
   656
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac make_clauses
wenzelm@32091
   657
  (fn cls =>
wenzelm@32091
   658
    (case (gocls (cls @ ths)) of
wenzelm@32091
   659
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   660
    | goes =>
wenzelm@32091
   661
        let
wenzelm@32091
   662
          val horns = make_horns (cls @ ths)
wenzelm@32955
   663
          val _ = trace_msg (fn () =>
wenzelm@32091
   664
            cat_lines ("meson method called:" ::
wenzelm@32262
   665
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   666
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@38802
   667
        in
wenzelm@38802
   668
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@38802
   669
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@38802
   670
        end));
paulson@9840
   671
wenzelm@32262
   672
fun meson_tac ctxt ths =
wenzelm@32262
   673
  SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   674
wenzelm@9869
   675
paulson@14813
   676
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   677
wenzelm@24300
   678
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   679
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   680
paulson@14744
   681
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   682
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   683
  prevents a double negation.*)
wenzelm@27239
   684
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   685
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   686
wenzelm@24300
   687
fun negated_asm_of_head th =
paulson@14744
   688
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   689
paulson@26066
   690
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   691
fun make_meta_clause th =
wenzelm@33832
   692
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   693
  in  
wenzelm@35845
   694
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   695
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   696
  end;
wenzelm@24300
   697
paulson@14744
   698
fun make_meta_clauses ths =
paulson@14744
   699
    name_thms "MClause#"
wenzelm@22360
   700
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   701
paulson@9840
   702
end;