src/HOL/ex/Tarski.thy
author wenzelm
Tue Nov 07 19:39:54 2006 +0100 (2006-11-07)
changeset 21232 faacfd4392b5
parent 19736 d8d0f8f51d69
child 21404 eb85850d3eb7
permissions -rw-r--r--
fixed locale fact references;
wenzelm@13383
     1
(*  Title:      HOL/ex/Tarski.thy
wenzelm@7112
     2
    ID:         $Id$
wenzelm@13383
     3
    Author:     Florian Kammüller, Cambridge University Computer Laboratory
wenzelm@13383
     4
*)
wenzelm@7112
     5
paulson@13585
     6
header {* The Full Theorem of Tarski *}
wenzelm@7112
     7
haftmann@16417
     8
theory Tarski imports Main FuncSet begin
wenzelm@7112
     9
wenzelm@13383
    10
text {*
wenzelm@13383
    11
  Minimal version of lattice theory plus the full theorem of Tarski:
wenzelm@13383
    12
  The fixedpoints of a complete lattice themselves form a complete
wenzelm@13383
    13
  lattice.
wenzelm@13383
    14
wenzelm@13383
    15
  Illustrates first-class theories, using the Sigma representation of
wenzelm@13383
    16
  structures.  Tidied and converted to Isar by lcp.
wenzelm@13383
    17
*}
wenzelm@13383
    18
wenzelm@13383
    19
record 'a potype =
wenzelm@7112
    20
  pset  :: "'a set"
wenzelm@7112
    21
  order :: "('a * 'a) set"
wenzelm@7112
    22
wenzelm@19736
    23
definition
wenzelm@7112
    24
  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
wenzelm@19736
    25
  "monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r)"
wenzelm@7112
    26
wenzelm@7112
    27
  least :: "['a => bool, 'a potype] => 'a"
wenzelm@19736
    28
  "least P po = (SOME x. x: pset po & P x &
wenzelm@19736
    29
                       (\<forall>y \<in> pset po. P y --> (x,y): order po))"
wenzelm@7112
    30
wenzelm@7112
    31
  greatest :: "['a => bool, 'a potype] => 'a"
wenzelm@19736
    32
  "greatest P po = (SOME x. x: pset po & P x &
wenzelm@19736
    33
                          (\<forall>y \<in> pset po. P y --> (y,x): order po))"
wenzelm@7112
    34
wenzelm@7112
    35
  lub  :: "['a set, 'a potype] => 'a"
wenzelm@19736
    36
  "lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po"
wenzelm@7112
    37
wenzelm@7112
    38
  glb  :: "['a set, 'a potype] => 'a"
wenzelm@19736
    39
  "glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
wenzelm@7112
    40
paulson@13115
    41
  isLub :: "['a set, 'a potype, 'a] => bool"
wenzelm@19736
    42
  "isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
wenzelm@19736
    43
                   (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po)))"
wenzelm@7112
    44
paulson@13115
    45
  isGlb :: "['a set, 'a potype, 'a] => bool"
wenzelm@19736
    46
  "isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
wenzelm@19736
    47
                 (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po)))"
wenzelm@7112
    48
paulson@13115
    49
  "fix"    :: "[('a => 'a), 'a set] => 'a set"
wenzelm@19736
    50
  "fix f A  = {x. x: A & f x = x}"
wenzelm@7112
    51
wenzelm@7112
    52
  interval :: "[('a*'a) set,'a, 'a ] => 'a set"
wenzelm@19736
    53
  "interval r a b = {x. (a,x): r & (x,b): r}"
wenzelm@7112
    54
wenzelm@7112
    55
wenzelm@19736
    56
definition
wenzelm@7112
    57
  Bot :: "'a potype => 'a"
wenzelm@19736
    58
  "Bot po = least (%x. True) po"
wenzelm@7112
    59
wenzelm@7112
    60
  Top :: "'a potype => 'a"
wenzelm@19736
    61
  "Top po = greatest (%x. True) po"
wenzelm@7112
    62
wenzelm@7112
    63
  PartialOrder :: "('a potype) set"
wenzelm@19736
    64
  "PartialOrder = {P. refl (pset P) (order P) & antisym (order P) &
paulson@13585
    65
                       trans (order P)}"
wenzelm@7112
    66
wenzelm@7112
    67
  CompleteLattice :: "('a potype) set"
wenzelm@19736
    68
  "CompleteLattice = {cl. cl: PartialOrder &
paulson@17841
    69
                        (\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &
paulson@17841
    70
                        (\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"
wenzelm@7112
    71
wenzelm@7112
    72
  CLF :: "('a potype * ('a => 'a)) set"
wenzelm@19736
    73
  "CLF = (SIGMA cl: CompleteLattice.
wenzelm@19736
    74
            {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
wenzelm@13383
    75
wenzelm@7112
    76
  induced :: "['a set, ('a * 'a) set] => ('a *'a)set"
wenzelm@19736
    77
  "induced A r = {(a,b). a : A & b: A & (a,b): r}"
wenzelm@7112
    78
wenzelm@7112
    79
wenzelm@19736
    80
definition
wenzelm@7112
    81
  sublattice :: "('a potype * 'a set)set"
wenzelm@19736
    82
  "sublattice =
wenzelm@19736
    83
      (SIGMA cl: CompleteLattice.
paulson@17841
    84
          {S. S \<subseteq> pset cl &
wenzelm@19736
    85
           (| pset = S, order = induced S (order cl) |): CompleteLattice})"
wenzelm@7112
    86
wenzelm@19736
    87
abbreviation
wenzelm@19736
    88
  sublat :: "['a set, 'a potype] => bool"  ("_ <<= _" [51,50]50)
wenzelm@19736
    89
  "S <<= cl == S : sublattice `` {cl}"
wenzelm@7112
    90
wenzelm@19736
    91
definition
wenzelm@7112
    92
  dual :: "'a potype => 'a potype"
wenzelm@19736
    93
  "dual po = (| pset = pset po, order = converse (order po) |)"
wenzelm@7112
    94
wenzelm@13383
    95
locale (open) PO =
paulson@13115
    96
  fixes cl :: "'a potype"
paulson@13115
    97
    and A  :: "'a set"
paulson@13115
    98
    and r  :: "('a * 'a) set"
paulson@13115
    99
  assumes cl_po:  "cl : PartialOrder"
paulson@13585
   100
  defines A_def: "A == pset cl"
paulson@13585
   101
     and  r_def: "r == order cl"
wenzelm@7112
   102
wenzelm@13383
   103
locale (open) CL = PO +
paulson@13115
   104
  assumes cl_co:  "cl : CompleteLattice"
wenzelm@7112
   105
wenzelm@13383
   106
locale (open) CLF = CL +
paulson@13115
   107
  fixes f :: "'a => 'a"
paulson@13115
   108
    and P :: "'a set"
paulson@13115
   109
  assumes f_cl:  "(cl,f) : CLF" (*was the equivalent "f : CLF``{cl}"*)
paulson@13115
   110
  defines P_def: "P == fix f A"
wenzelm@7112
   111
wenzelm@7112
   112
wenzelm@13383
   113
locale (open) Tarski = CLF +
paulson@13115
   114
  fixes Y     :: "'a set"
paulson@13115
   115
    and intY1 :: "'a set"
paulson@13115
   116
    and v     :: "'a"
paulson@13115
   117
  assumes
paulson@17841
   118
    Y_ss: "Y \<subseteq> P"
paulson@13115
   119
  defines
paulson@13115
   120
    intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"
wenzelm@13383
   121
    and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
paulson@13115
   122
                             x: intY1}
wenzelm@13383
   123
                      (| pset=intY1, order=induced intY1 r|)"
paulson@13115
   124
paulson@13115
   125
nipkow@14569
   126
subsection {* Partial Order *}
paulson@13115
   127
paulson@13115
   128
lemma (in PO) PO_imp_refl: "refl A r"
wenzelm@13383
   129
apply (insert cl_po)
paulson@13115
   130
apply (simp add: PartialOrder_def A_def r_def)
paulson@13115
   131
done
paulson@13115
   132
paulson@13115
   133
lemma (in PO) PO_imp_sym: "antisym r"
wenzelm@13383
   134
apply (insert cl_po)
paulson@19316
   135
apply (simp add: PartialOrder_def r_def)
paulson@13115
   136
done
paulson@13115
   137
paulson@13115
   138
lemma (in PO) PO_imp_trans: "trans r"
wenzelm@13383
   139
apply (insert cl_po)
paulson@19316
   140
apply (simp add: PartialOrder_def r_def)
paulson@13115
   141
done
paulson@13115
   142
paulson@18705
   143
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"
wenzelm@13383
   144
apply (insert cl_po)
paulson@18705
   145
apply (simp add: PartialOrder_def refl_def A_def r_def)
paulson@13115
   146
done
paulson@13115
   147
paulson@18705
   148
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"
wenzelm@13383
   149
apply (insert cl_po)
paulson@19316
   150
apply (simp add: PartialOrder_def antisym_def r_def)
paulson@13115
   151
done
paulson@13115
   152
paulson@18705
   153
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"
wenzelm@13383
   154
apply (insert cl_po)
paulson@19316
   155
apply (simp add: PartialOrder_def r_def)
paulson@13115
   156
apply (unfold trans_def, fast)
paulson@13115
   157
done
paulson@13115
   158
paulson@13115
   159
lemma (in PO) monotoneE:
paulson@13115
   160
     "[| monotone f A r;  x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"
paulson@13115
   161
by (simp add: monotone_def)
paulson@13115
   162
paulson@13115
   163
lemma (in PO) po_subset_po:
paulson@17841
   164
     "S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"
paulson@13115
   165
apply (simp (no_asm) add: PartialOrder_def)
paulson@13115
   166
apply auto
wenzelm@13383
   167
-- {* refl *}
paulson@13115
   168
apply (simp add: refl_def induced_def)
paulson@18705
   169
apply (blast intro: reflE)
wenzelm@13383
   170
-- {* antisym *}
paulson@13115
   171
apply (simp add: antisym_def induced_def)
paulson@18705
   172
apply (blast intro: antisymE)
wenzelm@13383
   173
-- {* trans *}
paulson@13115
   174
apply (simp add: trans_def induced_def)
paulson@18705
   175
apply (blast intro: transE)
paulson@13115
   176
done
paulson@13115
   177
paulson@17841
   178
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"
paulson@13115
   179
by (simp add: add: induced_def)
paulson@13115
   180
paulson@13115
   181
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"
paulson@13115
   182
by (simp add: add: induced_def)
paulson@13115
   183
paulson@17841
   184
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"
wenzelm@13383
   185
apply (insert cl_co)
paulson@13115
   186
apply (simp add: CompleteLattice_def A_def)
paulson@13115
   187
done
paulson@13115
   188
paulson@13115
   189
declare (in CL) cl_co [simp]
paulson@13115
   190
paulson@13115
   191
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"
paulson@13115
   192
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
paulson@13115
   193
paulson@13115
   194
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"
paulson@13115
   195
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
paulson@13115
   196
paulson@13115
   197
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
paulson@13115
   198
by (simp add: isLub_def isGlb_def dual_def converse_def)
paulson@13115
   199
paulson@13115
   200
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
paulson@13115
   201
by (simp add: isLub_def isGlb_def dual_def converse_def)
paulson@13115
   202
paulson@13115
   203
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"
wenzelm@13383
   204
apply (insert cl_po)
wenzelm@13383
   205
apply (simp add: PartialOrder_def dual_def refl_converse
paulson@13115
   206
                 trans_converse antisym_converse)
paulson@13115
   207
done
paulson@13115
   208
paulson@13115
   209
lemma Rdual:
paulson@17841
   210
     "\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))
paulson@17841
   211
      ==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"
paulson@13115
   212
apply safe
paulson@13115
   213
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
paulson@13115
   214
                      (|pset = A, order = r|) " in exI)
paulson@13115
   215
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
paulson@13115
   216
apply (drule mp, fast)
paulson@13115
   217
apply (simp add: isLub_lub isGlb_def)
paulson@13115
   218
apply (simp add: isLub_def, blast)
paulson@13115
   219
done
paulson@13115
   220
paulson@13115
   221
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
paulson@13115
   222
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
paulson@13115
   223
paulson@13115
   224
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
paulson@13115
   225
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
paulson@13115
   226
paulson@17841
   227
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"
paulson@13115
   228
by (simp add: PartialOrder_def CompleteLattice_def, fast)
paulson@13115
   229
paulson@13115
   230
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
paulson@13115
   231
wenzelm@21232
   232
declare CL_imp_PO [THEN PO.PO_imp_refl, simp]
wenzelm@21232
   233
declare CL_imp_PO [THEN PO.PO_imp_sym, simp]
wenzelm@21232
   234
declare CL_imp_PO [THEN PO.PO_imp_trans, simp]
paulson@13115
   235
paulson@13115
   236
lemma (in CL) CO_refl: "refl A r"
paulson@13115
   237
by (rule PO_imp_refl)
paulson@13115
   238
paulson@13115
   239
lemma (in CL) CO_antisym: "antisym r"
paulson@13115
   240
by (rule PO_imp_sym)
paulson@13115
   241
paulson@13115
   242
lemma (in CL) CO_trans: "trans r"
paulson@13115
   243
by (rule PO_imp_trans)
paulson@13115
   244
paulson@13115
   245
lemma CompleteLatticeI:
paulson@17841
   246
     "[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));
paulson@17841
   247
         (\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]
paulson@13115
   248
      ==> po \<in> CompleteLattice"
wenzelm@13383
   249
apply (unfold CompleteLattice_def, blast)
paulson@13115
   250
done
paulson@13115
   251
paulson@13115
   252
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"
wenzelm@13383
   253
apply (insert cl_co)
paulson@13115
   254
apply (simp add: CompleteLattice_def dual_def)
wenzelm@13383
   255
apply (fold dual_def)
wenzelm@13383
   256
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]
paulson@13115
   257
                 dualPO)
paulson@13115
   258
done
paulson@13115
   259
paulson@13585
   260
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"
paulson@13115
   261
by (simp add: dual_def)
paulson@13115
   262
paulson@13585
   263
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"
paulson@13115
   264
by (simp add: dual_def)
paulson@13115
   265
paulson@13115
   266
lemma (in PO) monotone_dual:
paulson@13585
   267
     "monotone f (pset cl) (order cl) 
paulson@13585
   268
     ==> monotone f (pset (dual cl)) (order(dual cl))"
paulson@13585
   269
by (simp add: monotone_def dualA_iff dualr_iff)
paulson@13115
   270
paulson@13115
   271
lemma (in PO) interval_dual:
paulson@13585
   272
     "[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"
paulson@13115
   273
apply (simp add: interval_def dualr_iff)
paulson@13115
   274
apply (fold r_def, fast)
paulson@13115
   275
done
paulson@13115
   276
paulson@13115
   277
lemma (in PO) interval_not_empty:
paulson@13115
   278
     "[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r"
paulson@13115
   279
apply (simp add: interval_def)
paulson@13115
   280
apply (unfold trans_def, blast)
paulson@13115
   281
done
paulson@13115
   282
paulson@13115
   283
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"
paulson@13115
   284
by (simp add: interval_def)
paulson@13115
   285
paulson@13115
   286
lemma (in PO) left_in_interval:
paulson@13115
   287
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
paulson@13115
   288
apply (simp (no_asm_simp) add: interval_def)
paulson@13115
   289
apply (simp add: PO_imp_trans interval_not_empty)
paulson@18705
   290
apply (simp add: reflE)
paulson@13115
   291
done
paulson@13115
   292
paulson@13115
   293
lemma (in PO) right_in_interval:
paulson@13115
   294
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
paulson@13115
   295
apply (simp (no_asm_simp) add: interval_def)
paulson@13115
   296
apply (simp add: PO_imp_trans interval_not_empty)
paulson@18705
   297
apply (simp add: reflE)
paulson@13115
   298
done
paulson@13115
   299
wenzelm@13383
   300
nipkow@14569
   301
subsection {* sublattice *}
wenzelm@13383
   302
paulson@13115
   303
lemma (in PO) sublattice_imp_CL:
paulson@18750
   304
     "S <<= cl  ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"
paulson@19316
   305
by (simp add: sublattice_def CompleteLattice_def r_def)
paulson@13115
   306
paulson@13115
   307
lemma (in CL) sublatticeI:
paulson@17841
   308
     "[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]
paulson@18750
   309
      ==> S <<= cl"
paulson@13115
   310
by (simp add: sublattice_def A_def r_def)
paulson@13115
   311
wenzelm@13383
   312
nipkow@14569
   313
subsection {* lub *}
wenzelm@13383
   314
paulson@17841
   315
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"
paulson@13115
   316
apply (rule antisymE)
paulson@13115
   317
apply (auto simp add: isLub_def r_def)
paulson@13115
   318
done
paulson@13115
   319
paulson@17841
   320
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"
paulson@13115
   321
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@13115
   322
apply (unfold lub_def least_def)
paulson@13115
   323
apply (rule some_equality [THEN ssubst])
paulson@13115
   324
  apply (simp add: isLub_def)
wenzelm@13383
   325
 apply (simp add: lub_unique A_def isLub_def)
paulson@13115
   326
apply (simp add: isLub_def r_def)
paulson@13115
   327
done
paulson@13115
   328
paulson@13115
   329
lemma (in CL) lub_least:
paulson@17841
   330
     "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"
paulson@13115
   331
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@13115
   332
apply (unfold lub_def least_def)
paulson@13115
   333
apply (rule_tac s=x in some_equality [THEN ssubst])
paulson@13115
   334
  apply (simp add: isLub_def)
wenzelm@13383
   335
 apply (simp add: lub_unique A_def isLub_def)
paulson@13115
   336
apply (simp add: isLub_def r_def A_def)
paulson@13115
   337
done
paulson@13115
   338
paulson@17841
   339
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"
paulson@13115
   340
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@13115
   341
apply (unfold lub_def least_def)
paulson@13115
   342
apply (subst some_equality)
paulson@13115
   343
apply (simp add: isLub_def)
paulson@13115
   344
prefer 2 apply (simp add: isLub_def A_def)
wenzelm@13383
   345
apply (simp add: lub_unique A_def isLub_def)
paulson@13115
   346
done
paulson@13115
   347
paulson@13115
   348
lemma (in CL) lubI:
paulson@17841
   349
     "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;
paulson@13115
   350
         \<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"
paulson@13115
   351
apply (rule lub_unique, assumption)
paulson@13115
   352
apply (simp add: isLub_def A_def r_def)
paulson@13115
   353
apply (unfold isLub_def)
paulson@13115
   354
apply (rule conjI)
paulson@13115
   355
apply (fold A_def r_def)
paulson@13115
   356
apply (rule lub_in_lattice, assumption)
paulson@13115
   357
apply (simp add: lub_upper lub_least)
paulson@13115
   358
done
paulson@13115
   359
paulson@17841
   360
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"
paulson@13115
   361
by (simp add: lubI isLub_def A_def r_def)
paulson@13115
   362
paulson@13115
   363
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"
paulson@13115
   364
by (simp add: isLub_def  A_def)
paulson@13115
   365
paulson@13115
   366
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"
paulson@13115
   367
by (simp add: isLub_def r_def)
paulson@13115
   368
paulson@13115
   369
lemma (in CL) isLub_least:
paulson@13115
   370
     "[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"
paulson@13115
   371
by (simp add: isLub_def A_def r_def)
paulson@13115
   372
paulson@13115
   373
lemma (in CL) isLubI:
wenzelm@13383
   374
     "[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;
paulson@13115
   375
         (\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L"
paulson@13115
   376
by (simp add: isLub_def A_def r_def)
paulson@13115
   377
wenzelm@13383
   378
nipkow@14569
   379
subsection {* glb *}
wenzelm@13383
   380
paulson@17841
   381
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"
paulson@13115
   382
apply (subst glb_dual_lub)
paulson@13115
   383
apply (simp add: A_def)
paulson@13115
   384
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   385
apply (rule CL.lub_in_lattice)
wenzelm@13383
   386
apply (rule dualPO)
paulson@13115
   387
apply (rule CL_dualCL)
paulson@13115
   388
apply (simp add: dualA_iff)
paulson@13115
   389
done
paulson@13115
   390
paulson@17841
   391
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"
paulson@13115
   392
apply (subst glb_dual_lub)
paulson@13115
   393
apply (simp add: r_def)
paulson@13115
   394
apply (rule dualr_iff [THEN subst])
wenzelm@21232
   395
apply (rule CL.lub_upper)
wenzelm@13383
   396
apply (rule dualPO)
paulson@13115
   397
apply (rule CL_dualCL)
paulson@13115
   398
apply (simp add: dualA_iff A_def, assumption)
paulson@13115
   399
done
paulson@13115
   400
wenzelm@13383
   401
text {*
wenzelm@13383
   402
  Reduce the sublattice property by using substructural properties;
wenzelm@13383
   403
  abandoned see @{text "Tarski_4.ML"}.
wenzelm@13383
   404
*}
paulson@13115
   405
paulson@13115
   406
lemma (in CLF) [simp]:
paulson@13585
   407
    "f: pset cl -> pset cl & monotone f (pset cl) (order cl)"
wenzelm@13383
   408
apply (insert f_cl)
wenzelm@13383
   409
apply (simp add: CLF_def)
paulson@13115
   410
done
paulson@13115
   411
paulson@13115
   412
declare (in CLF) f_cl [simp]
paulson@13115
   413
paulson@13115
   414
paulson@13585
   415
lemma (in CLF) f_in_funcset: "f \<in> A -> A"
paulson@13115
   416
by (simp add: A_def)
paulson@13115
   417
paulson@13115
   418
lemma (in CLF) monotone_f: "monotone f A r"
paulson@13115
   419
by (simp add: A_def r_def)
paulson@13115
   420
paulson@13115
   421
lemma (in CLF) CLF_dual: "(cl,f) \<in> CLF ==> (dual cl, f) \<in> CLF"
paulson@13115
   422
apply (simp add: CLF_def  CL_dualCL monotone_dual)
paulson@13115
   423
apply (simp add: dualA_iff)
paulson@13115
   424
done
paulson@13115
   425
wenzelm@13383
   426
nipkow@14569
   427
subsection {* fixed points *}
wenzelm@13383
   428
paulson@17841
   429
lemma fix_subset: "fix f A \<subseteq> A"
paulson@13115
   430
by (simp add: fix_def, fast)
paulson@13115
   431
paulson@13115
   432
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"
paulson@13115
   433
by (simp add: fix_def)
paulson@13115
   434
paulson@13115
   435
lemma fixf_subset:
paulson@17841
   436
     "[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B"
paulson@17841
   437
by (simp add: fix_def, auto)
paulson@13115
   438
wenzelm@13383
   439
nipkow@14569
   440
subsection {* lemmas for Tarski, lub *}
paulson@13115
   441
lemma (in CLF) lubH_le_flubH:
paulson@13115
   442
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
paulson@13115
   443
apply (rule lub_least, fast)
paulson@13115
   444
apply (rule f_in_funcset [THEN funcset_mem])
paulson@13115
   445
apply (rule lub_in_lattice, fast)
wenzelm@13383
   446
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
paulson@13115
   447
apply (rule ballI)
paulson@13115
   448
apply (rule transE)
paulson@13585
   449
-- {* instantiates @{text "(x, ???z) \<in> order cl to (x, f x)"}, *}
wenzelm@13383
   450
-- {* because of the def of @{text H} *}
paulson@13115
   451
apply fast
wenzelm@13383
   452
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
paulson@13115
   453
apply (rule_tac f = "f" in monotoneE)
paulson@13115
   454
apply (rule monotone_f, fast)
paulson@13115
   455
apply (rule lub_in_lattice, fast)
paulson@13115
   456
apply (rule lub_upper, fast)
paulson@13115
   457
apply assumption
paulson@13115
   458
done
paulson@13115
   459
paulson@13115
   460
lemma (in CLF) flubH_le_lubH:
paulson@13115
   461
     "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
paulson@13115
   462
apply (rule lub_upper, fast)
paulson@13115
   463
apply (rule_tac t = "H" in ssubst, assumption)
paulson@13115
   464
apply (rule CollectI)
paulson@13115
   465
apply (rule conjI)
paulson@13115
   466
apply (rule_tac [2] f_in_funcset [THEN funcset_mem])
paulson@13115
   467
apply (rule_tac [2] lub_in_lattice)
paulson@13115
   468
prefer 2 apply fast
paulson@13115
   469
apply (rule_tac f = "f" in monotoneE)
paulson@13115
   470
apply (rule monotone_f)
wenzelm@13383
   471
  apply (blast intro: lub_in_lattice)
wenzelm@13383
   472
 apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem])
paulson@13115
   473
apply (simp add: lubH_le_flubH)
paulson@13115
   474
done
paulson@13115
   475
paulson@13115
   476
lemma (in CLF) lubH_is_fixp:
paulson@13115
   477
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
paulson@13115
   478
apply (simp add: fix_def)
paulson@13115
   479
apply (rule conjI)
paulson@13115
   480
apply (rule lub_in_lattice, fast)
paulson@13115
   481
apply (rule antisymE)
paulson@13115
   482
apply (simp add: flubH_le_lubH)
paulson@13115
   483
apply (simp add: lubH_le_flubH)
paulson@13115
   484
done
paulson@13115
   485
paulson@13115
   486
lemma (in CLF) fix_in_H:
paulson@13115
   487
     "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
wenzelm@13383
   488
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl
wenzelm@13383
   489
                    fix_subset [of f A, THEN subsetD])
paulson@13115
   490
paulson@13115
   491
lemma (in CLF) fixf_le_lubH:
paulson@13115
   492
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
paulson@13115
   493
apply (rule ballI)
paulson@13115
   494
apply (rule lub_upper, fast)
paulson@13115
   495
apply (rule fix_in_H)
wenzelm@13383
   496
apply (simp_all add: P_def)
paulson@13115
   497
done
paulson@13115
   498
paulson@13115
   499
lemma (in CLF) lubH_least_fixf:
wenzelm@13383
   500
     "H = {x. (x, f x) \<in> r & x \<in> A}
paulson@13115
   501
      ==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"
paulson@13115
   502
apply (rule allI)
paulson@13115
   503
apply (rule impI)
paulson@13115
   504
apply (erule bspec)
paulson@13115
   505
apply (rule lubH_is_fixp, assumption)
paulson@13115
   506
done
paulson@13115
   507
nipkow@14569
   508
subsection {* Tarski fixpoint theorem 1, first part *}
paulson@13115
   509
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
paulson@13115
   510
apply (rule sym)
wenzelm@13383
   511
apply (simp add: P_def)
paulson@13115
   512
apply (rule lubI)
paulson@13115
   513
apply (rule fix_subset)
paulson@13115
   514
apply (rule lub_in_lattice, fast)
paulson@13115
   515
apply (simp add: fixf_le_lubH)
paulson@13115
   516
apply (simp add: lubH_least_fixf)
paulson@13115
   517
done
paulson@13115
   518
paulson@13115
   519
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
wenzelm@13383
   520
  -- {* Tarski for glb *}
paulson@13115
   521
apply (simp add: glb_dual_lub P_def A_def r_def)
paulson@13115
   522
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   523
apply (rule CLF.lubH_is_fixp)
wenzelm@13383
   524
apply (rule dualPO)
paulson@13115
   525
apply (rule CL_dualCL)
paulson@13115
   526
apply (rule f_cl [THEN CLF_dual])
paulson@13115
   527
apply (simp add: dualr_iff dualA_iff)
paulson@13115
   528
done
paulson@13115
   529
paulson@13115
   530
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
paulson@13115
   531
apply (simp add: glb_dual_lub P_def A_def r_def)
paulson@13115
   532
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   533
apply (simp add: CLF.T_thm_1_lub [of _ f, OF dualPO CL_dualCL]
paulson@13115
   534
                 dualPO CL_dualCL CLF_dual dualr_iff)
paulson@13115
   535
done
paulson@13115
   536
nipkow@14569
   537
subsection {* interval *}
wenzelm@13383
   538
paulson@13115
   539
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"
wenzelm@13383
   540
apply (insert CO_refl)
wenzelm@13383
   541
apply (simp add: refl_def, blast)
paulson@13115
   542
done
paulson@13115
   543
paulson@17841
   544
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"
paulson@13115
   545
apply (simp add: interval_def)
paulson@13115
   546
apply (blast intro: rel_imp_elem)
paulson@13115
   547
done
paulson@13115
   548
paulson@13115
   549
lemma (in CLF) intervalI:
paulson@13115
   550
     "[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"
paulson@17841
   551
by (simp add: interval_def)
paulson@13115
   552
paulson@13115
   553
lemma (in CLF) interval_lemma1:
paulson@17841
   554
     "[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"
paulson@17841
   555
by (unfold interval_def, fast)
paulson@13115
   556
paulson@13115
   557
lemma (in CLF) interval_lemma2:
paulson@17841
   558
     "[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"
paulson@17841
   559
by (unfold interval_def, fast)
paulson@13115
   560
paulson@13115
   561
lemma (in CLF) a_less_lub:
paulson@17841
   562
     "[| S \<subseteq> A; S \<noteq> {};
paulson@13115
   563
         \<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"
paulson@18705
   564
by (blast intro: transE)
paulson@13115
   565
paulson@13115
   566
lemma (in CLF) glb_less_b:
paulson@17841
   567
     "[| S \<subseteq> A; S \<noteq> {};
paulson@13115
   568
         \<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"
paulson@18705
   569
by (blast intro: transE)
paulson@13115
   570
paulson@13115
   571
lemma (in CLF) S_intv_cl:
paulson@17841
   572
     "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"
paulson@13115
   573
by (simp add: subset_trans [OF _ interval_subset])
paulson@13115
   574
paulson@13115
   575
lemma (in CLF) L_in_interval:
paulson@17841
   576
     "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;
paulson@13115
   577
         S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
paulson@13115
   578
apply (rule intervalI)
paulson@13115
   579
apply (rule a_less_lub)
paulson@13115
   580
prefer 2 apply assumption
paulson@13115
   581
apply (simp add: S_intv_cl)
paulson@13115
   582
apply (rule ballI)
paulson@13115
   583
apply (simp add: interval_lemma1)
paulson@13115
   584
apply (simp add: isLub_upper)
wenzelm@13383
   585
-- {* @{text "(L, b) \<in> r"} *}
paulson@13115
   586
apply (simp add: isLub_least interval_lemma2)
paulson@13115
   587
done
paulson@13115
   588
paulson@13115
   589
lemma (in CLF) G_in_interval:
paulson@17841
   590
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
paulson@13115
   591
         S \<noteq> {} |] ==> G \<in> interval r a b"
paulson@13115
   592
apply (simp add: interval_dual)
wenzelm@21232
   593
apply (simp add: CLF.L_in_interval [of _ f]
paulson@13115
   594
                 dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)
paulson@13115
   595
done
paulson@13115
   596
paulson@13115
   597
lemma (in CLF) intervalPO:
wenzelm@13383
   598
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@13115
   599
      ==> (| pset = interval r a b, order = induced (interval r a b) r |)
paulson@13115
   600
          \<in> PartialOrder"
paulson@13115
   601
apply (rule po_subset_po)
paulson@13115
   602
apply (simp add: interval_subset)
paulson@13115
   603
done
paulson@13115
   604
paulson@13115
   605
lemma (in CLF) intv_CL_lub:
wenzelm@13383
   606
 "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@17841
   607
  ==> \<forall>S. S \<subseteq> interval r a b -->
wenzelm@13383
   608
          (\<exists>L. isLub S (| pset = interval r a b,
paulson@13115
   609
                          order = induced (interval r a b) r |)  L)"
paulson@13115
   610
apply (intro strip)
paulson@13115
   611
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])
paulson@13115
   612
prefer 2 apply assumption
paulson@13115
   613
apply assumption
paulson@13115
   614
apply (erule exE)
wenzelm@13383
   615
-- {* define the lub for the interval as *}
paulson@13115
   616
apply (rule_tac x = "if S = {} then a else L" in exI)
paulson@13115
   617
apply (simp (no_asm_simp) add: isLub_def split del: split_if)
wenzelm@13383
   618
apply (intro impI conjI)
wenzelm@13383
   619
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
paulson@13115
   620
apply (simp add: CL_imp_PO L_in_interval)
paulson@13115
   621
apply (simp add: left_in_interval)
wenzelm@13383
   622
-- {* lub prop 1 *}
paulson@13115
   623
apply (case_tac "S = {}")
wenzelm@13383
   624
-- {* @{text "S = {}, y \<in> S = False => everything"} *}
paulson@13115
   625
apply fast
wenzelm@13383
   626
-- {* @{text "S \<noteq> {}"} *}
paulson@13115
   627
apply simp
wenzelm@13383
   628
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
paulson@13115
   629
apply (rule ballI)
paulson@13115
   630
apply (simp add: induced_def  L_in_interval)
paulson@13115
   631
apply (rule conjI)
paulson@13115
   632
apply (rule subsetD)
paulson@13115
   633
apply (simp add: S_intv_cl, assumption)
paulson@13115
   634
apply (simp add: isLub_upper)
wenzelm@13383
   635
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
paulson@13115
   636
apply (rule ballI)
paulson@13115
   637
apply (rule impI)
paulson@13115
   638
apply (case_tac "S = {}")
wenzelm@13383
   639
-- {* @{text "S = {}"} *}
paulson@13115
   640
apply simp
paulson@13115
   641
apply (simp add: induced_def  interval_def)
paulson@13115
   642
apply (rule conjI)
paulson@18705
   643
apply (rule reflE, assumption)
paulson@13115
   644
apply (rule interval_not_empty)
paulson@13115
   645
apply (rule CO_trans)
paulson@13115
   646
apply (simp add: interval_def)
wenzelm@13383
   647
-- {* @{text "S \<noteq> {}"} *}
paulson@13115
   648
apply simp
paulson@13115
   649
apply (simp add: induced_def  L_in_interval)
paulson@13115
   650
apply (rule isLub_least, assumption)
paulson@13115
   651
apply (rule subsetD)
paulson@13115
   652
prefer 2 apply assumption
paulson@13115
   653
apply (simp add: S_intv_cl, fast)
paulson@13115
   654
done
paulson@13115
   655
paulson@13115
   656
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]
paulson@13115
   657
paulson@13115
   658
lemma (in CLF) interval_is_sublattice:
wenzelm@13383
   659
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@18750
   660
        ==> interval r a b <<= cl"
paulson@13115
   661
apply (rule sublatticeI)
paulson@13115
   662
apply (simp add: interval_subset)
paulson@13115
   663
apply (rule CompleteLatticeI)
paulson@13115
   664
apply (simp add: intervalPO)
paulson@13115
   665
 apply (simp add: intv_CL_lub)
paulson@13115
   666
apply (simp add: intv_CL_glb)
paulson@13115
   667
done
paulson@13115
   668
wenzelm@13383
   669
lemmas (in CLF) interv_is_compl_latt =
paulson@13115
   670
    interval_is_sublattice [THEN sublattice_imp_CL]
paulson@13115
   671
wenzelm@13383
   672
nipkow@14569
   673
subsection {* Top and Bottom *}
paulson@13115
   674
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"
paulson@13115
   675
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
paulson@13115
   676
paulson@13115
   677
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"
paulson@13115
   678
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
paulson@13115
   679
paulson@13115
   680
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"
paulson@13115
   681
apply (simp add: Bot_def least_def)
paulson@17841
   682
apply (rule_tac a="glb A cl" in someI2)
paulson@17841
   683
apply (simp_all add: glb_in_lattice glb_lower 
paulson@17841
   684
                     r_def [symmetric] A_def [symmetric])
paulson@13115
   685
done
paulson@13115
   686
paulson@13115
   687
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"
paulson@13115
   688
apply (simp add: Top_dual_Bot A_def)
wenzelm@13383
   689
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   690
apply (blast intro!: CLF.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl)
paulson@13115
   691
done
paulson@13115
   692
paulson@13115
   693
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"
paulson@13115
   694
apply (simp add: Top_def greatest_def)
paulson@17841
   695
apply (rule_tac a="lub A cl" in someI2)
paulson@13115
   696
apply (rule someI2)
paulson@17841
   697
apply (simp_all add: lub_in_lattice lub_upper 
paulson@17841
   698
                     r_def [symmetric] A_def [symmetric])
paulson@13115
   699
done
paulson@13115
   700
paulson@13115
   701
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"
paulson@13115
   702
apply (simp add: Bot_dual_Top r_def)
paulson@13115
   703
apply (rule dualr_iff [THEN subst])
wenzelm@21232
   704
apply (simp add: CLF.Top_prop [of _ f]
paulson@13115
   705
                 dualA_iff A_def dualPO CL_dualCL CLF_dual)
paulson@13115
   706
done
paulson@13115
   707
paulson@13115
   708
lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}"
paulson@13115
   709
apply (rule notI)
paulson@13115
   710
apply (drule_tac a = "Top cl" in equals0D)
paulson@13115
   711
apply (simp add: interval_def)
paulson@13115
   712
apply (simp add: refl_def Top_in_lattice Top_prop)
paulson@13115
   713
done
paulson@13115
   714
paulson@13115
   715
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}"
paulson@13115
   716
apply (simp add: Bot_dual_Top)
paulson@13115
   717
apply (subst interval_dual)
paulson@13115
   718
prefer 2 apply assumption
paulson@13115
   719
apply (simp add: A_def)
paulson@13115
   720
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   721
apply (blast intro!: CLF.Top_in_lattice
paulson@13115
   722
                 f_cl dualPO CL_dualCL CLF_dual)
wenzelm@21232
   723
apply (simp add: CLF.Top_intv_not_empty [of _ f]
paulson@13115
   724
                 dualA_iff A_def dualPO CL_dualCL CLF_dual)
paulson@13115
   725
done
paulson@13115
   726
nipkow@14569
   727
subsection {* fixed points form a partial order *}
wenzelm@13383
   728
paulson@13115
   729
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"
paulson@13115
   730
by (simp add: P_def fix_subset po_subset_po)
paulson@13115
   731
paulson@17841
   732
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"
paulson@13115
   733
apply (rule subset_trans [OF _ fix_subset])
paulson@13115
   734
apply (rule Y_ss [simplified P_def])
paulson@13115
   735
done
paulson@13115
   736
paulson@13115
   737
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"
paulson@18750
   738
  by (rule Y_subset_A [THEN lub_in_lattice])
paulson@13115
   739
paulson@13115
   740
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"
paulson@13115
   741
apply (rule lub_least)
paulson@13115
   742
apply (rule Y_subset_A)
paulson@13115
   743
apply (rule f_in_funcset [THEN funcset_mem])
paulson@13115
   744
apply (rule lubY_in_A)
paulson@17841
   745
-- {* @{text "Y \<subseteq> P ==> f x = x"} *}
paulson@13115
   746
apply (rule ballI)
paulson@13115
   747
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])
paulson@13115
   748
apply (erule Y_ss [simplified P_def, THEN subsetD])
wenzelm@13383
   749
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
paulson@13115
   750
apply (rule_tac f = "f" in monotoneE)
paulson@13115
   751
apply (rule monotone_f)
paulson@13115
   752
apply (simp add: Y_subset_A [THEN subsetD])
paulson@13115
   753
apply (rule lubY_in_A)
paulson@13115
   754
apply (simp add: lub_upper Y_subset_A)
paulson@13115
   755
done
paulson@13115
   756
paulson@17841
   757
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"
paulson@13115
   758
apply (unfold intY1_def)
paulson@13115
   759
apply (rule interval_subset)
paulson@13115
   760
apply (rule lubY_in_A)
paulson@13115
   761
apply (rule Top_in_lattice)
paulson@13115
   762
done
paulson@13115
   763
paulson@13115
   764
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]
paulson@13115
   765
paulson@13115
   766
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"
paulson@13115
   767
apply (simp add: intY1_def  interval_def)
paulson@13115
   768
apply (rule conjI)
paulson@13115
   769
apply (rule transE)
paulson@13115
   770
apply (rule lubY_le_flubY)
wenzelm@13383
   771
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
paulson@13115
   772
apply (rule_tac f=f in monotoneE)
paulson@13115
   773
apply (rule monotone_f)
paulson@13115
   774
apply (rule lubY_in_A)
paulson@13115
   775
apply (simp add: intY1_def interval_def  intY1_elem)
paulson@13115
   776
apply (simp add: intY1_def  interval_def)
wenzelm@13383
   777
-- {* @{text "(f x, Top cl) \<in> r"} *}
paulson@13115
   778
apply (rule Top_prop)
paulson@13115
   779
apply (rule f_in_funcset [THEN funcset_mem])
paulson@13115
   780
apply (simp add: intY1_def interval_def  intY1_elem)
paulson@13115
   781
done
paulson@13115
   782
paulson@13585
   783
lemma (in Tarski) intY1_func: "(%x: intY1. f x) \<in> intY1 -> intY1"
paulson@13115
   784
apply (rule restrictI)
paulson@13115
   785
apply (erule intY1_f_closed)
paulson@13115
   786
done
paulson@13115
   787
paulson@13115
   788
lemma (in Tarski) intY1_mono:
paulson@13115
   789
     "monotone (%x: intY1. f x) intY1 (induced intY1 r)"
paulson@13115
   790
apply (auto simp add: monotone_def induced_def intY1_f_closed)
paulson@13115
   791
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
paulson@13115
   792
done
paulson@13115
   793
wenzelm@13383
   794
lemma (in Tarski) intY1_is_cl:
paulson@13115
   795
    "(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"
paulson@13115
   796
apply (unfold intY1_def)
paulson@13115
   797
apply (rule interv_is_compl_latt)
paulson@13115
   798
apply (rule lubY_in_A)
paulson@13115
   799
apply (rule Top_in_lattice)
paulson@13115
   800
apply (rule Top_intv_not_empty)
paulson@13115
   801
apply (rule lubY_in_A)
paulson@13115
   802
done
paulson@13115
   803
paulson@13115
   804
lemma (in Tarski) v_in_P: "v \<in> P"
paulson@13115
   805
apply (unfold P_def)
paulson@13115
   806
apply (rule_tac A = "intY1" in fixf_subset)
paulson@13115
   807
apply (rule intY1_subset)
wenzelm@21232
   808
apply (simp add: CLF.glbH_is_fixp [OF _ intY1_is_cl, simplified]
paulson@13115
   809
                 v_def CL_imp_PO intY1_is_cl CLF_def intY1_func intY1_mono)
paulson@13115
   810
done
paulson@13115
   811
wenzelm@13383
   812
lemma (in Tarski) z_in_interval:
paulson@13115
   813
     "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"
paulson@13115
   814
apply (unfold intY1_def P_def)
paulson@13115
   815
apply (rule intervalI)
wenzelm@13383
   816
prefer 2
paulson@13115
   817
 apply (erule fix_subset [THEN subsetD, THEN Top_prop])
paulson@13115
   818
apply (rule lub_least)
paulson@13115
   819
apply (rule Y_subset_A)
paulson@13115
   820
apply (fast elim!: fix_subset [THEN subsetD])
paulson@13115
   821
apply (simp add: induced_def)
paulson@13115
   822
done
paulson@13115
   823
wenzelm@13383
   824
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]
paulson@13115
   825
      ==> ((%x: intY1. f x) z, z) \<in> induced intY1 r"
paulson@13115
   826
apply (simp add: induced_def  intY1_f_closed z_in_interval P_def)
wenzelm@13383
   827
apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD]
paulson@18705
   828
                 reflE)
paulson@13115
   829
done
paulson@13115
   830
paulson@13115
   831
lemma (in Tarski) tarski_full_lemma:
paulson@13115
   832
     "\<exists>L. isLub Y (| pset = P, order = induced P r |) L"
paulson@13115
   833
apply (rule_tac x = "v" in exI)
paulson@13115
   834
apply (simp add: isLub_def)
wenzelm@13383
   835
-- {* @{text "v \<in> P"} *}
paulson@13115
   836
apply (simp add: v_in_P)
paulson@13115
   837
apply (rule conjI)
wenzelm@13383
   838
-- {* @{text v} is lub *}
wenzelm@13383
   839
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
paulson@13115
   840
apply (rule ballI)
paulson@13115
   841
apply (simp add: induced_def subsetD v_in_P)
paulson@13115
   842
apply (rule conjI)
paulson@13115
   843
apply (erule Y_ss [THEN subsetD])
paulson@13115
   844
apply (rule_tac b = "lub Y cl" in transE)
paulson@13115
   845
apply (rule lub_upper)
paulson@13115
   846
apply (rule Y_subset_A, assumption)
paulson@13115
   847
apply (rule_tac b = "Top cl" in interval_imp_mem)
paulson@13115
   848
apply (simp add: v_def)
paulson@13115
   849
apply (fold intY1_def)
wenzelm@21232
   850
apply (rule CL.glb_in_lattice [OF _ intY1_is_cl, simplified])
paulson@13115
   851
 apply (simp add: CL_imp_PO intY1_is_cl, force)
wenzelm@13383
   852
-- {* @{text v} is LEAST ub *}
paulson@13115
   853
apply clarify
paulson@13115
   854
apply (rule indI)
paulson@13115
   855
  prefer 3 apply assumption
paulson@13115
   856
 prefer 2 apply (simp add: v_in_P)
paulson@13115
   857
apply (unfold v_def)
paulson@13115
   858
apply (rule indE)
paulson@13115
   859
apply (rule_tac [2] intY1_subset)
wenzelm@21232
   860
apply (rule CL.glb_lower [OF _ intY1_is_cl, simplified])
wenzelm@13383
   861
  apply (simp add: CL_imp_PO intY1_is_cl)
paulson@13115
   862
 apply force
paulson@13115
   863
apply (simp add: induced_def intY1_f_closed z_in_interval)
paulson@18705
   864
apply (simp add: P_def fix_imp_eq [of _ f A] reflE
paulson@18705
   865
                 fix_subset [of f A, THEN subsetD])
paulson@13115
   866
done
paulson@13115
   867
paulson@13115
   868
lemma CompleteLatticeI_simp:
wenzelm@13383
   869
     "[| (| pset = A, order = r |) \<in> PartialOrder;
paulson@17841
   870
         \<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |)  L) |]
paulson@13115
   871
    ==> (| pset = A, order = r |) \<in> CompleteLattice"
paulson@13115
   872
by (simp add: CompleteLatticeI Rdual)
paulson@13115
   873
paulson@13115
   874
theorem (in CLF) Tarski_full:
paulson@13115
   875
     "(| pset = P, order = induced P r|) \<in> CompleteLattice"
paulson@13115
   876
apply (rule CompleteLatticeI_simp)
paulson@13115
   877
apply (rule fixf_po, clarify)
wenzelm@13383
   878
apply (simp add: P_def A_def r_def)
wenzelm@13383
   879
apply (blast intro!: Tarski.tarski_full_lemma cl_po cl_co f_cl)
paulson@13115
   880
done
wenzelm@7112
   881
wenzelm@7112
   882
end