src/HOL/Predicate.thy
author haftmann
Mon Aug 22 22:00:36 2011 +0200 (2011-08-22)
changeset 44414 fb25c131bd73
parent 44363 53f4f8287606
child 44415 ce6cd1b2344b
permissions -rw-r--r--
tuned specifications and syntax
berghofe@22259
     1
(*  Title:      HOL/Predicate.thy
haftmann@30328
     2
    Author:     Stefan Berghofer and Lukas Bulwahn and Florian Haftmann, TU Muenchen
berghofe@22259
     3
*)
berghofe@22259
     4
haftmann@30328
     5
header {* Predicates as relations and enumerations *}
berghofe@22259
     6
berghofe@22259
     7
theory Predicate
haftmann@23708
     8
imports Inductive Relation
berghofe@22259
     9
begin
berghofe@22259
    10
haftmann@30328
    11
notation
haftmann@41082
    12
  bot ("\<bottom>") and
haftmann@41082
    13
  top ("\<top>") and
haftmann@30328
    14
  inf (infixl "\<sqinter>" 70) and
haftmann@30328
    15
  sup (infixl "\<squnion>" 65) and
haftmann@30328
    16
  Inf ("\<Sqinter>_" [900] 900) and
haftmann@41082
    17
  Sup ("\<Squnion>_" [900] 900)
haftmann@30328
    18
haftmann@41080
    19
syntax (xsymbols)
haftmann@41082
    20
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
haftmann@41082
    21
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41080
    22
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
haftmann@41080
    23
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41080
    24
haftmann@30328
    25
haftmann@30328
    26
subsection {* Predicates as (complete) lattices *}
haftmann@30328
    27
haftmann@34065
    28
text {*
haftmann@34065
    29
  Handy introduction and elimination rules for @{text "\<le>"}
haftmann@34065
    30
  on unary and binary predicates
haftmann@34065
    31
*}
haftmann@34065
    32
haftmann@34065
    33
lemma predicate1I:
haftmann@34065
    34
  assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"
haftmann@34065
    35
  shows "P \<le> Q"
haftmann@34065
    36
  apply (rule le_funI)
haftmann@34065
    37
  apply (rule le_boolI)
haftmann@34065
    38
  apply (rule PQ)
haftmann@34065
    39
  apply assumption
haftmann@34065
    40
  done
haftmann@34065
    41
haftmann@34065
    42
lemma predicate1D [Pure.dest?, dest?]:
haftmann@34065
    43
  "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x"
haftmann@34065
    44
  apply (erule le_funE)
haftmann@34065
    45
  apply (erule le_boolE)
haftmann@34065
    46
  apply assumption+
haftmann@34065
    47
  done
haftmann@34065
    48
haftmann@34065
    49
lemma rev_predicate1D:
haftmann@44414
    50
  "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x"
haftmann@34065
    51
  by (rule predicate1D)
haftmann@34065
    52
haftmann@34065
    53
lemma predicate2I [Pure.intro!, intro!]:
haftmann@34065
    54
  assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y"
haftmann@34065
    55
  shows "P \<le> Q"
haftmann@34065
    56
  apply (rule le_funI)+
haftmann@34065
    57
  apply (rule le_boolI)
haftmann@34065
    58
  apply (rule PQ)
haftmann@34065
    59
  apply assumption
haftmann@34065
    60
  done
haftmann@34065
    61
haftmann@34065
    62
lemma predicate2D [Pure.dest, dest]:
haftmann@34065
    63
  "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y"
haftmann@34065
    64
  apply (erule le_funE)+
haftmann@34065
    65
  apply (erule le_boolE)
haftmann@34065
    66
  apply assumption+
haftmann@34065
    67
  done
haftmann@34065
    68
haftmann@34065
    69
lemma rev_predicate2D:
haftmann@44414
    70
  "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y"
haftmann@34065
    71
  by (rule predicate2D)
haftmann@34065
    72
haftmann@34065
    73
haftmann@32779
    74
subsubsection {* Equality *}
berghofe@22259
    75
berghofe@26797
    76
lemma pred_equals_eq: "((\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S)) = (R = S)"
berghofe@26797
    77
  by (simp add: mem_def)
berghofe@22259
    78
berghofe@23741
    79
lemma pred_equals_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S)) = (R = S)"
nipkow@39302
    80
  by (simp add: fun_eq_iff mem_def)
berghofe@22259
    81
haftmann@32779
    82
haftmann@32779
    83
subsubsection {* Order relation *}
haftmann@32779
    84
haftmann@44414
    85
lemma pred_subset_eq: "((\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S)) = (R \<subseteq> S)"
berghofe@26797
    86
  by (simp add: mem_def)
berghofe@22259
    87
haftmann@44414
    88
lemma pred_subset_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S)) = (R \<subseteq> S)"
berghofe@22259
    89
  by fast
berghofe@22259
    90
berghofe@23741
    91
haftmann@30328
    92
subsubsection {* Top and bottom elements *}
berghofe@23741
    93
haftmann@44414
    94
lemma bot1E [no_atp, elim!]: "\<bottom> x \<Longrightarrow> P"
wenzelm@41550
    95
  by (simp add: bot_fun_def)
berghofe@23741
    96
haftmann@44414
    97
lemma bot2E [elim!]: "\<bottom> x y \<Longrightarrow> P"
wenzelm@41550
    98
  by (simp add: bot_fun_def)
berghofe@22259
    99
haftmann@44414
   100
lemma bot_empty_eq: "\<bottom> = (\<lambda>x. x \<in> {})"
nipkow@39302
   101
  by (auto simp add: fun_eq_iff)
berghofe@22259
   102
haftmann@44414
   103
lemma bot_empty_eq2: "\<bottom> = (\<lambda>x y. (x, y) \<in> {})"
nipkow@39302
   104
  by (auto simp add: fun_eq_iff)
berghofe@22259
   105
haftmann@44414
   106
lemma top1I [intro!]: "\<top> x"
wenzelm@41550
   107
  by (simp add: top_fun_def)
haftmann@41082
   108
haftmann@44414
   109
lemma top2I [intro!]: "\<top> x y"
wenzelm@41550
   110
  by (simp add: top_fun_def)
haftmann@41082
   111
haftmann@41082
   112
haftmann@41082
   113
subsubsection {* Binary intersection *}
haftmann@41082
   114
haftmann@44414
   115
lemma inf1I [intro!]: "A x \<Longrightarrow> B x \<Longrightarrow> (A \<sqinter> B) x"
wenzelm@41550
   116
  by (simp add: inf_fun_def)
haftmann@41082
   117
haftmann@44414
   118
lemma inf2I [intro!]: "A x y \<Longrightarrow> B x y \<Longrightarrow> (A \<sqinter> B) x y"
wenzelm@41550
   119
  by (simp add: inf_fun_def)
haftmann@41082
   120
haftmann@44414
   121
lemma inf1E [elim!]: "(A \<sqinter> B) x \<Longrightarrow> (A x \<Longrightarrow> B x \<Longrightarrow> P) \<Longrightarrow> P"
wenzelm@41550
   122
  by (simp add: inf_fun_def)
haftmann@41082
   123
haftmann@44414
   124
lemma inf2E [elim!]: "(A \<sqinter> B) x y \<Longrightarrow> (A x y \<Longrightarrow> B x y \<Longrightarrow> P) \<Longrightarrow> P"
wenzelm@41550
   125
  by (simp add: inf_fun_def)
haftmann@41082
   126
haftmann@44414
   127
lemma inf1D1: "(A \<sqinter> B) x \<Longrightarrow> A x"
wenzelm@41550
   128
  by (simp add: inf_fun_def)
haftmann@41082
   129
haftmann@44414
   130
lemma inf2D1: "(A \<sqinter> B) x y \<Longrightarrow> A x y"
wenzelm@41550
   131
  by (simp add: inf_fun_def)
haftmann@41082
   132
haftmann@44414
   133
lemma inf1D2: "(A \<sqinter> B) x \<Longrightarrow> B x"
wenzelm@41550
   134
  by (simp add: inf_fun_def)
haftmann@41082
   135
haftmann@44414
   136
lemma inf2D2: "(A \<sqinter> B) x y \<Longrightarrow> B x y"
wenzelm@41550
   137
  by (simp add: inf_fun_def)
haftmann@41082
   138
haftmann@44414
   139
lemma inf_Int_eq: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
wenzelm@41550
   140
  by (simp add: inf_fun_def mem_def)
haftmann@41082
   141
haftmann@44414
   142
lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
wenzelm@41550
   143
  by (simp add: inf_fun_def mem_def)
haftmann@41082
   144
berghofe@23741
   145
haftmann@30328
   146
subsubsection {* Binary union *}
berghofe@22259
   147
haftmann@44414
   148
lemma sup1I1 [elim?]: "A x \<Longrightarrow> (A \<squnion> B) x"
wenzelm@41550
   149
  by (simp add: sup_fun_def)
berghofe@22259
   150
haftmann@44414
   151
lemma sup2I1 [elim?]: "A x y \<Longrightarrow> (A \<squnion> B) x y"
wenzelm@41550
   152
  by (simp add: sup_fun_def)
haftmann@32883
   153
haftmann@44414
   154
lemma sup1I2 [elim?]: "B x \<Longrightarrow> (A \<squnion> B) x"
wenzelm@41550
   155
  by (simp add: sup_fun_def)
berghofe@22259
   156
haftmann@44414
   157
lemma sup2I2 [elim?]: "B x y \<Longrightarrow> (A \<squnion> B) x y"
wenzelm@41550
   158
  by (simp add: sup_fun_def)
berghofe@22259
   159
haftmann@44414
   160
lemma sup1E [elim!]: "(A \<squnion> B) x \<Longrightarrow> (A x \<Longrightarrow> P) \<Longrightarrow> (B x \<Longrightarrow> P) \<Longrightarrow> P"
wenzelm@41550
   161
  by (simp add: sup_fun_def) iprover
berghofe@22259
   162
haftmann@44414
   163
lemma sup2E [elim!]: "(A \<squnion> B) x y \<Longrightarrow> (A x y \<Longrightarrow> P) \<Longrightarrow> (B x y \<Longrightarrow> P) \<Longrightarrow> P"
wenzelm@41550
   164
  by (simp add: sup_fun_def) iprover
berghofe@22259
   165
berghofe@22259
   166
text {*
berghofe@22259
   167
  \medskip Classical introduction rule: no commitment to @{text A} vs
berghofe@22259
   168
  @{text B}.
berghofe@22259
   169
*}
berghofe@22259
   170
haftmann@44414
   171
lemma sup1CI [intro!]: "(\<not> B x \<Longrightarrow> A x) \<Longrightarrow> (A \<squnion> B) x"
wenzelm@41550
   172
  by (auto simp add: sup_fun_def)
berghofe@22259
   173
haftmann@44414
   174
lemma sup2CI [intro!]: "(\<not> B x y \<Longrightarrow> A x y) \<Longrightarrow> (A \<squnion> B) x y"
wenzelm@41550
   175
  by (auto simp add: sup_fun_def)
berghofe@22259
   176
haftmann@44414
   177
lemma sup_Un_eq: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
wenzelm@41550
   178
  by (simp add: sup_fun_def mem_def)
berghofe@22259
   179
haftmann@44414
   180
lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
wenzelm@41550
   181
  by (simp add: sup_fun_def mem_def)
berghofe@22259
   182
berghofe@22259
   183
haftmann@30328
   184
subsubsection {* Intersections of families *}
berghofe@22430
   185
haftmann@44414
   186
lemma INF1_iff: "(\<Sqinter>x\<in>A. B x) b = (\<forall>x\<in>A. B x b)"
haftmann@41080
   187
  by (simp add: INFI_apply)
berghofe@22430
   188
haftmann@44414
   189
lemma INF2_iff: "(\<Sqinter>x\<in>A. B x) b c = (\<forall>x\<in>A. B x b c)"
haftmann@41080
   190
  by (simp add: INFI_apply)
berghofe@22430
   191
haftmann@44414
   192
lemma INF1_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b"
haftmann@41080
   193
  by (auto simp add: INFI_apply)
berghofe@22259
   194
haftmann@44414
   195
lemma INF2_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c"
haftmann@41080
   196
  by (auto simp add: INFI_apply)
berghofe@22430
   197
haftmann@44414
   198
lemma INF1_D [elim]: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b"
haftmann@41080
   199
  by (auto simp add: INFI_apply)
berghofe@22259
   200
haftmann@44414
   201
lemma INF2_D [elim]: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c"
haftmann@41080
   202
  by (auto simp add: INFI_apply)
berghofe@22430
   203
haftmann@44414
   204
lemma INF1_E [elim]: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> (B a b \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@41080
   205
  by (auto simp add: INFI_apply)
berghofe@22430
   206
haftmann@44414
   207
lemma INF2_E [elim]: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> (B a b c \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@41080
   208
  by (auto simp add: INFI_apply)
berghofe@22259
   209
haftmann@44414
   210
lemma INF_INT_eq: "(\<Sqinter>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Sqinter>i. r i))"
haftmann@41080
   211
  by (simp add: INFI_apply fun_eq_iff)
berghofe@23741
   212
haftmann@44414
   213
lemma INF_INT_eq2: "(\<Sqinter>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Sqinter>i. r i))"
haftmann@41080
   214
  by (simp add: INFI_apply fun_eq_iff)
berghofe@23741
   215
berghofe@22259
   216
haftmann@41082
   217
subsubsection {* Unions of families *}
haftmann@41082
   218
haftmann@44414
   219
lemma SUP1_iff: "(\<Squnion>x\<in>A. B x) b = (\<exists>x\<in>A. B x b)"
haftmann@41082
   220
  by (simp add: SUPR_apply)
haftmann@41082
   221
haftmann@44414
   222
lemma SUP2_iff: "(\<Squnion>x\<in>A. B x) b c = (\<exists>x\<in>A. B x b c)"
haftmann@41082
   223
  by (simp add: SUPR_apply)
haftmann@41082
   224
haftmann@44414
   225
lemma SUP1_I [intro]: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b"
haftmann@41082
   226
  by (auto simp add: SUPR_apply)
haftmann@41082
   227
haftmann@44414
   228
lemma SUP2_I [intro]: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c"
haftmann@41082
   229
  by (auto simp add: SUPR_apply)
haftmann@41082
   230
haftmann@44414
   231
lemma SUP1_E [elim!]: "(\<Squnion>x\<in>A. B x) b \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@41082
   232
  by (auto simp add: SUPR_apply)
haftmann@41082
   233
haftmann@44414
   234
lemma SUP2_E [elim!]: "(\<Squnion>x\<in>A. B x) b c \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b c \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@41082
   235
  by (auto simp add: SUPR_apply)
haftmann@41082
   236
haftmann@44414
   237
lemma SUP_UN_eq: "(\<Squnion>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i. r i))"
haftmann@41082
   238
  by (simp add: SUPR_apply fun_eq_iff)
haftmann@41082
   239
haftmann@44414
   240
lemma SUP_UN_eq2: "(\<Squnion>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i. r i))"
haftmann@41082
   241
  by (simp add: SUPR_apply fun_eq_iff)
haftmann@41082
   242
haftmann@41082
   243
haftmann@30328
   244
subsection {* Predicates as relations *}
haftmann@30328
   245
haftmann@30328
   246
subsubsection {* Composition  *}
berghofe@22259
   247
haftmann@44414
   248
inductive pred_comp  :: "['a \<Rightarrow> 'b \<Rightarrow> bool, 'b \<Rightarrow> 'c \<Rightarrow> bool] \<Rightarrow> 'a \<Rightarrow> 'c \<Rightarrow> bool" (infixr "OO" 75)
haftmann@44414
   249
  for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and s :: "'b \<Rightarrow> 'c \<Rightarrow> bool" where
haftmann@44414
   250
  pred_compI [intro]: "r a b \<Longrightarrow> s b c \<Longrightarrow> (r OO s) a c"
berghofe@22259
   251
berghofe@23741
   252
inductive_cases pred_compE [elim!]: "(r OO s) a c"
berghofe@22259
   253
berghofe@22259
   254
lemma pred_comp_rel_comp_eq [pred_set_conv]:
berghofe@23741
   255
  "((\<lambda>x y. (x, y) \<in> r) OO (\<lambda>x y. (x, y) \<in> s)) = (\<lambda>x y. (x, y) \<in> r O s)"
wenzelm@41550
   256
  by (auto simp add: fun_eq_iff)
berghofe@22259
   257
berghofe@22259
   258
haftmann@30328
   259
subsubsection {* Converse *}
berghofe@22259
   260
haftmann@44414
   261
inductive conversep :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(_^--1)" [1000] 1000)
haftmann@44414
   262
  for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@44414
   263
  conversepI: "r a b \<Longrightarrow> r^--1 b a"
berghofe@22259
   264
berghofe@22259
   265
notation (xsymbols)
berghofe@22259
   266
  conversep  ("(_\<inverse>\<inverse>)" [1000] 1000)
berghofe@22259
   267
berghofe@22259
   268
lemma conversepD:
berghofe@22259
   269
  assumes ab: "r^--1 a b"
berghofe@22259
   270
  shows "r b a" using ab
berghofe@22259
   271
  by cases simp
berghofe@22259
   272
berghofe@22259
   273
lemma conversep_iff [iff]: "r^--1 a b = r b a"
berghofe@22259
   274
  by (iprover intro: conversepI dest: conversepD)
berghofe@22259
   275
berghofe@22259
   276
lemma conversep_converse_eq [pred_set_conv]:
berghofe@23741
   277
  "(\<lambda>x y. (x, y) \<in> r)^--1 = (\<lambda>x y. (x, y) \<in> r^-1)"
nipkow@39302
   278
  by (auto simp add: fun_eq_iff)
berghofe@22259
   279
berghofe@22259
   280
lemma conversep_conversep [simp]: "(r^--1)^--1 = r"
berghofe@22259
   281
  by (iprover intro: order_antisym conversepI dest: conversepD)
berghofe@22259
   282
berghofe@22259
   283
lemma converse_pred_comp: "(r OO s)^--1 = s^--1 OO r^--1"
berghofe@22259
   284
  by (iprover intro: order_antisym conversepI pred_compI
berghofe@22259
   285
    elim: pred_compE dest: conversepD)
berghofe@22259
   286
haftmann@44414
   287
lemma converse_meet: "(r \<sqinter> s)^--1 = r^--1 \<sqinter> s^--1"
wenzelm@41550
   288
  by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD)
berghofe@22259
   289
haftmann@44414
   290
lemma converse_join: "(r \<squnion> s)^--1 = r^--1 \<squnion> s^--1"
wenzelm@41550
   291
  by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD)
berghofe@22259
   292
haftmann@44414
   293
lemma conversep_noteq [simp]: "(op \<noteq>)^--1 = op \<noteq>"
nipkow@39302
   294
  by (auto simp add: fun_eq_iff)
berghofe@22259
   295
berghofe@22259
   296
lemma conversep_eq [simp]: "(op =)^--1 = op ="
nipkow@39302
   297
  by (auto simp add: fun_eq_iff)
berghofe@22259
   298
berghofe@22259
   299
haftmann@30328
   300
subsubsection {* Domain *}
berghofe@22259
   301
haftmann@44414
   302
inductive DomainP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
haftmann@44414
   303
  for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@44414
   304
  DomainPI [intro]: "r a b \<Longrightarrow> DomainP r a"
berghofe@22259
   305
berghofe@23741
   306
inductive_cases DomainPE [elim!]: "DomainP r a"
berghofe@22259
   307
berghofe@23741
   308
lemma DomainP_Domain_eq [pred_set_conv]: "DomainP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Domain r)"
berghofe@26797
   309
  by (blast intro!: Orderings.order_antisym predicate1I)
berghofe@22259
   310
berghofe@22259
   311
haftmann@30328
   312
subsubsection {* Range *}
berghofe@22259
   313
haftmann@44414
   314
inductive RangeP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool"
haftmann@44414
   315
  for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@44414
   316
  RangePI [intro]: "r a b \<Longrightarrow> RangeP r b"
berghofe@22259
   317
berghofe@23741
   318
inductive_cases RangePE [elim!]: "RangeP r b"
berghofe@22259
   319
berghofe@23741
   320
lemma RangeP_Range_eq [pred_set_conv]: "RangeP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Range r)"
berghofe@26797
   321
  by (blast intro!: Orderings.order_antisym predicate1I)
berghofe@22259
   322
berghofe@22259
   323
haftmann@30328
   324
subsubsection {* Inverse image *}
berghofe@22259
   325
haftmann@44414
   326
definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
haftmann@44414
   327
  "inv_imagep r f = (\<lambda>x y. r (f x) (f y))"
berghofe@22259
   328
berghofe@23741
   329
lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)"
berghofe@22259
   330
  by (simp add: inv_image_def inv_imagep_def)
berghofe@22259
   331
berghofe@22259
   332
lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)"
berghofe@22259
   333
  by (simp add: inv_imagep_def)
berghofe@22259
   334
berghofe@22259
   335
haftmann@30328
   336
subsubsection {* Powerset *}
berghofe@23741
   337
berghofe@23741
   338
definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" where
haftmann@44414
   339
  "Powp A = (\<lambda>B. \<forall>x \<in> B. A x)"
berghofe@23741
   340
berghofe@23741
   341
lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)"
nipkow@39302
   342
  by (auto simp add: Powp_def fun_eq_iff)
berghofe@23741
   343
berghofe@26797
   344
lemmas Powp_mono [mono] = Pow_mono [to_pred pred_subset_eq]
berghofe@26797
   345
berghofe@23741
   346
haftmann@30328
   347
subsubsection {* Properties of relations *}
berghofe@22259
   348
haftmann@44414
   349
abbreviation antisymP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
haftmann@44414
   350
  "antisymP r \<equiv> antisym {(x, y). r x y}"
berghofe@22259
   351
haftmann@44414
   352
abbreviation transP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
haftmann@44414
   353
  "transP r \<equiv> trans {(x, y). r x y}"
berghofe@22259
   354
haftmann@44414
   355
abbreviation single_valuedP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where
haftmann@44414
   356
  "single_valuedP r \<equiv> single_valued {(x, y). r x y}"
berghofe@22259
   357
haftmann@40813
   358
(*FIXME inconsistencies: abbreviations vs. definitions, suffix `P` vs. suffix `p`*)
haftmann@40813
   359
haftmann@40813
   360
definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
haftmann@40813
   361
  "reflp r \<longleftrightarrow> refl {(x, y). r x y}"
haftmann@40813
   362
haftmann@40813
   363
definition symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
haftmann@40813
   364
  "symp r \<longleftrightarrow> sym {(x, y). r x y}"
haftmann@40813
   365
haftmann@40813
   366
definition transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
haftmann@40813
   367
  "transp r \<longleftrightarrow> trans {(x, y). r x y}"
haftmann@40813
   368
haftmann@40813
   369
lemma reflpI:
haftmann@40813
   370
  "(\<And>x. r x x) \<Longrightarrow> reflp r"
haftmann@40813
   371
  by (auto intro: refl_onI simp add: reflp_def)
haftmann@40813
   372
haftmann@40813
   373
lemma reflpE:
haftmann@40813
   374
  assumes "reflp r"
haftmann@40813
   375
  obtains "r x x"
haftmann@40813
   376
  using assms by (auto dest: refl_onD simp add: reflp_def)
haftmann@40813
   377
haftmann@40813
   378
lemma sympI:
haftmann@40813
   379
  "(\<And>x y. r x y \<Longrightarrow> r y x) \<Longrightarrow> symp r"
haftmann@40813
   380
  by (auto intro: symI simp add: symp_def)
haftmann@40813
   381
haftmann@40813
   382
lemma sympE:
haftmann@40813
   383
  assumes "symp r" and "r x y"
haftmann@40813
   384
  obtains "r y x"
haftmann@40813
   385
  using assms by (auto dest: symD simp add: symp_def)
haftmann@40813
   386
haftmann@40813
   387
lemma transpI:
haftmann@40813
   388
  "(\<And>x y z. r x y \<Longrightarrow> r y z \<Longrightarrow> r x z) \<Longrightarrow> transp r"
haftmann@40813
   389
  by (auto intro: transI simp add: transp_def)
haftmann@40813
   390
  
haftmann@40813
   391
lemma transpE:
haftmann@40813
   392
  assumes "transp r" and "r x y" and "r y z"
haftmann@40813
   393
  obtains "r x z"
haftmann@40813
   394
  using assms by (auto dest: transD simp add: transp_def)
haftmann@40813
   395
haftmann@30328
   396
haftmann@30328
   397
subsection {* Predicates as enumerations *}
haftmann@30328
   398
haftmann@30328
   399
subsubsection {* The type of predicate enumerations (a monad) *}
haftmann@30328
   400
haftmann@30328
   401
datatype 'a pred = Pred "'a \<Rightarrow> bool"
haftmann@30328
   402
haftmann@30328
   403
primrec eval :: "'a pred \<Rightarrow> 'a \<Rightarrow> bool" where
haftmann@30328
   404
  eval_pred: "eval (Pred f) = f"
haftmann@30328
   405
haftmann@30328
   406
lemma Pred_eval [simp]:
haftmann@30328
   407
  "Pred (eval x) = x"
haftmann@30328
   408
  by (cases x) simp
haftmann@30328
   409
haftmann@40616
   410
lemma pred_eqI:
haftmann@40616
   411
  "(\<And>w. eval P w \<longleftrightarrow> eval Q w) \<Longrightarrow> P = Q"
haftmann@40616
   412
  by (cases P, cases Q) (auto simp add: fun_eq_iff)
haftmann@30328
   413
haftmann@44033
   414
instantiation pred :: (type) complete_lattice
haftmann@30328
   415
begin
haftmann@30328
   416
haftmann@30328
   417
definition
haftmann@30328
   418
  "P \<le> Q \<longleftrightarrow> eval P \<le> eval Q"
haftmann@30328
   419
haftmann@30328
   420
definition
haftmann@30328
   421
  "P < Q \<longleftrightarrow> eval P < eval Q"
haftmann@30328
   422
haftmann@30328
   423
definition
haftmann@30328
   424
  "\<bottom> = Pred \<bottom>"
haftmann@30328
   425
haftmann@40616
   426
lemma eval_bot [simp]:
haftmann@40616
   427
  "eval \<bottom>  = \<bottom>"
haftmann@40616
   428
  by (simp add: bot_pred_def)
haftmann@40616
   429
haftmann@30328
   430
definition
haftmann@30328
   431
  "\<top> = Pred \<top>"
haftmann@30328
   432
haftmann@40616
   433
lemma eval_top [simp]:
haftmann@40616
   434
  "eval \<top>  = \<top>"
haftmann@40616
   435
  by (simp add: top_pred_def)
haftmann@40616
   436
haftmann@30328
   437
definition
haftmann@30328
   438
  "P \<sqinter> Q = Pred (eval P \<sqinter> eval Q)"
haftmann@30328
   439
haftmann@40616
   440
lemma eval_inf [simp]:
haftmann@40616
   441
  "eval (P \<sqinter> Q) = eval P \<sqinter> eval Q"
haftmann@40616
   442
  by (simp add: inf_pred_def)
haftmann@40616
   443
haftmann@30328
   444
definition
haftmann@30328
   445
  "P \<squnion> Q = Pred (eval P \<squnion> eval Q)"
haftmann@30328
   446
haftmann@40616
   447
lemma eval_sup [simp]:
haftmann@40616
   448
  "eval (P \<squnion> Q) = eval P \<squnion> eval Q"
haftmann@40616
   449
  by (simp add: sup_pred_def)
haftmann@40616
   450
haftmann@30328
   451
definition
haftmann@37767
   452
  "\<Sqinter>A = Pred (INFI A eval)"
haftmann@30328
   453
haftmann@40616
   454
lemma eval_Inf [simp]:
haftmann@40616
   455
  "eval (\<Sqinter>A) = INFI A eval"
haftmann@40616
   456
  by (simp add: Inf_pred_def)
haftmann@40616
   457
haftmann@30328
   458
definition
haftmann@37767
   459
  "\<Squnion>A = Pred (SUPR A eval)"
haftmann@30328
   460
haftmann@40616
   461
lemma eval_Sup [simp]:
haftmann@40616
   462
  "eval (\<Squnion>A) = SUPR A eval"
haftmann@40616
   463
  by (simp add: Sup_pred_def)
haftmann@40616
   464
haftmann@44033
   465
instance proof
haftmann@44033
   466
qed (auto intro!: pred_eqI simp add: less_eq_pred_def less_pred_def)
haftmann@44033
   467
haftmann@44033
   468
end
haftmann@44033
   469
haftmann@44033
   470
lemma eval_INFI [simp]:
haftmann@44033
   471
  "eval (INFI A f) = INFI A (eval \<circ> f)"
haftmann@44033
   472
  by (unfold INFI_def) simp
haftmann@44033
   473
haftmann@44033
   474
lemma eval_SUPR [simp]:
haftmann@44033
   475
  "eval (SUPR A f) = SUPR A (eval \<circ> f)"
haftmann@44033
   476
  by (unfold SUPR_def) simp
haftmann@44033
   477
haftmann@44033
   478
instantiation pred :: (type) complete_boolean_algebra
haftmann@44033
   479
begin
haftmann@44033
   480
haftmann@32578
   481
definition
haftmann@32578
   482
  "- P = Pred (- eval P)"
haftmann@32578
   483
haftmann@40616
   484
lemma eval_compl [simp]:
haftmann@40616
   485
  "eval (- P) = - eval P"
haftmann@40616
   486
  by (simp add: uminus_pred_def)
haftmann@40616
   487
haftmann@32578
   488
definition
haftmann@32578
   489
  "P - Q = Pred (eval P - eval Q)"
haftmann@32578
   490
haftmann@40616
   491
lemma eval_minus [simp]:
haftmann@40616
   492
  "eval (P - Q) = eval P - eval Q"
haftmann@40616
   493
  by (simp add: minus_pred_def)
haftmann@40616
   494
haftmann@32578
   495
instance proof
haftmann@44033
   496
qed (auto intro!: pred_eqI simp add: uminus_apply minus_apply)
haftmann@30328
   497
berghofe@22259
   498
end
haftmann@30328
   499
haftmann@40616
   500
definition single :: "'a \<Rightarrow> 'a pred" where
haftmann@40616
   501
  "single x = Pred ((op =) x)"
haftmann@40616
   502
haftmann@40616
   503
lemma eval_single [simp]:
haftmann@40616
   504
  "eval (single x) = (op =) x"
haftmann@40616
   505
  by (simp add: single_def)
haftmann@40616
   506
haftmann@40616
   507
definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
haftmann@41080
   508
  "P \<guillemotright>= f = (SUPR {x. eval P x} f)"
haftmann@40616
   509
haftmann@40616
   510
lemma eval_bind [simp]:
haftmann@41080
   511
  "eval (P \<guillemotright>= f) = eval (SUPR {x. eval P x} f)"
haftmann@40616
   512
  by (simp add: bind_def)
haftmann@40616
   513
haftmann@30328
   514
lemma bind_bind:
haftmann@30328
   515
  "(P \<guillemotright>= Q) \<guillemotright>= R = P \<guillemotright>= (\<lambda>x. Q x \<guillemotright>= R)"
haftmann@40674
   516
  by (rule pred_eqI) auto
haftmann@30328
   517
haftmann@30328
   518
lemma bind_single:
haftmann@30328
   519
  "P \<guillemotright>= single = P"
haftmann@40616
   520
  by (rule pred_eqI) auto
haftmann@30328
   521
haftmann@30328
   522
lemma single_bind:
haftmann@30328
   523
  "single x \<guillemotright>= P = P x"
haftmann@40616
   524
  by (rule pred_eqI) auto
haftmann@30328
   525
haftmann@30328
   526
lemma bottom_bind:
haftmann@30328
   527
  "\<bottom> \<guillemotright>= P = \<bottom>"
haftmann@40674
   528
  by (rule pred_eqI) auto
haftmann@30328
   529
haftmann@30328
   530
lemma sup_bind:
haftmann@30328
   531
  "(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R"
haftmann@40674
   532
  by (rule pred_eqI) auto
haftmann@30328
   533
haftmann@40616
   534
lemma Sup_bind:
haftmann@40616
   535
  "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)"
haftmann@40674
   536
  by (rule pred_eqI) auto
haftmann@30328
   537
haftmann@30328
   538
lemma pred_iffI:
haftmann@30328
   539
  assumes "\<And>x. eval A x \<Longrightarrow> eval B x"
haftmann@30328
   540
  and "\<And>x. eval B x \<Longrightarrow> eval A x"
haftmann@30328
   541
  shows "A = B"
haftmann@40616
   542
  using assms by (auto intro: pred_eqI)
haftmann@30328
   543
  
haftmann@30328
   544
lemma singleI: "eval (single x) x"
haftmann@40616
   545
  by simp
haftmann@30328
   546
haftmann@30328
   547
lemma singleI_unit: "eval (single ()) x"
haftmann@40616
   548
  by simp
haftmann@30328
   549
haftmann@30328
   550
lemma singleE: "eval (single x) y \<Longrightarrow> (y = x \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@40616
   551
  by simp
haftmann@30328
   552
haftmann@30328
   553
lemma singleE': "eval (single x) y \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@40616
   554
  by simp
haftmann@30328
   555
haftmann@30328
   556
lemma bindI: "eval P x \<Longrightarrow> eval (Q x) y \<Longrightarrow> eval (P \<guillemotright>= Q) y"
haftmann@40616
   557
  by auto
haftmann@30328
   558
haftmann@30328
   559
lemma bindE: "eval (R \<guillemotright>= Q) y \<Longrightarrow> (\<And>x. eval R x \<Longrightarrow> eval (Q x) y \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@40616
   560
  by auto
haftmann@30328
   561
haftmann@30328
   562
lemma botE: "eval \<bottom> x \<Longrightarrow> P"
haftmann@40616
   563
  by auto
haftmann@30328
   564
haftmann@30328
   565
lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x"
haftmann@40616
   566
  by auto
haftmann@30328
   567
haftmann@30328
   568
lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x" 
haftmann@40616
   569
  by auto
haftmann@30328
   570
haftmann@30328
   571
lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@40616
   572
  by auto
haftmann@30328
   573
haftmann@32578
   574
lemma single_not_bot [simp]:
haftmann@32578
   575
  "single x \<noteq> \<bottom>"
nipkow@39302
   576
  by (auto simp add: single_def bot_pred_def fun_eq_iff)
haftmann@32578
   577
haftmann@32578
   578
lemma not_bot:
haftmann@32578
   579
  assumes "A \<noteq> \<bottom>"
haftmann@32578
   580
  obtains x where "eval A x"
haftmann@40616
   581
  using assms by (cases A)
haftmann@40616
   582
    (auto simp add: bot_pred_def, auto simp add: mem_def)
haftmann@32578
   583
  
haftmann@32578
   584
haftmann@32578
   585
subsubsection {* Emptiness check and definite choice *}
haftmann@32578
   586
haftmann@32578
   587
definition is_empty :: "'a pred \<Rightarrow> bool" where
haftmann@32578
   588
  "is_empty A \<longleftrightarrow> A = \<bottom>"
haftmann@32578
   589
haftmann@32578
   590
lemma is_empty_bot:
haftmann@32578
   591
  "is_empty \<bottom>"
haftmann@32578
   592
  by (simp add: is_empty_def)
haftmann@32578
   593
haftmann@32578
   594
lemma not_is_empty_single:
haftmann@32578
   595
  "\<not> is_empty (single x)"
nipkow@39302
   596
  by (auto simp add: is_empty_def single_def bot_pred_def fun_eq_iff)
haftmann@32578
   597
haftmann@32578
   598
lemma is_empty_sup:
haftmann@32578
   599
  "is_empty (A \<squnion> B) \<longleftrightarrow> is_empty A \<and> is_empty B"
huffman@36008
   600
  by (auto simp add: is_empty_def)
haftmann@32578
   601
haftmann@40616
   602
definition singleton :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a pred \<Rightarrow> 'a" where
bulwahn@33111
   603
  "singleton dfault A = (if \<exists>!x. eval A x then THE x. eval A x else dfault ())"
haftmann@32578
   604
haftmann@32578
   605
lemma singleton_eqI:
bulwahn@33110
   606
  "\<exists>!x. eval A x \<Longrightarrow> eval A x \<Longrightarrow> singleton dfault A = x"
haftmann@32578
   607
  by (auto simp add: singleton_def)
haftmann@32578
   608
haftmann@32578
   609
lemma eval_singletonI:
bulwahn@33110
   610
  "\<exists>!x. eval A x \<Longrightarrow> eval A (singleton dfault A)"
haftmann@32578
   611
proof -
haftmann@32578
   612
  assume assm: "\<exists>!x. eval A x"
haftmann@32578
   613
  then obtain x where "eval A x" ..
bulwahn@33110
   614
  moreover with assm have "singleton dfault A = x" by (rule singleton_eqI)
haftmann@32578
   615
  ultimately show ?thesis by simp 
haftmann@32578
   616
qed
haftmann@32578
   617
haftmann@32578
   618
lemma single_singleton:
bulwahn@33110
   619
  "\<exists>!x. eval A x \<Longrightarrow> single (singleton dfault A) = A"
haftmann@32578
   620
proof -
haftmann@32578
   621
  assume assm: "\<exists>!x. eval A x"
bulwahn@33110
   622
  then have "eval A (singleton dfault A)"
haftmann@32578
   623
    by (rule eval_singletonI)
bulwahn@33110
   624
  moreover from assm have "\<And>x. eval A x \<Longrightarrow> singleton dfault A = x"
haftmann@32578
   625
    by (rule singleton_eqI)
bulwahn@33110
   626
  ultimately have "eval (single (singleton dfault A)) = eval A"
nipkow@39302
   627
    by (simp (no_asm_use) add: single_def fun_eq_iff) blast
haftmann@40616
   628
  then have "\<And>x. eval (single (singleton dfault A)) x = eval A x"
haftmann@40616
   629
    by simp
haftmann@40616
   630
  then show ?thesis by (rule pred_eqI)
haftmann@32578
   631
qed
haftmann@32578
   632
haftmann@32578
   633
lemma singleton_undefinedI:
bulwahn@33111
   634
  "\<not> (\<exists>!x. eval A x) \<Longrightarrow> singleton dfault A = dfault ()"
haftmann@32578
   635
  by (simp add: singleton_def)
haftmann@32578
   636
haftmann@32578
   637
lemma singleton_bot:
bulwahn@33111
   638
  "singleton dfault \<bottom> = dfault ()"
haftmann@32578
   639
  by (auto simp add: bot_pred_def intro: singleton_undefinedI)
haftmann@32578
   640
haftmann@32578
   641
lemma singleton_single:
bulwahn@33110
   642
  "singleton dfault (single x) = x"
haftmann@32578
   643
  by (auto simp add: intro: singleton_eqI singleI elim: singleE)
haftmann@32578
   644
haftmann@32578
   645
lemma singleton_sup_single_single:
bulwahn@33111
   646
  "singleton dfault (single x \<squnion> single y) = (if x = y then x else dfault ())"
haftmann@32578
   647
proof (cases "x = y")
haftmann@32578
   648
  case True then show ?thesis by (simp add: singleton_single)
haftmann@32578
   649
next
haftmann@32578
   650
  case False
haftmann@32578
   651
  have "eval (single x \<squnion> single y) x"
haftmann@32578
   652
    and "eval (single x \<squnion> single y) y"
haftmann@32578
   653
  by (auto intro: supI1 supI2 singleI)
haftmann@32578
   654
  with False have "\<not> (\<exists>!z. eval (single x \<squnion> single y) z)"
haftmann@32578
   655
    by blast
bulwahn@33111
   656
  then have "singleton dfault (single x \<squnion> single y) = dfault ()"
haftmann@32578
   657
    by (rule singleton_undefinedI)
haftmann@32578
   658
  with False show ?thesis by simp
haftmann@32578
   659
qed
haftmann@32578
   660
haftmann@32578
   661
lemma singleton_sup_aux:
bulwahn@33110
   662
  "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B
bulwahn@33110
   663
    else if B = \<bottom> then singleton dfault A
bulwahn@33110
   664
    else singleton dfault
bulwahn@33110
   665
      (single (singleton dfault A) \<squnion> single (singleton dfault B)))"
haftmann@32578
   666
proof (cases "(\<exists>!x. eval A x) \<and> (\<exists>!y. eval B y)")
haftmann@32578
   667
  case True then show ?thesis by (simp add: single_singleton)
haftmann@32578
   668
next
haftmann@32578
   669
  case False
haftmann@32578
   670
  from False have A_or_B:
bulwahn@33111
   671
    "singleton dfault A = dfault () \<or> singleton dfault B = dfault ()"
haftmann@32578
   672
    by (auto intro!: singleton_undefinedI)
bulwahn@33110
   673
  then have rhs: "singleton dfault
bulwahn@33111
   674
    (single (singleton dfault A) \<squnion> single (singleton dfault B)) = dfault ()"
haftmann@32578
   675
    by (auto simp add: singleton_sup_single_single singleton_single)
haftmann@32578
   676
  from False have not_unique:
haftmann@32578
   677
    "\<not> (\<exists>!x. eval A x) \<or> \<not> (\<exists>!y. eval B y)" by simp
haftmann@32578
   678
  show ?thesis proof (cases "A \<noteq> \<bottom> \<and> B \<noteq> \<bottom>")
haftmann@32578
   679
    case True
haftmann@32578
   680
    then obtain a b where a: "eval A a" and b: "eval B b"
haftmann@32578
   681
      by (blast elim: not_bot)
haftmann@32578
   682
    with True not_unique have "\<not> (\<exists>!x. eval (A \<squnion> B) x)"
haftmann@32578
   683
      by (auto simp add: sup_pred_def bot_pred_def)
bulwahn@33111
   684
    then have "singleton dfault (A \<squnion> B) = dfault ()" by (rule singleton_undefinedI)
haftmann@32578
   685
    with True rhs show ?thesis by simp
haftmann@32578
   686
  next
haftmann@32578
   687
    case False then show ?thesis by auto
haftmann@32578
   688
  qed
haftmann@32578
   689
qed
haftmann@32578
   690
haftmann@32578
   691
lemma singleton_sup:
bulwahn@33110
   692
  "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B
bulwahn@33110
   693
    else if B = \<bottom> then singleton dfault A
bulwahn@33111
   694
    else if singleton dfault A = singleton dfault B then singleton dfault A else dfault ())"
bulwahn@33110
   695
using singleton_sup_aux [of dfault A B] by (simp only: singleton_sup_single_single)
haftmann@32578
   696
haftmann@30328
   697
haftmann@30328
   698
subsubsection {* Derived operations *}
haftmann@30328
   699
haftmann@30328
   700
definition if_pred :: "bool \<Rightarrow> unit pred" where
haftmann@30328
   701
  if_pred_eq: "if_pred b = (if b then single () else \<bottom>)"
haftmann@30328
   702
bulwahn@33754
   703
definition holds :: "unit pred \<Rightarrow> bool" where
bulwahn@33754
   704
  holds_eq: "holds P = eval P ()"
bulwahn@33754
   705
haftmann@30328
   706
definition not_pred :: "unit pred \<Rightarrow> unit pred" where
haftmann@30328
   707
  not_pred_eq: "not_pred P = (if eval P () then \<bottom> else single ())"
haftmann@30328
   708
haftmann@30328
   709
lemma if_predI: "P \<Longrightarrow> eval (if_pred P) ()"
haftmann@30328
   710
  unfolding if_pred_eq by (auto intro: singleI)
haftmann@30328
   711
haftmann@30328
   712
lemma if_predE: "eval (if_pred b) x \<Longrightarrow> (b \<Longrightarrow> x = () \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@30328
   713
  unfolding if_pred_eq by (cases b) (auto elim: botE)
haftmann@30328
   714
haftmann@30328
   715
lemma not_predI: "\<not> P \<Longrightarrow> eval (not_pred (Pred (\<lambda>u. P))) ()"
haftmann@30328
   716
  unfolding not_pred_eq eval_pred by (auto intro: singleI)
haftmann@30328
   717
haftmann@30328
   718
lemma not_predI': "\<not> eval P () \<Longrightarrow> eval (not_pred P) ()"
haftmann@30328
   719
  unfolding not_pred_eq by (auto intro: singleI)
haftmann@30328
   720
haftmann@30328
   721
lemma not_predE: "eval (not_pred (Pred (\<lambda>u. P))) x \<Longrightarrow> (\<not> P \<Longrightarrow> thesis) \<Longrightarrow> thesis"
haftmann@30328
   722
  unfolding not_pred_eq
haftmann@30328
   723
  by (auto split: split_if_asm elim: botE)
haftmann@30328
   724
haftmann@30328
   725
lemma not_predE': "eval (not_pred P) x \<Longrightarrow> (\<not> eval P x \<Longrightarrow> thesis) \<Longrightarrow> thesis"
haftmann@30328
   726
  unfolding not_pred_eq
haftmann@30328
   727
  by (auto split: split_if_asm elim: botE)
bulwahn@33754
   728
lemma "f () = False \<or> f () = True"
bulwahn@33754
   729
by simp
haftmann@30328
   730
blanchet@37549
   731
lemma closure_of_bool_cases [no_atp]:
haftmann@44007
   732
  fixes f :: "unit \<Rightarrow> bool"
haftmann@44007
   733
  assumes "f = (\<lambda>u. False) \<Longrightarrow> P f"
haftmann@44007
   734
  assumes "f = (\<lambda>u. True) \<Longrightarrow> P f"
haftmann@44007
   735
  shows "P f"
bulwahn@33754
   736
proof -
haftmann@44007
   737
  have "f = (\<lambda>u. False) \<or> f = (\<lambda>u. True)"
bulwahn@33754
   738
    apply (cases "f ()")
bulwahn@33754
   739
    apply (rule disjI2)
bulwahn@33754
   740
    apply (rule ext)
bulwahn@33754
   741
    apply (simp add: unit_eq)
bulwahn@33754
   742
    apply (rule disjI1)
bulwahn@33754
   743
    apply (rule ext)
bulwahn@33754
   744
    apply (simp add: unit_eq)
bulwahn@33754
   745
    done
wenzelm@41550
   746
  from this assms show ?thesis by blast
bulwahn@33754
   747
qed
bulwahn@33754
   748
bulwahn@33754
   749
lemma unit_pred_cases:
haftmann@44007
   750
  assumes "P \<bottom>"
haftmann@44007
   751
  assumes "P (single ())"
haftmann@44007
   752
  shows "P Q"
haftmann@44007
   753
using assms unfolding bot_pred_def Collect_def empty_def single_def proof (cases Q)
haftmann@44007
   754
  fix f
haftmann@44007
   755
  assume "P (Pred (\<lambda>u. False))" "P (Pred (\<lambda>u. () = u))"
haftmann@44007
   756
  then have "P (Pred f)" 
haftmann@44007
   757
    by (cases _ f rule: closure_of_bool_cases) simp_all
haftmann@44007
   758
  moreover assume "Q = Pred f"
haftmann@44007
   759
  ultimately show "P Q" by simp
haftmann@44007
   760
qed
haftmann@44007
   761
  
bulwahn@33754
   762
lemma holds_if_pred:
bulwahn@33754
   763
  "holds (if_pred b) = b"
bulwahn@33754
   764
unfolding if_pred_eq holds_eq
bulwahn@33754
   765
by (cases b) (auto intro: singleI elim: botE)
bulwahn@33754
   766
bulwahn@33754
   767
lemma if_pred_holds:
bulwahn@33754
   768
  "if_pred (holds P) = P"
bulwahn@33754
   769
unfolding if_pred_eq holds_eq
bulwahn@33754
   770
by (rule unit_pred_cases) (auto intro: singleI elim: botE)
bulwahn@33754
   771
bulwahn@33754
   772
lemma is_empty_holds:
bulwahn@33754
   773
  "is_empty P \<longleftrightarrow> \<not> holds P"
bulwahn@33754
   774
unfolding is_empty_def holds_eq
bulwahn@33754
   775
by (rule unit_pred_cases) (auto elim: botE intro: singleI)
haftmann@30328
   776
haftmann@41311
   777
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pred \<Rightarrow> 'b pred" where
haftmann@41311
   778
  "map f P = P \<guillemotright>= (single o f)"
haftmann@41311
   779
haftmann@41311
   780
lemma eval_map [simp]:
haftmann@44363
   781
  "eval (map f P) = (\<Squnion>x\<in>{x. eval P x}. (\<lambda>y. f x = y))"
haftmann@41311
   782
  by (auto simp add: map_def)
haftmann@41311
   783
haftmann@41505
   784
enriched_type map: map
haftmann@44363
   785
  by (rule ext, rule pred_eqI, auto)+
haftmann@41311
   786
haftmann@41311
   787
haftmann@30328
   788
subsubsection {* Implementation *}
haftmann@30328
   789
haftmann@30328
   790
datatype 'a seq = Empty | Insert "'a" "'a pred" | Join "'a pred" "'a seq"
haftmann@30328
   791
haftmann@30328
   792
primrec pred_of_seq :: "'a seq \<Rightarrow> 'a pred" where
haftmann@44414
   793
  "pred_of_seq Empty = \<bottom>"
haftmann@44414
   794
| "pred_of_seq (Insert x P) = single x \<squnion> P"
haftmann@44414
   795
| "pred_of_seq (Join P xq) = P \<squnion> pred_of_seq xq"
haftmann@30328
   796
haftmann@30328
   797
definition Seq :: "(unit \<Rightarrow> 'a seq) \<Rightarrow> 'a pred" where
haftmann@30328
   798
  "Seq f = pred_of_seq (f ())"
haftmann@30328
   799
haftmann@30328
   800
code_datatype Seq
haftmann@30328
   801
haftmann@30328
   802
primrec member :: "'a seq \<Rightarrow> 'a \<Rightarrow> bool"  where
haftmann@30328
   803
  "member Empty x \<longleftrightarrow> False"
haftmann@44414
   804
| "member (Insert y P) x \<longleftrightarrow> x = y \<or> eval P x"
haftmann@44414
   805
| "member (Join P xq) x \<longleftrightarrow> eval P x \<or> member xq x"
haftmann@30328
   806
haftmann@30328
   807
lemma eval_member:
haftmann@30328
   808
  "member xq = eval (pred_of_seq xq)"
haftmann@30328
   809
proof (induct xq)
haftmann@30328
   810
  case Empty show ?case
nipkow@39302
   811
  by (auto simp add: fun_eq_iff elim: botE)
haftmann@30328
   812
next
haftmann@30328
   813
  case Insert show ?case
nipkow@39302
   814
  by (auto simp add: fun_eq_iff elim: supE singleE intro: supI1 supI2 singleI)
haftmann@30328
   815
next
haftmann@30328
   816
  case Join then show ?case
nipkow@39302
   817
  by (auto simp add: fun_eq_iff elim: supE intro: supI1 supI2)
haftmann@30328
   818
qed
haftmann@30328
   819
haftmann@30328
   820
lemma eval_code [code]: "eval (Seq f) = member (f ())"
haftmann@30328
   821
  unfolding Seq_def by (rule sym, rule eval_member)
haftmann@30328
   822
haftmann@30328
   823
lemma single_code [code]:
haftmann@30328
   824
  "single x = Seq (\<lambda>u. Insert x \<bottom>)"
haftmann@30328
   825
  unfolding Seq_def by simp
haftmann@30328
   826
haftmann@41080
   827
primrec "apply" :: "('a \<Rightarrow> 'b pred) \<Rightarrow> 'a seq \<Rightarrow> 'b seq" where
haftmann@30328
   828
    "apply f Empty = Empty"
haftmann@30328
   829
  | "apply f (Insert x P) = Join (f x) (Join (P \<guillemotright>= f) Empty)"
haftmann@30328
   830
  | "apply f (Join P xq) = Join (P \<guillemotright>= f) (apply f xq)"
haftmann@30328
   831
haftmann@30328
   832
lemma apply_bind:
haftmann@30328
   833
  "pred_of_seq (apply f xq) = pred_of_seq xq \<guillemotright>= f"
haftmann@30328
   834
proof (induct xq)
haftmann@30328
   835
  case Empty show ?case
haftmann@30328
   836
    by (simp add: bottom_bind)
haftmann@30328
   837
next
haftmann@30328
   838
  case Insert show ?case
haftmann@30328
   839
    by (simp add: single_bind sup_bind)
haftmann@30328
   840
next
haftmann@30328
   841
  case Join then show ?case
haftmann@30328
   842
    by (simp add: sup_bind)
haftmann@30328
   843
qed
haftmann@30328
   844
  
haftmann@30328
   845
lemma bind_code [code]:
haftmann@30328
   846
  "Seq g \<guillemotright>= f = Seq (\<lambda>u. apply f (g ()))"
haftmann@30328
   847
  unfolding Seq_def by (rule sym, rule apply_bind)
haftmann@30328
   848
haftmann@30328
   849
lemma bot_set_code [code]:
haftmann@30328
   850
  "\<bottom> = Seq (\<lambda>u. Empty)"
haftmann@30328
   851
  unfolding Seq_def by simp
haftmann@30328
   852
haftmann@30376
   853
primrec adjunct :: "'a pred \<Rightarrow> 'a seq \<Rightarrow> 'a seq" where
haftmann@30376
   854
    "adjunct P Empty = Join P Empty"
haftmann@30376
   855
  | "adjunct P (Insert x Q) = Insert x (Q \<squnion> P)"
haftmann@30376
   856
  | "adjunct P (Join Q xq) = Join Q (adjunct P xq)"
haftmann@30376
   857
haftmann@30376
   858
lemma adjunct_sup:
haftmann@30376
   859
  "pred_of_seq (adjunct P xq) = P \<squnion> pred_of_seq xq"
haftmann@30376
   860
  by (induct xq) (simp_all add: sup_assoc sup_commute sup_left_commute)
haftmann@30376
   861
haftmann@30328
   862
lemma sup_code [code]:
haftmann@30328
   863
  "Seq f \<squnion> Seq g = Seq (\<lambda>u. case f ()
haftmann@30328
   864
    of Empty \<Rightarrow> g ()
haftmann@30328
   865
     | Insert x P \<Rightarrow> Insert x (P \<squnion> Seq g)
haftmann@30376
   866
     | Join P xq \<Rightarrow> adjunct (Seq g) (Join P xq))"
haftmann@30328
   867
proof (cases "f ()")
haftmann@30328
   868
  case Empty
haftmann@30328
   869
  thus ?thesis
haftmann@34007
   870
    unfolding Seq_def by (simp add: sup_commute [of "\<bottom>"])
haftmann@30328
   871
next
haftmann@30328
   872
  case Insert
haftmann@30328
   873
  thus ?thesis
haftmann@30328
   874
    unfolding Seq_def by (simp add: sup_assoc)
haftmann@30328
   875
next
haftmann@30328
   876
  case Join
haftmann@30328
   877
  thus ?thesis
haftmann@30376
   878
    unfolding Seq_def
haftmann@30376
   879
    by (simp add: adjunct_sup sup_assoc sup_commute sup_left_commute)
haftmann@30328
   880
qed
haftmann@30328
   881
haftmann@30430
   882
primrec contained :: "'a seq \<Rightarrow> 'a pred \<Rightarrow> bool" where
haftmann@30430
   883
    "contained Empty Q \<longleftrightarrow> True"
haftmann@30430
   884
  | "contained (Insert x P) Q \<longleftrightarrow> eval Q x \<and> P \<le> Q"
haftmann@30430
   885
  | "contained (Join P xq) Q \<longleftrightarrow> P \<le> Q \<and> contained xq Q"
haftmann@30430
   886
haftmann@30430
   887
lemma single_less_eq_eval:
haftmann@30430
   888
  "single x \<le> P \<longleftrightarrow> eval P x"
haftmann@30430
   889
  by (auto simp add: single_def less_eq_pred_def mem_def)
haftmann@30430
   890
haftmann@30430
   891
lemma contained_less_eq:
haftmann@30430
   892
  "contained xq Q \<longleftrightarrow> pred_of_seq xq \<le> Q"
haftmann@30430
   893
  by (induct xq) (simp_all add: single_less_eq_eval)
haftmann@30430
   894
haftmann@30430
   895
lemma less_eq_pred_code [code]:
haftmann@30430
   896
  "Seq f \<le> Q = (case f ()
haftmann@30430
   897
   of Empty \<Rightarrow> True
haftmann@30430
   898
    | Insert x P \<Rightarrow> eval Q x \<and> P \<le> Q
haftmann@30430
   899
    | Join P xq \<Rightarrow> P \<le> Q \<and> contained xq Q)"
haftmann@30430
   900
  by (cases "f ()")
haftmann@30430
   901
    (simp_all add: Seq_def single_less_eq_eval contained_less_eq)
haftmann@30430
   902
haftmann@30430
   903
lemma eq_pred_code [code]:
haftmann@31133
   904
  fixes P Q :: "'a pred"
haftmann@38857
   905
  shows "HOL.equal P Q \<longleftrightarrow> P \<le> Q \<and> Q \<le> P"
haftmann@38857
   906
  by (auto simp add: equal)
haftmann@38857
   907
haftmann@38857
   908
lemma [code nbe]:
haftmann@38857
   909
  "HOL.equal (x :: 'a pred) x \<longleftrightarrow> True"
haftmann@38857
   910
  by (fact equal_refl)
haftmann@30430
   911
haftmann@30430
   912
lemma [code]:
haftmann@30430
   913
  "pred_case f P = f (eval P)"
haftmann@30430
   914
  by (cases P) simp
haftmann@30430
   915
haftmann@30430
   916
lemma [code]:
haftmann@30430
   917
  "pred_rec f P = f (eval P)"
haftmann@30430
   918
  by (cases P) simp
haftmann@30328
   919
bulwahn@31105
   920
inductive eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where "eq x x"
bulwahn@31105
   921
bulwahn@31105
   922
lemma eq_is_eq: "eq x y \<equiv> (x = y)"
haftmann@31108
   923
  by (rule eq_reflection) (auto intro: eq.intros elim: eq.cases)
haftmann@30948
   924
haftmann@32578
   925
primrec null :: "'a seq \<Rightarrow> bool" where
haftmann@32578
   926
    "null Empty \<longleftrightarrow> True"
haftmann@32578
   927
  | "null (Insert x P) \<longleftrightarrow> False"
haftmann@32578
   928
  | "null (Join P xq) \<longleftrightarrow> is_empty P \<and> null xq"
haftmann@32578
   929
haftmann@32578
   930
lemma null_is_empty:
haftmann@32578
   931
  "null xq \<longleftrightarrow> is_empty (pred_of_seq xq)"
haftmann@32578
   932
  by (induct xq) (simp_all add: is_empty_bot not_is_empty_single is_empty_sup)
haftmann@32578
   933
haftmann@32578
   934
lemma is_empty_code [code]:
haftmann@32578
   935
  "is_empty (Seq f) \<longleftrightarrow> null (f ())"
haftmann@32578
   936
  by (simp add: null_is_empty Seq_def)
haftmann@32578
   937
bulwahn@33111
   938
primrec the_only :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a seq \<Rightarrow> 'a" where
bulwahn@33111
   939
  [code del]: "the_only dfault Empty = dfault ()"
bulwahn@33111
   940
  | "the_only dfault (Insert x P) = (if is_empty P then x else let y = singleton dfault P in if x = y then x else dfault ())"
bulwahn@33110
   941
  | "the_only dfault (Join P xq) = (if is_empty P then the_only dfault xq else if null xq then singleton dfault P
bulwahn@33110
   942
       else let x = singleton dfault P; y = the_only dfault xq in
bulwahn@33111
   943
       if x = y then x else dfault ())"
haftmann@32578
   944
haftmann@32578
   945
lemma the_only_singleton:
bulwahn@33110
   946
  "the_only dfault xq = singleton dfault (pred_of_seq xq)"
haftmann@32578
   947
  by (induct xq)
haftmann@32578
   948
    (auto simp add: singleton_bot singleton_single is_empty_def
haftmann@32578
   949
    null_is_empty Let_def singleton_sup)
haftmann@32578
   950
haftmann@32578
   951
lemma singleton_code [code]:
bulwahn@33110
   952
  "singleton dfault (Seq f) = (case f ()
bulwahn@33111
   953
   of Empty \<Rightarrow> dfault ()
haftmann@32578
   954
    | Insert x P \<Rightarrow> if is_empty P then x
bulwahn@33110
   955
        else let y = singleton dfault P in
bulwahn@33111
   956
          if x = y then x else dfault ()
bulwahn@33110
   957
    | Join P xq \<Rightarrow> if is_empty P then the_only dfault xq
bulwahn@33110
   958
        else if null xq then singleton dfault P
bulwahn@33110
   959
        else let x = singleton dfault P; y = the_only dfault xq in
bulwahn@33111
   960
          if x = y then x else dfault ())"
haftmann@32578
   961
  by (cases "f ()")
haftmann@32578
   962
   (auto simp add: Seq_def the_only_singleton is_empty_def
haftmann@32578
   963
      null_is_empty singleton_bot singleton_single singleton_sup Let_def)
haftmann@32578
   964
haftmann@44414
   965
definition the :: "'a pred \<Rightarrow> 'a" where
haftmann@37767
   966
  "the A = (THE x. eval A x)"
bulwahn@33111
   967
haftmann@40674
   968
lemma the_eqI:
haftmann@41080
   969
  "(THE x. eval P x) = x \<Longrightarrow> the P = x"
haftmann@40674
   970
  by (simp add: the_def)
haftmann@40674
   971
haftmann@44414
   972
definition not_unique :: "'a pred \<Rightarrow> 'a" where
haftmann@44414
   973
  [code del]: "not_unique A = (THE x. eval A x)"
haftmann@44414
   974
haftmann@44414
   975
code_abort not_unique
haftmann@44414
   976
haftmann@40674
   977
lemma the_eq [code]: "the A = singleton (\<lambda>x. not_unique A) A"
haftmann@40674
   978
  by (rule the_eqI) (simp add: singleton_def not_unique_def)
bulwahn@33110
   979
haftmann@36531
   980
code_reflect Predicate
haftmann@36513
   981
  datatypes pred = Seq and seq = Empty | Insert | Join
haftmann@36513
   982
  functions map
haftmann@36513
   983
haftmann@30948
   984
ML {*
haftmann@30948
   985
signature PREDICATE =
haftmann@30948
   986
sig
haftmann@30948
   987
  datatype 'a pred = Seq of (unit -> 'a seq)
haftmann@30948
   988
  and 'a seq = Empty | Insert of 'a * 'a pred | Join of 'a pred * 'a seq
haftmann@30959
   989
  val yield: 'a pred -> ('a * 'a pred) option
haftmann@30959
   990
  val yieldn: int -> 'a pred -> 'a list * 'a pred
haftmann@31222
   991
  val map: ('a -> 'b) -> 'a pred -> 'b pred
haftmann@30948
   992
end;
haftmann@30948
   993
haftmann@30948
   994
structure Predicate : PREDICATE =
haftmann@30948
   995
struct
haftmann@30948
   996
haftmann@36513
   997
datatype pred = datatype Predicate.pred
haftmann@36513
   998
datatype seq = datatype Predicate.seq
haftmann@36513
   999
haftmann@36513
  1000
fun map f = Predicate.map f;
haftmann@30959
  1001
haftmann@36513
  1002
fun yield (Seq f) = next (f ())
haftmann@36513
  1003
and next Empty = NONE
haftmann@36513
  1004
  | next (Insert (x, P)) = SOME (x, P)
haftmann@36513
  1005
  | next (Join (P, xq)) = (case yield P
haftmann@30959
  1006
     of NONE => next xq
haftmann@36513
  1007
      | SOME (x, Q) => SOME (x, Seq (fn _ => Join (Q, xq))));
haftmann@30959
  1008
haftmann@30959
  1009
fun anamorph f k x = (if k = 0 then ([], x)
haftmann@30959
  1010
  else case f x
haftmann@30959
  1011
   of NONE => ([], x)
haftmann@30959
  1012
    | SOME (v, y) => let
haftmann@30959
  1013
        val (vs, z) = anamorph f (k - 1) y
haftmann@33607
  1014
      in (v :: vs, z) end);
haftmann@30959
  1015
haftmann@30959
  1016
fun yieldn P = anamorph yield P;
haftmann@30948
  1017
haftmann@30948
  1018
end;
haftmann@30948
  1019
*}
haftmann@30948
  1020
haftmann@44363
  1021
lemma eval_mem [simp]:
haftmann@44363
  1022
  "x \<in> eval P \<longleftrightarrow> eval P x"
haftmann@44363
  1023
  by (simp add: mem_def)
haftmann@44363
  1024
haftmann@44363
  1025
lemma eq_mem [simp]:
haftmann@44363
  1026
  "x \<in> (op =) y \<longleftrightarrow> x = y"
haftmann@44363
  1027
  by (auto simp add: mem_def)
haftmann@44363
  1028
haftmann@30328
  1029
no_notation
haftmann@41082
  1030
  bot ("\<bottom>") and
haftmann@41082
  1031
  top ("\<top>") and
haftmann@30328
  1032
  inf (infixl "\<sqinter>" 70) and
haftmann@30328
  1033
  sup (infixl "\<squnion>" 65) and
haftmann@30328
  1034
  Inf ("\<Sqinter>_" [900] 900) and
haftmann@30328
  1035
  Sup ("\<Squnion>_" [900] 900) and
haftmann@30328
  1036
  bind (infixl "\<guillemotright>=" 70)
haftmann@30328
  1037
haftmann@41080
  1038
no_syntax (xsymbols)
haftmann@41082
  1039
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
haftmann@41082
  1040
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41080
  1041
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
haftmann@41080
  1042
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41080
  1043
wenzelm@36176
  1044
hide_type (open) pred seq
wenzelm@36176
  1045
hide_const (open) Pred eval single bind is_empty singleton if_pred not_pred holds
bulwahn@33111
  1046
  Empty Insert Join Seq member pred_of_seq "apply" adjunct null the_only eq map not_unique the
haftmann@30328
  1047
haftmann@30328
  1048
end