src/HOL/Library/Fraction_Field.thy
author wenzelm
Wed Sep 12 13:42:28 2012 +0200 (2012-09-12)
changeset 49322 fbb320d02420
parent 47252 3a096e7a1871
child 49834 b27bbb021df1
permissions -rw-r--r--
tuned headers;
haftmann@35372
     1
(*  Title:      HOL/Library/Fraction_Field.thy
chaieb@31761
     2
    Author:     Amine Chaieb, University of Cambridge
chaieb@31761
     3
*)
chaieb@31761
     4
wenzelm@46573
     5
header{* A formalization of the fraction field of any integral domain;
wenzelm@46573
     6
         generalization of theory Rat from int to any integral domain *}
chaieb@31761
     7
chaieb@31761
     8
theory Fraction_Field
haftmann@35372
     9
imports Main
chaieb@31761
    10
begin
chaieb@31761
    11
chaieb@31761
    12
subsection {* General fractions construction *}
chaieb@31761
    13
chaieb@31761
    14
subsubsection {* Construction of the type of fractions *}
chaieb@31761
    15
chaieb@31761
    16
definition fractrel :: "(('a::idom * 'a ) * ('a * 'a)) set" where
wenzelm@46573
    17
  "fractrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
chaieb@31761
    18
chaieb@31761
    19
lemma fractrel_iff [simp]:
chaieb@31761
    20
  "(x, y) \<in> fractrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
chaieb@31761
    21
  by (simp add: fractrel_def)
chaieb@31761
    22
chaieb@31761
    23
lemma refl_fractrel: "refl_on {x. snd x \<noteq> 0} fractrel"
chaieb@31761
    24
  by (auto simp add: refl_on_def fractrel_def)
chaieb@31761
    25
chaieb@31761
    26
lemma sym_fractrel: "sym fractrel"
chaieb@31761
    27
  by (simp add: fractrel_def sym_def)
chaieb@31761
    28
chaieb@31761
    29
lemma trans_fractrel: "trans fractrel"
chaieb@31761
    30
proof (rule transI, unfold split_paired_all)
chaieb@31761
    31
  fix a b a' b' a'' b'' :: 'a
chaieb@31761
    32
  assume A: "((a, b), (a', b')) \<in> fractrel"
chaieb@31761
    33
  assume B: "((a', b'), (a'', b'')) \<in> fractrel"
chaieb@31761
    34
  have "b' * (a * b'') = b'' * (a * b')" by (simp add: mult_ac)
chaieb@31761
    35
  also from A have "a * b' = a' * b" by auto
chaieb@31761
    36
  also have "b'' * (a' * b) = b * (a' * b'')" by (simp add: mult_ac)
chaieb@31761
    37
  also from B have "a' * b'' = a'' * b'" by auto
chaieb@31761
    38
  also have "b * (a'' * b') = b' * (a'' * b)" by (simp add: mult_ac)
chaieb@31761
    39
  finally have "b' * (a * b'') = b' * (a'' * b)" .
chaieb@31761
    40
  moreover from B have "b' \<noteq> 0" by auto
chaieb@31761
    41
  ultimately have "a * b'' = a'' * b" by simp
chaieb@31761
    42
  with A B show "((a, b), (a'', b'')) \<in> fractrel" by auto
chaieb@31761
    43
qed
chaieb@31761
    44
  
chaieb@31761
    45
lemma equiv_fractrel: "equiv {x. snd x \<noteq> 0} fractrel"
haftmann@40815
    46
  by (rule equivI [OF refl_fractrel sym_fractrel trans_fractrel])
chaieb@31761
    47
chaieb@31761
    48
lemmas UN_fractrel = UN_equiv_class [OF equiv_fractrel]
chaieb@31761
    49
lemmas UN_fractrel2 = UN_equiv_class2 [OF equiv_fractrel equiv_fractrel]
chaieb@31761
    50
chaieb@31761
    51
lemma equiv_fractrel_iff [iff]: 
chaieb@31761
    52
  assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
chaieb@31761
    53
  shows "fractrel `` {x} = fractrel `` {y} \<longleftrightarrow> (x, y) \<in> fractrel"
chaieb@31761
    54
  by (rule eq_equiv_class_iff, rule equiv_fractrel) (auto simp add: assms)
chaieb@31761
    55
wenzelm@45694
    56
definition "fract = {(x::'a\<times>'a). snd x \<noteq> (0::'a::idom)} // fractrel"
wenzelm@45694
    57
wenzelm@45694
    58
typedef (open) 'a fract = "fract :: ('a * 'a::idom) set set"
wenzelm@45694
    59
  unfolding fract_def
chaieb@31761
    60
proof
chaieb@31761
    61
  have "(0::'a, 1::'a) \<in> {x. snd x \<noteq> 0}" by simp
chaieb@31761
    62
  then show "fractrel `` {(0::'a, 1)} \<in> {x. snd x \<noteq> 0} // fractrel" by (rule quotientI)
chaieb@31761
    63
qed
chaieb@31761
    64
chaieb@31761
    65
lemma fractrel_in_fract [simp]: "snd x \<noteq> 0 \<Longrightarrow> fractrel `` {x} \<in> fract"
chaieb@31761
    66
  by (simp add: fract_def quotientI)
chaieb@31761
    67
chaieb@31761
    68
declare Abs_fract_inject [simp] Abs_fract_inverse [simp]
chaieb@31761
    69
chaieb@31761
    70
chaieb@31761
    71
subsubsection {* Representation and basic operations *}
chaieb@31761
    72
wenzelm@46573
    73
definition Fract :: "'a::idom \<Rightarrow> 'a \<Rightarrow> 'a fract" where
haftmann@37765
    74
  "Fract a b = Abs_fract (fractrel `` {if b = 0 then (0, 1) else (a, b)})"
chaieb@31761
    75
chaieb@31761
    76
code_datatype Fract
chaieb@31761
    77
chaieb@31761
    78
lemma Fract_cases [case_names Fract, cases type: fract]:
chaieb@31761
    79
  assumes "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> C"
chaieb@31761
    80
  shows C
chaieb@31761
    81
  using assms by (cases q) (clarsimp simp add: Fract_def fract_def quotient_def)
chaieb@31761
    82
chaieb@31761
    83
lemma Fract_induct [case_names Fract, induct type: fract]:
chaieb@31761
    84
  assumes "\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)"
chaieb@31761
    85
  shows "P q"
chaieb@31761
    86
  using assms by (cases q) simp
chaieb@31761
    87
chaieb@31761
    88
lemma eq_fract:
chaieb@31761
    89
  shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
chaieb@31761
    90
  and "\<And>a. Fract a 0 = Fract 0 1"
chaieb@31761
    91
  and "\<And>a c. Fract 0 a = Fract 0 c"
chaieb@31761
    92
  by (simp_all add: Fract_def)
chaieb@31761
    93
chaieb@31761
    94
instantiation fract :: (idom) "{comm_ring_1, power}"
chaieb@31761
    95
begin
chaieb@31761
    96
wenzelm@46573
    97
definition Zero_fract_def [code_unfold]: "0 = Fract 0 1"
chaieb@31761
    98
wenzelm@46573
    99
definition One_fract_def [code_unfold]: "1 = Fract 1 1"
chaieb@31761
   100
wenzelm@46573
   101
definition add_fract_def:
chaieb@31761
   102
  "q + r = Abs_fract (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
chaieb@31761
   103
    fractrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
chaieb@31761
   104
chaieb@31761
   105
lemma add_fract [simp]:
chaieb@31761
   106
  assumes "b \<noteq> (0::'a::idom)" and "d \<noteq> 0"
chaieb@31761
   107
  shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
chaieb@31761
   108
proof -
chaieb@31761
   109
  have "(\<lambda>x y. fractrel``{(fst x * snd y + fst y * snd x, snd x * snd y :: 'a)})
chaieb@31761
   110
    respects2 fractrel"
chaieb@31761
   111
  apply (rule equiv_fractrel [THEN congruent2_commuteI]) apply (auto simp add: algebra_simps)
chaieb@31761
   112
  unfolding mult_assoc[symmetric] .
chaieb@31761
   113
  with assms show ?thesis by (simp add: Fract_def add_fract_def UN_fractrel2)
chaieb@31761
   114
qed
chaieb@31761
   115
wenzelm@46573
   116
definition minus_fract_def:
chaieb@31761
   117
  "- q = Abs_fract (\<Union>x \<in> Rep_fract q. fractrel `` {(- fst x, snd x)})"
chaieb@31761
   118
chaieb@31761
   119
lemma minus_fract [simp, code]: "- Fract a b = Fract (- a) (b::'a::idom)"
chaieb@31761
   120
proof -
chaieb@31761
   121
  have "(\<lambda>x. fractrel `` {(- fst x, snd x :: 'a)}) respects fractrel"
haftmann@40822
   122
    by (simp add: congruent_def split_paired_all)
chaieb@31761
   123
  then show ?thesis by (simp add: Fract_def minus_fract_def UN_fractrel)
chaieb@31761
   124
qed
chaieb@31761
   125
chaieb@31761
   126
lemma minus_fract_cancel [simp]: "Fract (- a) (- b) = Fract a b"
chaieb@31761
   127
  by (cases "b = 0") (simp_all add: eq_fract)
chaieb@31761
   128
wenzelm@46573
   129
definition diff_fract_def: "q - r = q + - (r::'a fract)"
chaieb@31761
   130
chaieb@31761
   131
lemma diff_fract [simp]:
chaieb@31761
   132
  assumes "b \<noteq> 0" and "d \<noteq> 0"
chaieb@31761
   133
  shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
chaieb@31761
   134
  using assms by (simp add: diff_fract_def diff_minus)
chaieb@31761
   135
wenzelm@46573
   136
definition mult_fract_def:
chaieb@31761
   137
  "q * r = Abs_fract (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
chaieb@31761
   138
    fractrel``{(fst x * fst y, snd x * snd y)})"
chaieb@31761
   139
chaieb@31761
   140
lemma mult_fract [simp]: "Fract (a::'a::idom) b * Fract c d = Fract (a * c) (b * d)"
chaieb@31761
   141
proof -
chaieb@31761
   142
  have "(\<lambda>x y. fractrel `` {(fst x * fst y, snd x * snd y :: 'a)}) respects2 fractrel"
chaieb@31761
   143
    apply (rule equiv_fractrel [THEN congruent2_commuteI]) apply (auto simp add: algebra_simps)
chaieb@31761
   144
    unfolding mult_assoc[symmetric] .
chaieb@31761
   145
  then show ?thesis by (simp add: Fract_def mult_fract_def UN_fractrel2)
chaieb@31761
   146
qed
chaieb@31761
   147
chaieb@31761
   148
lemma mult_fract_cancel:
wenzelm@47252
   149
  assumes "c \<noteq> (0::'a)"
chaieb@31761
   150
  shows "Fract (c * a) (c * b) = Fract a b"
chaieb@31761
   151
proof -
chaieb@31761
   152
  from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
chaieb@31761
   153
  then show ?thesis by (simp add: mult_fract [symmetric])
chaieb@31761
   154
qed
chaieb@31761
   155
wenzelm@47252
   156
instance
wenzelm@47252
   157
proof
chaieb@31761
   158
  fix q r s :: "'a fract" show "(q * r) * s = q * (r * s)" 
chaieb@31761
   159
    by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
chaieb@31761
   160
next
chaieb@31761
   161
  fix q r :: "'a fract" show "q * r = r * q"
chaieb@31761
   162
    by (cases q, cases r) (simp add: eq_fract algebra_simps)
chaieb@31761
   163
next
chaieb@31761
   164
  fix q :: "'a fract" show "1 * q = q"
chaieb@31761
   165
    by (cases q) (simp add: One_fract_def eq_fract)
chaieb@31761
   166
next
chaieb@31761
   167
  fix q r s :: "'a fract" show "(q + r) + s = q + (r + s)"
chaieb@31761
   168
    by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
chaieb@31761
   169
next
chaieb@31761
   170
  fix q r :: "'a fract" show "q + r = r + q"
chaieb@31761
   171
    by (cases q, cases r) (simp add: eq_fract algebra_simps)
chaieb@31761
   172
next
chaieb@31761
   173
  fix q :: "'a fract" show "0 + q = q"
chaieb@31761
   174
    by (cases q) (simp add: Zero_fract_def eq_fract)
chaieb@31761
   175
next
chaieb@31761
   176
  fix q :: "'a fract" show "- q + q = 0"
chaieb@31761
   177
    by (cases q) (simp add: Zero_fract_def eq_fract)
chaieb@31761
   178
next
chaieb@31761
   179
  fix q r :: "'a fract" show "q - r = q + - r"
chaieb@31761
   180
    by (cases q, cases r) (simp add: eq_fract)
chaieb@31761
   181
next
chaieb@31761
   182
  fix q r s :: "'a fract" show "(q + r) * s = q * s + r * s"
chaieb@31761
   183
    by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps)
chaieb@31761
   184
next
chaieb@31761
   185
  show "(0::'a fract) \<noteq> 1" by (simp add: Zero_fract_def One_fract_def eq_fract)
chaieb@31761
   186
qed
chaieb@31761
   187
chaieb@31761
   188
end
chaieb@31761
   189
chaieb@31761
   190
lemma of_nat_fract: "of_nat k = Fract (of_nat k) 1"
chaieb@31761
   191
  by (induct k) (simp_all add: Zero_fract_def One_fract_def)
chaieb@31761
   192
chaieb@31761
   193
lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
chaieb@31761
   194
  by (rule of_nat_fract [symmetric])
chaieb@31761
   195
haftmann@31998
   196
lemma fract_collapse [code_post]:
chaieb@31761
   197
  "Fract 0 k = 0"
chaieb@31761
   198
  "Fract 1 1 = 1"
chaieb@31761
   199
  "Fract k 0 = 0"
chaieb@31761
   200
  by (cases "k = 0")
chaieb@31761
   201
    (simp_all add: Zero_fract_def One_fract_def eq_fract Fract_def)
chaieb@31761
   202
haftmann@31998
   203
lemma fract_expand [code_unfold]:
chaieb@31761
   204
  "0 = Fract 0 1"
chaieb@31761
   205
  "1 = Fract 1 1"
chaieb@31761
   206
  by (simp_all add: fract_collapse)
chaieb@31761
   207
chaieb@31761
   208
lemma Fract_cases_nonzero [case_names Fract 0]:
chaieb@31761
   209
  assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> C"
chaieb@31761
   210
  assumes 0: "q = 0 \<Longrightarrow> C"
chaieb@31761
   211
  shows C
chaieb@31761
   212
proof (cases "q = 0")
chaieb@31761
   213
  case True then show C using 0 by auto
chaieb@31761
   214
next
chaieb@31761
   215
  case False
chaieb@31761
   216
  then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
chaieb@31761
   217
  moreover with False have "0 \<noteq> Fract a b" by simp
chaieb@31761
   218
  with `b \<noteq> 0` have "a \<noteq> 0" by (simp add: Zero_fract_def eq_fract)
chaieb@31761
   219
  with Fract `q = Fract a b` `b \<noteq> 0` show C by auto
chaieb@31761
   220
qed
chaieb@31761
   221
  
chaieb@31761
   222
chaieb@31761
   223
chaieb@31761
   224
subsubsection {* The field of rational numbers *}
chaieb@31761
   225
chaieb@31761
   226
context idom
chaieb@31761
   227
begin
chaieb@31761
   228
subclass ring_no_zero_divisors ..
chaieb@31761
   229
thm mult_eq_0_iff
chaieb@31761
   230
end
chaieb@31761
   231
haftmann@36409
   232
instantiation fract :: (idom) field_inverse_zero
chaieb@31761
   233
begin
chaieb@31761
   234
wenzelm@46573
   235
definition inverse_fract_def:
chaieb@31761
   236
  "inverse q = Abs_fract (\<Union>x \<in> Rep_fract q.
chaieb@31761
   237
     fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
chaieb@31761
   238
chaieb@31761
   239
chaieb@31761
   240
lemma inverse_fract [simp]: "inverse (Fract a b) = Fract (b::'a::idom) a"
chaieb@31761
   241
proof -
chaieb@31761
   242
  have stupid: "\<And>x. (0::'a) = x \<longleftrightarrow> x = 0" by auto
chaieb@31761
   243
  have "(\<lambda>x. fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x :: 'a)}) respects fractrel"
chaieb@31761
   244
    by (auto simp add: congruent_def stupid algebra_simps)
chaieb@31761
   245
  then show ?thesis by (simp add: Fract_def inverse_fract_def UN_fractrel)
chaieb@31761
   246
qed
chaieb@31761
   247
wenzelm@46573
   248
definition divide_fract_def: "q / r = q * inverse (r:: 'a fract)"
chaieb@31761
   249
chaieb@31761
   250
lemma divide_fract [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
chaieb@31761
   251
  by (simp add: divide_fract_def)
chaieb@31761
   252
wenzelm@47252
   253
instance
wenzelm@47252
   254
proof
chaieb@31761
   255
  fix q :: "'a fract"
chaieb@31761
   256
  assume "q \<noteq> 0"
wenzelm@46573
   257
  then show "inverse q * q = 1"
wenzelm@46573
   258
    by (cases q rule: Fract_cases_nonzero)
wenzelm@46573
   259
      (simp_all add: fract_expand eq_fract mult_commute)
chaieb@31761
   260
next
chaieb@31761
   261
  fix q r :: "'a fract"
chaieb@31761
   262
  show "q / r = q * inverse r" by (simp add: divide_fract_def)
haftmann@36409
   263
next
wenzelm@46573
   264
  show "inverse 0 = (0:: 'a fract)"
wenzelm@46573
   265
    by (simp add: fract_expand) (simp add: fract_collapse)
chaieb@31761
   266
qed
chaieb@31761
   267
chaieb@31761
   268
end
chaieb@31761
   269
chaieb@31761
   270
huffman@36331
   271
subsubsection {* The ordered field of fractions over an ordered idom *}
huffman@36331
   272
huffman@36331
   273
lemma le_congruent2:
huffman@36331
   274
  "(\<lambda>x y::'a \<times> 'a::linordered_idom.
huffman@36331
   275
    {(fst x * snd y)*(snd x * snd y) \<le> (fst y * snd x)*(snd x * snd y)})
huffman@36331
   276
    respects2 fractrel"
huffman@36331
   277
proof (clarsimp simp add: congruent2_def)
huffman@36331
   278
  fix a b a' b' c d c' d' :: 'a
huffman@36331
   279
  assume neq: "b \<noteq> 0"  "b' \<noteq> 0"  "d \<noteq> 0"  "d' \<noteq> 0"
huffman@36331
   280
  assume eq1: "a * b' = a' * b"
huffman@36331
   281
  assume eq2: "c * d' = c' * d"
huffman@36331
   282
huffman@36331
   283
  let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
huffman@36331
   284
  {
huffman@36331
   285
    fix a b c d x :: 'a assume x: "x \<noteq> 0"
huffman@36331
   286
    have "?le a b c d = ?le (a * x) (b * x) c d"
huffman@36331
   287
    proof -
huffman@36331
   288
      from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
wenzelm@46573
   289
      then have "?le a b c d =
huffman@36331
   290
          ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
huffman@36331
   291
        by (simp add: mult_le_cancel_right)
huffman@36331
   292
      also have "... = ?le (a * x) (b * x) c d"
huffman@36331
   293
        by (simp add: mult_ac)
huffman@36331
   294
      finally show ?thesis .
huffman@36331
   295
    qed
huffman@36331
   296
  } note le_factor = this
huffman@36331
   297
huffman@36331
   298
  let ?D = "b * d" and ?D' = "b' * d'"
huffman@36331
   299
  from neq have D: "?D \<noteq> 0" by simp
huffman@36331
   300
  from neq have "?D' \<noteq> 0" by simp
wenzelm@46573
   301
  then have "?le a b c d = ?le (a * ?D') (b * ?D') c d"
huffman@36331
   302
    by (rule le_factor)
huffman@36331
   303
  also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
huffman@36331
   304
    by (simp add: mult_ac)
huffman@36331
   305
  also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
huffman@36331
   306
    by (simp only: eq1 eq2)
huffman@36331
   307
  also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
huffman@36331
   308
    by (simp add: mult_ac)
huffman@36331
   309
  also from D have "... = ?le a' b' c' d'"
huffman@36331
   310
    by (rule le_factor [symmetric])
huffman@36331
   311
  finally show "?le a b c d = ?le a' b' c' d'" .
huffman@36331
   312
qed
huffman@36331
   313
huffman@36331
   314
instantiation fract :: (linordered_idom) linorder
huffman@36331
   315
begin
huffman@36331
   316
wenzelm@46573
   317
definition le_fract_def:
haftmann@39910
   318
   "q \<le> r \<longleftrightarrow> the_elem (\<Union>x \<in> Rep_fract q. \<Union>y \<in> Rep_fract r.
huffman@36331
   319
      {(fst x * snd y)*(snd x * snd y) \<le> (fst y * snd x)*(snd x * snd y)})"
huffman@36331
   320
wenzelm@46573
   321
definition less_fract_def: "z < (w::'a fract) \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z"
huffman@36331
   322
huffman@36331
   323
lemma le_fract [simp]:
huffman@36331
   324
  assumes "b \<noteq> 0" and "d \<noteq> 0"
huffman@36331
   325
  shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
huffman@36331
   326
by (simp add: Fract_def le_fract_def le_congruent2 UN_fractrel2 assms)
huffman@36331
   327
huffman@36331
   328
lemma less_fract [simp]:
huffman@36331
   329
  assumes "b \<noteq> 0" and "d \<noteq> 0"
huffman@36331
   330
  shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
huffman@36331
   331
by (simp add: less_fract_def less_le_not_le mult_ac assms)
huffman@36331
   332
wenzelm@47252
   333
instance
wenzelm@47252
   334
proof
huffman@36331
   335
  fix q r s :: "'a fract"
huffman@36331
   336
  assume "q \<le> r" and "r \<le> s" thus "q \<le> s"
huffman@36331
   337
  proof (induct q, induct r, induct s)
huffman@36331
   338
    fix a b c d e f :: 'a
huffman@36331
   339
    assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
huffman@36331
   340
    assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
huffman@36331
   341
    show "Fract a b \<le> Fract e f"
huffman@36331
   342
    proof -
huffman@36331
   343
      from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
huffman@36331
   344
        by (auto simp add: zero_less_mult_iff linorder_neq_iff)
huffman@36331
   345
      have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
huffman@36331
   346
      proof -
huffman@36331
   347
        from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
huffman@36331
   348
          by simp
huffman@36331
   349
        with ff show ?thesis by (simp add: mult_le_cancel_right)
huffman@36331
   350
      qed
huffman@36331
   351
      also have "... = (c * f) * (d * f) * (b * b)"
huffman@36331
   352
        by (simp only: mult_ac)
huffman@36331
   353
      also have "... \<le> (e * d) * (d * f) * (b * b)"
huffman@36331
   354
      proof -
huffman@36331
   355
        from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
huffman@36331
   356
          by simp
huffman@36331
   357
        with bb show ?thesis by (simp add: mult_le_cancel_right)
huffman@36331
   358
      qed
huffman@36331
   359
      finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
huffman@36331
   360
        by (simp only: mult_ac)
huffman@36331
   361
      with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
huffman@36331
   362
        by (simp add: mult_le_cancel_right)
huffman@36331
   363
      with neq show ?thesis by simp
huffman@36331
   364
    qed
huffman@36331
   365
  qed
huffman@36331
   366
next
huffman@36331
   367
  fix q r :: "'a fract"
huffman@36331
   368
  assume "q \<le> r" and "r \<le> q" thus "q = r"
huffman@36331
   369
  proof (induct q, induct r)
huffman@36331
   370
    fix a b c d :: 'a
huffman@36331
   371
    assume neq: "b \<noteq> 0"  "d \<noteq> 0"
huffman@36331
   372
    assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
huffman@36331
   373
    show "Fract a b = Fract c d"
huffman@36331
   374
    proof -
huffman@36331
   375
      from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
huffman@36331
   376
        by simp
huffman@36331
   377
      also have "... \<le> (a * d) * (b * d)"
huffman@36331
   378
      proof -
huffman@36331
   379
        from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
huffman@36331
   380
          by simp
huffman@36331
   381
        thus ?thesis by (simp only: mult_ac)
huffman@36331
   382
      qed
huffman@36331
   383
      finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
huffman@36331
   384
      moreover from neq have "b * d \<noteq> 0" by simp
huffman@36331
   385
      ultimately have "a * d = c * b" by simp
huffman@36331
   386
      with neq show ?thesis by (simp add: eq_fract)
huffman@36331
   387
    qed
huffman@36331
   388
  qed
huffman@36331
   389
next
huffman@36331
   390
  fix q r :: "'a fract"
huffman@36331
   391
  show "q \<le> q"
huffman@36331
   392
    by (induct q) simp
huffman@36331
   393
  show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
huffman@36331
   394
    by (simp only: less_fract_def)
huffman@36331
   395
  show "q \<le> r \<or> r \<le> q"
huffman@36331
   396
    by (induct q, induct r)
huffman@36331
   397
       (simp add: mult_commute, rule linorder_linear)
huffman@36331
   398
qed
huffman@36331
   399
huffman@36331
   400
end
huffman@36331
   401
huffman@36331
   402
instantiation fract :: (linordered_idom) "{distrib_lattice, abs_if, sgn_if}"
huffman@36331
   403
begin
huffman@36331
   404
wenzelm@46573
   405
definition abs_fract_def: "\<bar>q\<bar> = (if q < 0 then -q else (q::'a fract))"
huffman@36331
   406
wenzelm@46573
   407
definition sgn_fract_def:
wenzelm@46573
   408
  "sgn (q::'a fract) = (if q=0 then 0 else if 0<q then 1 else - 1)"
huffman@36331
   409
huffman@36331
   410
theorem abs_fract [simp]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
huffman@36331
   411
  by (auto simp add: abs_fract_def Zero_fract_def le_less
huffman@36331
   412
      eq_fract zero_less_mult_iff mult_less_0_iff split: abs_split)
huffman@36331
   413
wenzelm@46573
   414
definition inf_fract_def:
wenzelm@46573
   415
  "(inf \<Colon> 'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract) = min"
huffman@36331
   416
wenzelm@46573
   417
definition sup_fract_def:
wenzelm@46573
   418
  "(sup \<Colon> 'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract) = max"
huffman@36331
   419
wenzelm@46573
   420
instance
wenzelm@46573
   421
  by intro_classes
wenzelm@46573
   422
    (auto simp add: abs_fract_def sgn_fract_def
wenzelm@46573
   423
      min_max.sup_inf_distrib1 inf_fract_def sup_fract_def)
huffman@36331
   424
huffman@36331
   425
end
huffman@36331
   426
haftmann@36414
   427
instance fract :: (linordered_idom) linordered_field_inverse_zero
huffman@36331
   428
proof
huffman@36331
   429
  fix q r s :: "'a fract"
huffman@36331
   430
  show "q \<le> r ==> s + q \<le> s + r"
huffman@36331
   431
  proof (induct q, induct r, induct s)
huffman@36331
   432
    fix a b c d e f :: 'a
huffman@36331
   433
    assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
huffman@36331
   434
    assume le: "Fract a b \<le> Fract c d"
huffman@36331
   435
    show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
huffman@36331
   436
    proof -
huffman@36331
   437
      let ?F = "f * f" from neq have F: "0 < ?F"
huffman@36331
   438
        by (auto simp add: zero_less_mult_iff)
huffman@36331
   439
      from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
huffman@36331
   440
        by simp
huffman@36331
   441
      with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
huffman@36331
   442
        by (simp add: mult_le_cancel_right)
haftmann@36348
   443
      with neq show ?thesis by (simp add: field_simps)
huffman@36331
   444
    qed
huffman@36331
   445
  qed
huffman@36331
   446
  show "q < r ==> 0 < s ==> s * q < s * r"
huffman@36331
   447
  proof (induct q, induct r, induct s)
huffman@36331
   448
    fix a b c d e f :: 'a
huffman@36331
   449
    assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
huffman@36331
   450
    assume le: "Fract a b < Fract c d"
huffman@36331
   451
    assume gt: "0 < Fract e f"
huffman@36331
   452
    show "Fract e f * Fract a b < Fract e f * Fract c d"
huffman@36331
   453
    proof -
huffman@36331
   454
      let ?E = "e * f" and ?F = "f * f"
huffman@36331
   455
      from neq gt have "0 < ?E"
huffman@36331
   456
        by (auto simp add: Zero_fract_def order_less_le eq_fract)
huffman@36331
   457
      moreover from neq have "0 < ?F"
huffman@36331
   458
        by (auto simp add: zero_less_mult_iff)
huffman@36331
   459
      moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
huffman@36331
   460
        by simp
huffman@36331
   461
      ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
huffman@36331
   462
        by (simp add: mult_less_cancel_right)
huffman@36331
   463
      with neq show ?thesis
huffman@36331
   464
        by (simp add: mult_ac)
huffman@36331
   465
    qed
huffman@36331
   466
  qed
huffman@36331
   467
qed
huffman@36331
   468
huffman@36331
   469
lemma fract_induct_pos [case_names Fract]:
huffman@36331
   470
  fixes P :: "'a::linordered_idom fract \<Rightarrow> bool"
huffman@36331
   471
  assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
huffman@36331
   472
  shows "P q"
huffman@36331
   473
proof (cases q)
huffman@36331
   474
  have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
huffman@36331
   475
  proof -
huffman@36331
   476
    fix a::'a and b::'a
huffman@36331
   477
    assume b: "b < 0"
wenzelm@46573
   478
    then have "0 < -b" by simp
wenzelm@46573
   479
    then have "P (Fract (-a) (-b))" by (rule step)
huffman@36331
   480
    thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
huffman@36331
   481
  qed
huffman@36331
   482
  case (Fract a b)
huffman@36331
   483
  thus "P q" by (force simp add: linorder_neq_iff step step')
huffman@36331
   484
qed
huffman@36331
   485
huffman@36331
   486
lemma zero_less_Fract_iff:
huffman@36331
   487
  "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
huffman@36331
   488
  by (auto simp add: Zero_fract_def zero_less_mult_iff)
huffman@36331
   489
huffman@36331
   490
lemma Fract_less_zero_iff:
huffman@36331
   491
  "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
huffman@36331
   492
  by (auto simp add: Zero_fract_def mult_less_0_iff)
huffman@36331
   493
huffman@36331
   494
lemma zero_le_Fract_iff:
huffman@36331
   495
  "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
huffman@36331
   496
  by (auto simp add: Zero_fract_def zero_le_mult_iff)
huffman@36331
   497
huffman@36331
   498
lemma Fract_le_zero_iff:
huffman@36331
   499
  "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
huffman@36331
   500
  by (auto simp add: Zero_fract_def mult_le_0_iff)
huffman@36331
   501
huffman@36331
   502
lemma one_less_Fract_iff:
huffman@36331
   503
  "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
huffman@36331
   504
  by (auto simp add: One_fract_def mult_less_cancel_right_disj)
huffman@36331
   505
huffman@36331
   506
lemma Fract_less_one_iff:
huffman@36331
   507
  "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
huffman@36331
   508
  by (auto simp add: One_fract_def mult_less_cancel_right_disj)
huffman@36331
   509
huffman@36331
   510
lemma one_le_Fract_iff:
huffman@36331
   511
  "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
huffman@36331
   512
  by (auto simp add: One_fract_def mult_le_cancel_right)
huffman@36331
   513
huffman@36331
   514
lemma Fract_le_one_iff:
huffman@36331
   515
  "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
huffman@36331
   516
  by (auto simp add: One_fract_def mult_le_cancel_right)
huffman@36331
   517
huffman@36331
   518
end