src/HOL/Int.thy
 author huffman Wed May 30 16:59:20 2012 +0200 (2012-05-30) changeset 48045 fbf77fdf9ae4 parent 48044 fea6f3060b65 child 48066 c6783c9b87bf permissions -rw-r--r--
convert Int.thy to use lifting and transfer
 wenzelm@41959 ` 1` ```(* Title: HOL/Int.thy ``` haftmann@25919 ` 2` ``` Author: Lawrence C Paulson, Cambridge University Computer Laboratory ``` wenzelm@41959 ` 3` ``` Author: Tobias Nipkow, Florian Haftmann, TU Muenchen ``` haftmann@25919 ` 4` ```*) ``` haftmann@25919 ` 5` haftmann@25919 ` 6` ```header {* The Integers as Equivalence Classes over Pairs of Natural Numbers *} ``` haftmann@25919 ` 7` haftmann@25919 ` 8` ```theory Int ``` huffman@48045 ` 9` ```imports Equiv_Relations Wellfounded Quotient ``` haftmann@25919 ` 10` ```uses ``` haftmann@31068 ` 11` ``` ("Tools/int_arith.ML") ``` haftmann@25919 ` 12` ```begin ``` haftmann@25919 ` 13` huffman@48045 ` 14` ```subsection {* Definition of integers as a quotient type *} ``` haftmann@25919 ` 15` huffman@48045 ` 16` ```definition intrel :: "(nat \ nat) \ (nat \ nat) \ bool" where ``` huffman@48045 ` 17` ``` "intrel = (\(x, y) (u, v). x + v = u + y)" ``` huffman@48045 ` 18` huffman@48045 ` 19` ```lemma intrel_iff [simp]: "intrel (x, y) (u, v) \ x + v = u + y" ``` huffman@48045 ` 20` ``` by (simp add: intrel_def) ``` haftmann@25919 ` 21` huffman@48045 ` 22` ```quotient_type int = "nat \ nat" / "intrel" ``` wenzelm@45694 ` 23` ``` morphisms Rep_Integ Abs_Integ ``` huffman@48045 ` 24` ```proof (rule equivpI) ``` huffman@48045 ` 25` ``` show "reflp intrel" ``` huffman@48045 ` 26` ``` unfolding reflp_def by auto ``` huffman@48045 ` 27` ``` show "symp intrel" ``` huffman@48045 ` 28` ``` unfolding symp_def by auto ``` huffman@48045 ` 29` ``` show "transp intrel" ``` huffman@48045 ` 30` ``` unfolding transp_def by auto ``` huffman@48045 ` 31` ```qed ``` haftmann@25919 ` 32` huffman@48045 ` 33` ```lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]: ``` huffman@48045 ` 34` ``` "(!!x y. z = Abs_Integ (x, y) ==> P) ==> P" ``` huffman@48045 ` 35` ```by (induct z) auto ``` huffman@48045 ` 36` huffman@48045 ` 37` ```subsection {* Integers form a commutative ring *} ``` huffman@48045 ` 38` huffman@48045 ` 39` ```instantiation int :: comm_ring_1 ``` haftmann@25919 ` 40` ```begin ``` haftmann@25919 ` 41` huffman@48045 ` 42` ```lift_definition zero_int :: "int" is "(0, 0)" ``` huffman@48045 ` 43` ``` by simp ``` haftmann@25919 ` 44` huffman@48045 ` 45` ```lift_definition one_int :: "int" is "(1, 0)" ``` huffman@48045 ` 46` ``` by simp ``` haftmann@25919 ` 47` huffman@48045 ` 48` ```lift_definition plus_int :: "int \ int \ int" ``` huffman@48045 ` 49` ``` is "\(x, y) (u, v). (x + u, y + v)" ``` huffman@48045 ` 50` ``` by clarsimp ``` haftmann@25919 ` 51` huffman@48045 ` 52` ```lift_definition uminus_int :: "int \ int" ``` huffman@48045 ` 53` ``` is "\(x, y). (y, x)" ``` huffman@48045 ` 54` ``` by clarsimp ``` haftmann@25919 ` 55` huffman@48045 ` 56` ```lift_definition minus_int :: "int \ int \ int" ``` huffman@48045 ` 57` ``` is "\(x, y) (u, v). (x + v, y + u)" ``` huffman@48045 ` 58` ``` by clarsimp ``` haftmann@25919 ` 59` huffman@48045 ` 60` ```lift_definition times_int :: "int \ int \ int" ``` huffman@48045 ` 61` ``` is "\(x, y) (u, v). (x*u + y*v, x*v + y*u)" ``` huffman@48045 ` 62` ```proof (clarsimp) ``` huffman@48045 ` 63` ``` fix s t u v w x y z :: nat ``` huffman@48045 ` 64` ``` assume "s + v = u + t" and "w + z = y + x" ``` huffman@48045 ` 65` ``` hence "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x) ``` huffman@48045 ` 66` ``` = (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)" ``` huffman@48045 ` 67` ``` by simp ``` huffman@48045 ` 68` ``` thus "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)" ``` huffman@48045 ` 69` ``` by (simp add: algebra_simps) ``` huffman@48045 ` 70` ```qed ``` haftmann@25919 ` 71` huffman@48045 ` 72` ```instance ``` huffman@48045 ` 73` ``` by default (transfer, clarsimp simp: algebra_simps)+ ``` haftmann@25919 ` 74` haftmann@25919 ` 75` ```end ``` haftmann@25919 ` 76` huffman@44709 ` 77` ```abbreviation int :: "nat \ int" where ``` huffman@44709 ` 78` ``` "int \ of_nat" ``` huffman@44709 ` 79` huffman@48045 ` 80` ```lemma int_def: "int n = Abs_Integ (n, 0)" ``` huffman@48045 ` 81` ``` by (induct n, simp add: zero_int.abs_eq, ``` huffman@48045 ` 82` ``` simp add: one_int.abs_eq plus_int.abs_eq) ``` haftmann@25919 ` 83` huffman@48045 ` 84` ```lemma int_transfer [transfer_rule]: ``` huffman@48045 ` 85` ``` "(fun_rel (op =) cr_int) (\n. (n, 0)) int" ``` huffman@48045 ` 86` ``` unfolding fun_rel_def cr_int_def int_def by simp ``` haftmann@25919 ` 87` huffman@48045 ` 88` ```lemma int_diff_cases: ``` huffman@48045 ` 89` ``` obtains (diff) m n where "z = int m - int n" ``` huffman@48045 ` 90` ``` by transfer clarsimp ``` huffman@48045 ` 91` huffman@48045 ` 92` ```subsection {* Integers are totally ordered *} ``` haftmann@25919 ` 93` huffman@48045 ` 94` ```instantiation int :: linorder ``` huffman@48045 ` 95` ```begin ``` huffman@48045 ` 96` huffman@48045 ` 97` ```lift_definition less_eq_int :: "int \ int \ bool" ``` huffman@48045 ` 98` ``` is "\(x, y) (u, v). x + v \ u + y" ``` huffman@48045 ` 99` ``` by auto ``` huffman@48045 ` 100` huffman@48045 ` 101` ```lift_definition less_int :: "int \ int \ bool" ``` huffman@48045 ` 102` ``` is "\(x, y) (u, v). x + v < u + y" ``` huffman@48045 ` 103` ``` by auto ``` huffman@48045 ` 104` huffman@48045 ` 105` ```instance ``` huffman@48045 ` 106` ``` by default (transfer, force)+ ``` huffman@48045 ` 107` huffman@48045 ` 108` ```end ``` haftmann@25919 ` 109` haftmann@25919 ` 110` ```instantiation int :: distrib_lattice ``` haftmann@25919 ` 111` ```begin ``` haftmann@25919 ` 112` haftmann@25919 ` 113` ```definition ``` haftmann@25919 ` 114` ``` "(inf \ int \ int \ int) = min" ``` haftmann@25919 ` 115` haftmann@25919 ` 116` ```definition ``` haftmann@25919 ` 117` ``` "(sup \ int \ int \ int) = max" ``` haftmann@25919 ` 118` haftmann@25919 ` 119` ```instance ``` haftmann@25919 ` 120` ``` by intro_classes ``` haftmann@25919 ` 121` ``` (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1) ``` haftmann@25919 ` 122` haftmann@25919 ` 123` ```end ``` haftmann@25919 ` 124` huffman@48045 ` 125` ```subsection {* Ordering properties of arithmetic operations *} ``` huffman@48045 ` 126` haftmann@35028 ` 127` ```instance int :: ordered_cancel_ab_semigroup_add ``` haftmann@25919 ` 128` ```proof ``` haftmann@25919 ` 129` ``` fix i j k :: int ``` haftmann@25919 ` 130` ``` show "i \ j \ k + i \ k + j" ``` huffman@48045 ` 131` ``` by transfer clarsimp ``` haftmann@25919 ` 132` ```qed ``` haftmann@25919 ` 133` haftmann@25919 ` 134` ```text{*Strict Monotonicity of Multiplication*} ``` haftmann@25919 ` 135` haftmann@25919 ` 136` ```text{*strict, in 1st argument; proof is by induction on k>0*} ``` haftmann@25919 ` 137` ```lemma zmult_zless_mono2_lemma: ``` huffman@44709 ` 138` ``` "(i::int) 0 int k * i < int k * j" ``` wenzelm@42676 ` 139` ```apply (induct k) ``` wenzelm@42676 ` 140` ```apply simp ``` haftmann@25919 ` 141` ```apply (simp add: left_distrib) ``` haftmann@25919 ` 142` ```apply (case_tac "k=0") ``` haftmann@25919 ` 143` ```apply (simp_all add: add_strict_mono) ``` haftmann@25919 ` 144` ```done ``` haftmann@25919 ` 145` huffman@44709 ` 146` ```lemma zero_le_imp_eq_int: "(0::int) \ k ==> \n. k = int n" ``` huffman@48045 ` 147` ```apply transfer ``` huffman@48045 ` 148` ```apply clarsimp ``` huffman@48045 ` 149` ```apply (rule_tac x="a - b" in exI, simp) ``` haftmann@25919 ` 150` ```done ``` haftmann@25919 ` 151` huffman@44709 ` 152` ```lemma zero_less_imp_eq_int: "(0::int) < k ==> \n>0. k = int n" ``` huffman@48045 ` 153` ```apply transfer ``` huffman@48045 ` 154` ```apply clarsimp ``` huffman@48045 ` 155` ```apply (rule_tac x="a - b" in exI, simp) ``` haftmann@25919 ` 156` ```done ``` haftmann@25919 ` 157` haftmann@25919 ` 158` ```lemma zmult_zless_mono2: "[| i k*i < k*j" ``` haftmann@25919 ` 159` ```apply (drule zero_less_imp_eq_int) ``` haftmann@25919 ` 160` ```apply (auto simp add: zmult_zless_mono2_lemma) ``` haftmann@25919 ` 161` ```done ``` haftmann@25919 ` 162` haftmann@25919 ` 163` ```text{*The integers form an ordered integral domain*} ``` huffman@48045 ` 164` ```instantiation int :: linordered_idom ``` huffman@48045 ` 165` ```begin ``` huffman@48045 ` 166` huffman@48045 ` 167` ```definition ``` huffman@48045 ` 168` ``` zabs_def: "\i\int\ = (if i < 0 then - i else i)" ``` huffman@48045 ` 169` huffman@48045 ` 170` ```definition ``` huffman@48045 ` 171` ``` zsgn_def: "sgn (i\int) = (if i=0 then 0 else if 0 0 < k \ k * i < k * j" ``` haftmann@25919 ` 176` ``` by (rule zmult_zless_mono2) ``` haftmann@25919 ` 177` ``` show "\i\ = (if i < 0 then -i else i)" ``` haftmann@25919 ` 178` ``` by (simp only: zabs_def) ``` haftmann@25919 ` 179` ``` show "sgn (i\int) = (if i=0 then 0 else if 0 w + (1\int) \ z" ``` huffman@48045 ` 186` ``` by transfer clarsimp ``` haftmann@25919 ` 187` haftmann@25919 ` 188` ```lemma zless_iff_Suc_zadd: ``` huffman@44709 ` 189` ``` "(w \ int) < z \ (\n. z = w + int (Suc n))" ``` huffman@48045 ` 190` ```apply transfer ``` huffman@48045 ` 191` ```apply auto ``` huffman@48045 ` 192` ```apply (rename_tac a b c d) ``` huffman@48045 ` 193` ```apply (rule_tac x="c+b - Suc(a+d)" in exI) ``` haftmann@25919 ` 194` ```apply arith ``` haftmann@25919 ` 195` ```done ``` haftmann@25919 ` 196` haftmann@25919 ` 197` ```lemmas int_distrib = ``` wenzelm@45607 ` 198` ``` left_distrib [of z1 z2 w] ``` wenzelm@45607 ` 199` ``` right_distrib [of w z1 z2] ``` wenzelm@45607 ` 200` ``` left_diff_distrib [of z1 z2 w] ``` wenzelm@45607 ` 201` ``` right_diff_distrib [of w z1 z2] ``` wenzelm@45607 ` 202` ``` for z1 z2 w :: int ``` haftmann@25919 ` 203` haftmann@25919 ` 204` haftmann@25919 ` 205` ```subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*} ``` haftmann@25919 ` 206` haftmann@25919 ` 207` ```context ring_1 ``` haftmann@25919 ` 208` ```begin ``` haftmann@25919 ` 209` huffman@48045 ` 210` ```lift_definition of_int :: "int \ 'a" is "\(i, j). of_nat i - of_nat j" ``` huffman@48045 ` 211` ``` by (clarsimp simp add: diff_eq_eq eq_diff_eq diff_add_eq ``` huffman@48045 ` 212` ``` of_nat_add [symmetric] simp del: of_nat_add) ``` haftmann@25919 ` 213` haftmann@25919 ` 214` ```lemma of_int_0 [simp]: "of_int 0 = 0" ``` huffman@48045 ` 215` ```by (simp add: of_int.abs_eq zero_int.abs_eq) (* FIXME: transfer *) ``` haftmann@25919 ` 216` haftmann@25919 ` 217` ```lemma of_int_1 [simp]: "of_int 1 = 1" ``` huffman@48045 ` 218` ```by (simp add: of_int.abs_eq one_int.abs_eq) (* FIXME: transfer *) ``` haftmann@25919 ` 219` haftmann@25919 ` 220` ```lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z" ``` huffman@48045 ` 221` ```(* FIXME: transfer *) ``` huffman@48045 ` 222` ```by (cases w, cases z) (simp add: algebra_simps of_int.abs_eq plus_int.abs_eq) ``` haftmann@25919 ` 223` haftmann@25919 ` 224` ```lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)" ``` huffman@48045 ` 225` ```(* FIXME: transfer *) ``` huffman@48045 ` 226` ```by (cases z) (simp add: algebra_simps of_int.abs_eq uminus_int.abs_eq) ``` haftmann@25919 ` 227` haftmann@25919 ` 228` ```lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z" ``` haftmann@35050 ` 229` ```by (simp add: diff_minus Groups.diff_minus) ``` haftmann@25919 ` 230` haftmann@25919 ` 231` ```lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z" ``` huffman@48045 ` 232` ```by (cases w, cases z, (* FIXME: transfer *) ``` huffman@48045 ` 233` ``` simp add: algebra_simps of_int.abs_eq times_int.abs_eq of_nat_mult) ``` haftmann@25919 ` 234` haftmann@25919 ` 235` ```text{*Collapse nested embeddings*} ``` huffman@44709 ` 236` ```lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n" ``` nipkow@29667 ` 237` ```by (induct n) auto ``` haftmann@25919 ` 238` huffman@47108 ` 239` ```lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k" ``` huffman@47108 ` 240` ``` by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric]) ``` huffman@47108 ` 241` huffman@47108 ` 242` ```lemma of_int_neg_numeral [simp, code_post]: "of_int (neg_numeral k) = neg_numeral k" ``` huffman@47108 ` 243` ``` unfolding neg_numeral_def neg_numeral_class.neg_numeral_def ``` huffman@47108 ` 244` ``` by (simp only: of_int_minus of_int_numeral) ``` huffman@47108 ` 245` haftmann@31015 ` 246` ```lemma of_int_power: ``` haftmann@31015 ` 247` ``` "of_int (z ^ n) = of_int z ^ n" ``` haftmann@31015 ` 248` ``` by (induct n) simp_all ``` haftmann@31015 ` 249` haftmann@25919 ` 250` ```end ``` haftmann@25919 ` 251` huffman@47108 ` 252` ```context ring_char_0 ``` haftmann@25919 ` 253` ```begin ``` haftmann@25919 ` 254` haftmann@25919 ` 255` ```lemma of_int_eq_iff [simp]: ``` haftmann@25919 ` 256` ``` "of_int w = of_int z \ w = z" ``` huffman@48045 ` 257` ```(* FIXME: transfer *) ``` wenzelm@42676 ` 258` ```apply (cases w, cases z) ``` huffman@48045 ` 259` ```apply (simp add: of_int.abs_eq int.abs_eq_iff) ``` haftmann@25919 ` 260` ```apply (simp only: diff_eq_eq diff_add_eq eq_diff_eq) ``` haftmann@25919 ` 261` ```apply (simp only: of_nat_add [symmetric] of_nat_eq_iff) ``` haftmann@25919 ` 262` ```done ``` haftmann@25919 ` 263` haftmann@25919 ` 264` ```text{*Special cases where either operand is zero*} ``` haftmann@36424 ` 265` ```lemma of_int_eq_0_iff [simp]: ``` haftmann@36424 ` 266` ``` "of_int z = 0 \ z = 0" ``` haftmann@36424 ` 267` ``` using of_int_eq_iff [of z 0] by simp ``` haftmann@36424 ` 268` haftmann@36424 ` 269` ```lemma of_int_0_eq_iff [simp]: ``` haftmann@36424 ` 270` ``` "0 = of_int z \ z = 0" ``` haftmann@36424 ` 271` ``` using of_int_eq_iff [of 0 z] by simp ``` haftmann@25919 ` 272` haftmann@25919 ` 273` ```end ``` haftmann@25919 ` 274` haftmann@36424 ` 275` ```context linordered_idom ``` haftmann@36424 ` 276` ```begin ``` haftmann@36424 ` 277` haftmann@35028 ` 278` ```text{*Every @{text linordered_idom} has characteristic zero.*} ``` haftmann@36424 ` 279` ```subclass ring_char_0 .. ``` haftmann@36424 ` 280` haftmann@36424 ` 281` ```lemma of_int_le_iff [simp]: ``` haftmann@36424 ` 282` ``` "of_int w \ of_int z \ w \ z" ``` huffman@48045 ` 283` ``` by (cases w, cases z) (* FIXME: transfer *) ``` huffman@48045 ` 284` ``` (simp add: of_int.abs_eq less_eq_int.abs_eq ``` huffman@48045 ` 285` ``` algebra_simps of_nat_add [symmetric] del: of_nat_add) ``` haftmann@36424 ` 286` haftmann@36424 ` 287` ```lemma of_int_less_iff [simp]: ``` haftmann@36424 ` 288` ``` "of_int w < of_int z \ w < z" ``` haftmann@36424 ` 289` ``` by (simp add: less_le order_less_le) ``` haftmann@36424 ` 290` haftmann@36424 ` 291` ```lemma of_int_0_le_iff [simp]: ``` haftmann@36424 ` 292` ``` "0 \ of_int z \ 0 \ z" ``` haftmann@36424 ` 293` ``` using of_int_le_iff [of 0 z] by simp ``` haftmann@36424 ` 294` haftmann@36424 ` 295` ```lemma of_int_le_0_iff [simp]: ``` haftmann@36424 ` 296` ``` "of_int z \ 0 \ z \ 0" ``` haftmann@36424 ` 297` ``` using of_int_le_iff [of z 0] by simp ``` haftmann@36424 ` 298` haftmann@36424 ` 299` ```lemma of_int_0_less_iff [simp]: ``` haftmann@36424 ` 300` ``` "0 < of_int z \ 0 < z" ``` haftmann@36424 ` 301` ``` using of_int_less_iff [of 0 z] by simp ``` haftmann@36424 ` 302` haftmann@36424 ` 303` ```lemma of_int_less_0_iff [simp]: ``` haftmann@36424 ` 304` ``` "of_int z < 0 \ z < 0" ``` haftmann@36424 ` 305` ``` using of_int_less_iff [of z 0] by simp ``` haftmann@36424 ` 306` haftmann@36424 ` 307` ```end ``` haftmann@25919 ` 308` haftmann@25919 ` 309` ```lemma of_int_eq_id [simp]: "of_int = id" ``` haftmann@25919 ` 310` ```proof ``` haftmann@25919 ` 311` ``` fix z show "of_int z = id z" ``` huffman@48045 ` 312` ``` by (cases z rule: int_diff_cases, simp) ``` haftmann@25919 ` 313` ```qed ``` haftmann@25919 ` 314` haftmann@25919 ` 315` haftmann@25919 ` 316` ```subsection {* Magnitude of an Integer, as a Natural Number: @{text nat} *} ``` haftmann@25919 ` 317` huffman@48045 ` 318` ```lift_definition nat :: "int \ nat" is "\(x, y). x - y" ``` huffman@48045 ` 319` ``` by auto ``` haftmann@25919 ` 320` huffman@44709 ` 321` ```lemma nat_int [simp]: "nat (int n) = n" ``` huffman@48045 ` 322` ``` by transfer simp ``` haftmann@25919 ` 323` huffman@44709 ` 324` ```lemma int_nat_eq [simp]: "int (nat z) = (if 0 \ z then z else 0)" ``` huffman@48045 ` 325` ``` by transfer clarsimp ``` haftmann@25919 ` 326` huffman@44709 ` 327` ```corollary nat_0_le: "0 \ z ==> int (nat z) = z" ``` haftmann@25919 ` 328` ```by simp ``` haftmann@25919 ` 329` haftmann@25919 ` 330` ```lemma nat_le_0 [simp]: "z \ 0 ==> nat z = 0" ``` huffman@48045 ` 331` ``` by transfer clarsimp ``` haftmann@25919 ` 332` haftmann@25919 ` 333` ```lemma nat_le_eq_zle: "0 < w | 0 \ z ==> (nat w \ nat z) = (w\z)" ``` huffman@48045 ` 334` ``` by transfer (clarsimp, arith) ``` haftmann@25919 ` 335` haftmann@25919 ` 336` ```text{*An alternative condition is @{term "0 \ w"} *} ``` haftmann@25919 ` 337` ```corollary nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)" ``` haftmann@25919 ` 338` ```by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) ``` haftmann@25919 ` 339` haftmann@25919 ` 340` ```corollary nat_less_eq_zless: "0 \ w ==> (nat w < nat z) = (w z" and "\m. z = int m \ P" ``` haftmann@25919 ` 349` ``` shows P ``` haftmann@25919 ` 350` ``` using assms by (blast dest: nat_0_le sym) ``` haftmann@25919 ` 351` huffman@44709 ` 352` ```lemma nat_eq_iff: "(nat w = m) = (if 0 \ w then w = int m else m=0)" ``` huffman@48045 ` 353` ``` by transfer (clarsimp simp add: le_imp_diff_is_add) ``` haftmann@25919 ` 354` huffman@44709 ` 355` ```corollary nat_eq_iff2: "(m = nat w) = (if 0 \ w then w = int m else m=0)" ``` haftmann@25919 ` 356` ```by (simp only: eq_commute [of m] nat_eq_iff) ``` haftmann@25919 ` 357` haftmann@25919 ` 358` ```lemma nat_less_iff: "0 \ w ==> (nat w < m) = (w < of_nat m)" ``` huffman@48045 ` 359` ``` by transfer (clarsimp, arith) ``` haftmann@25919 ` 360` huffman@44709 ` 361` ```lemma nat_le_iff: "nat x \ n \ x \ int n" ``` huffman@48045 ` 362` ``` by transfer (clarsimp simp add: le_diff_conv) ``` huffman@44707 ` 363` huffman@44707 ` 364` ```lemma nat_mono: "x \ y \ nat x \ nat y" ``` huffman@48045 ` 365` ``` by transfer auto ``` huffman@44707 ` 366` nipkow@29700 ` 367` ```lemma nat_0_iff[simp]: "nat(i::int) = 0 \ i\0" ``` huffman@48045 ` 368` ``` by transfer clarsimp ``` nipkow@29700 ` 369` haftmann@25919 ` 370` ```lemma int_eq_iff: "(of_nat m = z) = (m = nat z & 0 \ z)" ``` haftmann@25919 ` 371` ```by (auto simp add: nat_eq_iff2) ``` haftmann@25919 ` 372` haftmann@25919 ` 373` ```lemma zero_less_nat_eq [simp]: "(0 < nat z) = (0 < z)" ``` haftmann@25919 ` 374` ```by (insert zless_nat_conj [of 0], auto) ``` haftmann@25919 ` 375` haftmann@25919 ` 376` ```lemma nat_add_distrib: ``` haftmann@25919 ` 377` ``` "[| (0::int) \ z; 0 \ z' |] ==> nat (z+z') = nat z + nat z'" ``` huffman@48045 ` 378` ``` by transfer clarsimp ``` haftmann@25919 ` 379` haftmann@25919 ` 380` ```lemma nat_diff_distrib: ``` haftmann@25919 ` 381` ``` "[| (0::int) \ z'; z' \ z |] ==> nat (z-z') = nat z - nat z'" ``` huffman@48045 ` 382` ``` by transfer clarsimp ``` haftmann@25919 ` 383` huffman@44709 ` 384` ```lemma nat_zminus_int [simp]: "nat (- int n) = 0" ``` huffman@48045 ` 385` ``` by transfer simp ``` haftmann@25919 ` 386` huffman@44709 ` 387` ```lemma zless_nat_eq_int_zless: "(m < nat z) = (int m < z)" ``` huffman@48045 ` 388` ``` by transfer (clarsimp simp add: less_diff_conv) ``` haftmann@25919 ` 389` haftmann@25919 ` 390` ```context ring_1 ``` haftmann@25919 ` 391` ```begin ``` haftmann@25919 ` 392` haftmann@25919 ` 393` ```lemma of_nat_nat: "0 \ z \ of_nat (nat z) = of_int z" ``` huffman@48045 ` 394` ``` by (cases z rule: eq_Abs_Integ) (* FIXME: transfer *) ``` huffman@48045 ` 395` ``` (simp add: nat.abs_eq less_eq_int.abs_eq of_int.abs_eq zero_int.abs_eq of_nat_diff) ``` haftmann@25919 ` 396` haftmann@25919 ` 397` ```end ``` haftmann@25919 ` 398` krauss@29779 ` 399` ```text {* For termination proofs: *} ``` krauss@29779 ` 400` ```lemma measure_function_int[measure_function]: "is_measure (nat o abs)" .. ``` krauss@29779 ` 401` haftmann@25919 ` 402` haftmann@25919 ` 403` ```subsection{*Lemmas about the Function @{term of_nat} and Orderings*} ``` haftmann@25919 ` 404` huffman@44709 ` 405` ```lemma negative_zless_0: "- (int (Suc n)) < (0 \ int)" ``` haftmann@25919 ` 406` ```by (simp add: order_less_le del: of_nat_Suc) ``` haftmann@25919 ` 407` huffman@44709 ` 408` ```lemma negative_zless [iff]: "- (int (Suc n)) < int m" ``` haftmann@25919 ` 409` ```by (rule negative_zless_0 [THEN order_less_le_trans], simp) ``` haftmann@25919 ` 410` huffman@44709 ` 411` ```lemma negative_zle_0: "- int n \ 0" ``` haftmann@25919 ` 412` ```by (simp add: minus_le_iff) ``` haftmann@25919 ` 413` huffman@44709 ` 414` ```lemma negative_zle [iff]: "- int n \ int m" ``` haftmann@25919 ` 415` ```by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff]) ``` haftmann@25919 ` 416` huffman@44709 ` 417` ```lemma not_zle_0_negative [simp]: "~ (0 \ - (int (Suc n)))" ``` haftmann@25919 ` 418` ```by (subst le_minus_iff, simp del: of_nat_Suc) ``` haftmann@25919 ` 419` huffman@44709 ` 420` ```lemma int_zle_neg: "(int n \ - int m) = (n = 0 & m = 0)" ``` huffman@48045 ` 421` ``` by transfer simp ``` haftmann@25919 ` 422` huffman@44709 ` 423` ```lemma not_int_zless_negative [simp]: "~ (int n < - int m)" ``` haftmann@25919 ` 424` ```by (simp add: linorder_not_less) ``` haftmann@25919 ` 425` huffman@44709 ` 426` ```lemma negative_eq_positive [simp]: "(- int n = of_nat m) = (n = 0 & m = 0)" ``` haftmann@25919 ` 427` ```by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg) ``` haftmann@25919 ` 428` huffman@44709 ` 429` ```lemma zle_iff_zadd: "w \ z \ (\n. z = w + int n)" ``` haftmann@25919 ` 430` ```proof - ``` haftmann@25919 ` 431` ``` have "(w \ z) = (0 \ z - w)" ``` haftmann@25919 ` 432` ``` by (simp only: le_diff_eq add_0_left) ``` haftmann@25919 ` 433` ``` also have "\ = (\n. z - w = of_nat n)" ``` haftmann@25919 ` 434` ``` by (auto elim: zero_le_imp_eq_int) ``` haftmann@25919 ` 435` ``` also have "\ = (\n. z = w + of_nat n)" ``` nipkow@29667 ` 436` ``` by (simp only: algebra_simps) ``` haftmann@25919 ` 437` ``` finally show ?thesis . ``` haftmann@25919 ` 438` ```qed ``` haftmann@25919 ` 439` huffman@44709 ` 440` ```lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z" ``` haftmann@25919 ` 441` ```by simp ``` haftmann@25919 ` 442` huffman@44709 ` 443` ```lemma int_Suc0_eq_1: "int (Suc 0) = 1" ``` haftmann@25919 ` 444` ```by simp ``` haftmann@25919 ` 445` haftmann@25919 ` 446` ```text{*This version is proved for all ordered rings, not just integers! ``` haftmann@25919 ` 447` ``` It is proved here because attribute @{text arith_split} is not available ``` haftmann@35050 ` 448` ``` in theory @{text Rings}. ``` haftmann@25919 ` 449` ``` But is it really better than just rewriting with @{text abs_if}?*} ``` blanchet@35828 ` 450` ```lemma abs_split [arith_split,no_atp]: ``` haftmann@35028 ` 451` ``` "P(abs(a::'a::linordered_idom)) = ((0 \ a --> P a) & (a < 0 --> P(-a)))" ``` haftmann@25919 ` 452` ```by (force dest: order_less_le_trans simp add: abs_if linorder_not_less) ``` haftmann@25919 ` 453` huffman@44709 ` 454` ```lemma negD: "x < 0 \ \n. x = - (int (Suc n))" ``` huffman@48045 ` 455` ```apply transfer ``` huffman@48045 ` 456` ```apply clarsimp ``` huffman@48045 ` 457` ```apply (rule_tac x="b - Suc a" in exI, arith) ``` haftmann@25919 ` 458` ```done ``` haftmann@25919 ` 459` haftmann@25919 ` 460` haftmann@25919 ` 461` ```subsection {* Cases and induction *} ``` haftmann@25919 ` 462` haftmann@25919 ` 463` ```text{*Now we replace the case analysis rule by a more conventional one: ``` haftmann@25919 ` 464` ```whether an integer is negative or not.*} ``` haftmann@25919 ` 465` wenzelm@42676 ` 466` ```theorem int_cases [case_names nonneg neg, cases type: int]: ``` huffman@44709 ` 467` ``` "[|!! n. z = int n ==> P; !! n. z = - (int (Suc n)) ==> P |] ==> P" ``` wenzelm@42676 ` 468` ```apply (cases "z < 0") ``` wenzelm@42676 ` 469` ```apply (blast dest!: negD) ``` haftmann@25919 ` 470` ```apply (simp add: linorder_not_less del: of_nat_Suc) ``` haftmann@25919 ` 471` ```apply auto ``` haftmann@25919 ` 472` ```apply (blast dest: nat_0_le [THEN sym]) ``` haftmann@25919 ` 473` ```done ``` haftmann@25919 ` 474` wenzelm@42676 ` 475` ```theorem int_of_nat_induct [case_names nonneg neg, induct type: int]: ``` huffman@44709 ` 476` ``` "[|!! n. P (int n); !!n. P (- (int (Suc n))) |] ==> P z" ``` wenzelm@42676 ` 477` ``` by (cases z) auto ``` haftmann@25919 ` 478` huffman@47207 ` 479` ```lemma nonneg_int_cases: ``` huffman@47207 ` 480` ``` assumes "0 \ k" obtains n where "k = int n" ``` huffman@47207 ` 481` ``` using assms by (cases k, simp, simp del: of_nat_Suc) ``` huffman@47207 ` 482` huffman@47108 ` 483` ```lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)" ``` huffman@47108 ` 484` ``` -- {* Unfold all @{text let}s involving constants *} ``` huffman@47108 ` 485` ``` unfolding Let_def .. ``` haftmann@37767 ` 486` huffman@47108 ` 487` ```lemma Let_neg_numeral [simp]: "Let (neg_numeral v) f = f (neg_numeral v)" ``` haftmann@25919 ` 488` ``` -- {* Unfold all @{text let}s involving constants *} ``` haftmann@25919 ` 489` ``` unfolding Let_def .. ``` haftmann@25919 ` 490` huffman@47108 ` 491` ```text {* Unfold @{text min} and @{text max} on numerals. *} ``` huffman@28958 ` 492` huffman@47108 ` 493` ```lemmas max_number_of [simp] = ``` huffman@47108 ` 494` ``` max_def [of "numeral u" "numeral v"] ``` huffman@47108 ` 495` ``` max_def [of "numeral u" "neg_numeral v"] ``` huffman@47108 ` 496` ``` max_def [of "neg_numeral u" "numeral v"] ``` huffman@47108 ` 497` ``` max_def [of "neg_numeral u" "neg_numeral v"] for u v ``` huffman@28958 ` 498` huffman@47108 ` 499` ```lemmas min_number_of [simp] = ``` huffman@47108 ` 500` ``` min_def [of "numeral u" "numeral v"] ``` huffman@47108 ` 501` ``` min_def [of "numeral u" "neg_numeral v"] ``` huffman@47108 ` 502` ``` min_def [of "neg_numeral u" "numeral v"] ``` huffman@47108 ` 503` ``` min_def [of "neg_numeral u" "neg_numeral v"] for u v ``` huffman@26075 ` 504` haftmann@25919 ` 505` huffman@28958 ` 506` ```subsubsection {* Binary comparisons *} ``` huffman@28958 ` 507` huffman@28958 ` 508` ```text {* Preliminaries *} ``` huffman@28958 ` 509` huffman@28958 ` 510` ```lemma even_less_0_iff: ``` haftmann@35028 ` 511` ``` "a + a < 0 \ a < (0::'a::linordered_idom)" ``` huffman@28958 ` 512` ```proof - ``` huffman@47108 ` 513` ``` have "a + a < 0 \ (1+1)*a < 0" by (simp add: left_distrib del: one_add_one) ``` huffman@28958 ` 514` ``` also have "(1+1)*a < 0 \ a < 0" ``` huffman@28958 ` 515` ``` by (simp add: mult_less_0_iff zero_less_two ``` huffman@28958 ` 516` ``` order_less_not_sym [OF zero_less_two]) ``` huffman@28958 ` 517` ``` finally show ?thesis . ``` huffman@28958 ` 518` ```qed ``` huffman@28958 ` 519` huffman@28958 ` 520` ```lemma le_imp_0_less: ``` huffman@28958 ` 521` ``` assumes le: "0 \ z" ``` huffman@28958 ` 522` ``` shows "(0::int) < 1 + z" ``` huffman@28958 ` 523` ```proof - ``` huffman@28958 ` 524` ``` have "0 \ z" by fact ``` huffman@47108 ` 525` ``` also have "... < z + 1" by (rule less_add_one) ``` huffman@28958 ` 526` ``` also have "... = 1 + z" by (simp add: add_ac) ``` huffman@28958 ` 527` ``` finally show "0 < 1 + z" . ``` huffman@28958 ` 528` ```qed ``` huffman@28958 ` 529` huffman@28958 ` 530` ```lemma odd_less_0_iff: ``` huffman@28958 ` 531` ``` "(1 + z + z < 0) = (z < (0::int))" ``` wenzelm@42676 ` 532` ```proof (cases z) ``` huffman@28958 ` 533` ``` case (nonneg n) ``` huffman@28958 ` 534` ``` thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing ``` huffman@28958 ` 535` ``` le_imp_0_less [THEN order_less_imp_le]) ``` huffman@28958 ` 536` ```next ``` huffman@28958 ` 537` ``` case (neg n) ``` huffman@30079 ` 538` ``` thus ?thesis by (simp del: of_nat_Suc of_nat_add of_nat_1 ``` huffman@30079 ` 539` ``` add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric]) ``` huffman@28958 ` 540` ```qed ``` huffman@28958 ` 541` huffman@28958 ` 542` ```subsubsection {* Comparisons, for Ordered Rings *} ``` haftmann@25919 ` 543` haftmann@25919 ` 544` ```lemmas double_eq_0_iff = double_zero ``` haftmann@25919 ` 545` haftmann@25919 ` 546` ```lemma odd_nonzero: ``` haftmann@33296 ` 547` ``` "1 + z + z \ (0::int)" ``` wenzelm@42676 ` 548` ```proof (cases z) ``` haftmann@25919 ` 549` ``` case (nonneg n) ``` haftmann@25919 ` 550` ``` have le: "0 \ z+z" by (simp add: nonneg add_increasing) ``` haftmann@25919 ` 551` ``` thus ?thesis using le_imp_0_less [OF le] ``` haftmann@25919 ` 552` ``` by (auto simp add: add_assoc) ``` haftmann@25919 ` 553` ```next ``` haftmann@25919 ` 554` ``` case (neg n) ``` haftmann@25919 ` 555` ``` show ?thesis ``` haftmann@25919 ` 556` ``` proof ``` haftmann@25919 ` 557` ``` assume eq: "1 + z + z = 0" ``` huffman@44709 ` 558` ``` have "(0::int) < 1 + (int n + int n)" ``` haftmann@25919 ` 559` ``` by (simp add: le_imp_0_less add_increasing) ``` haftmann@25919 ` 560` ``` also have "... = - (1 + z + z)" ``` haftmann@25919 ` 561` ``` by (simp add: neg add_assoc [symmetric]) ``` haftmann@25919 ` 562` ``` also have "... = 0" by (simp add: eq) ``` haftmann@25919 ` 563` ``` finally have "0<0" .. ``` haftmann@25919 ` 564` ``` thus False by blast ``` haftmann@25919 ` 565` ``` qed ``` haftmann@25919 ` 566` ```qed ``` haftmann@25919 ` 567` haftmann@30652 ` 568` haftmann@25919 ` 569` ```subsection {* The Set of Integers *} ``` haftmann@25919 ` 570` haftmann@25919 ` 571` ```context ring_1 ``` haftmann@25919 ` 572` ```begin ``` haftmann@25919 ` 573` haftmann@30652 ` 574` ```definition Ints :: "'a set" where ``` haftmann@37767 ` 575` ``` "Ints = range of_int" ``` haftmann@25919 ` 576` haftmann@25919 ` 577` ```notation (xsymbols) ``` haftmann@25919 ` 578` ``` Ints ("\") ``` haftmann@25919 ` 579` huffman@35634 ` 580` ```lemma Ints_of_int [simp]: "of_int z \ \" ``` huffman@35634 ` 581` ``` by (simp add: Ints_def) ``` huffman@35634 ` 582` huffman@35634 ` 583` ```lemma Ints_of_nat [simp]: "of_nat n \ \" ``` huffman@45533 ` 584` ``` using Ints_of_int [of "of_nat n"] by simp ``` huffman@35634 ` 585` haftmann@25919 ` 586` ```lemma Ints_0 [simp]: "0 \ \" ``` huffman@45533 ` 587` ``` using Ints_of_int [of "0"] by simp ``` haftmann@25919 ` 588` haftmann@25919 ` 589` ```lemma Ints_1 [simp]: "1 \ \" ``` huffman@45533 ` 590` ``` using Ints_of_int [of "1"] by simp ``` haftmann@25919 ` 591` haftmann@25919 ` 592` ```lemma Ints_add [simp]: "a \ \ \ b \ \ \ a + b \ \" ``` haftmann@25919 ` 593` ```apply (auto simp add: Ints_def) ``` haftmann@25919 ` 594` ```apply (rule range_eqI) ``` haftmann@25919 ` 595` ```apply (rule of_int_add [symmetric]) ``` haftmann@25919 ` 596` ```done ``` haftmann@25919 ` 597` haftmann@25919 ` 598` ```lemma Ints_minus [simp]: "a \ \ \ -a \ \" ``` haftmann@25919 ` 599` ```apply (auto simp add: Ints_def) ``` haftmann@25919 ` 600` ```apply (rule range_eqI) ``` haftmann@25919 ` 601` ```apply (rule of_int_minus [symmetric]) ``` haftmann@25919 ` 602` ```done ``` haftmann@25919 ` 603` huffman@35634 ` 604` ```lemma Ints_diff [simp]: "a \ \ \ b \ \ \ a - b \ \" ``` huffman@35634 ` 605` ```apply (auto simp add: Ints_def) ``` huffman@35634 ` 606` ```apply (rule range_eqI) ``` huffman@35634 ` 607` ```apply (rule of_int_diff [symmetric]) ``` huffman@35634 ` 608` ```done ``` huffman@35634 ` 609` haftmann@25919 ` 610` ```lemma Ints_mult [simp]: "a \ \ \ b \ \ \ a * b \ \" ``` haftmann@25919 ` 611` ```apply (auto simp add: Ints_def) ``` haftmann@25919 ` 612` ```apply (rule range_eqI) ``` haftmann@25919 ` 613` ```apply (rule of_int_mult [symmetric]) ``` haftmann@25919 ` 614` ```done ``` haftmann@25919 ` 615` huffman@35634 ` 616` ```lemma Ints_power [simp]: "a \ \ \ a ^ n \ \" ``` huffman@35634 ` 617` ```by (induct n) simp_all ``` huffman@35634 ` 618` haftmann@25919 ` 619` ```lemma Ints_cases [cases set: Ints]: ``` haftmann@25919 ` 620` ``` assumes "q \ \" ``` haftmann@25919 ` 621` ``` obtains (of_int) z where "q = of_int z" ``` haftmann@25919 ` 622` ``` unfolding Ints_def ``` haftmann@25919 ` 623` ```proof - ``` haftmann@25919 ` 624` ``` from `q \ \` have "q \ range of_int" unfolding Ints_def . ``` haftmann@25919 ` 625` ``` then obtain z where "q = of_int z" .. ``` haftmann@25919 ` 626` ``` then show thesis .. ``` haftmann@25919 ` 627` ```qed ``` haftmann@25919 ` 628` haftmann@25919 ` 629` ```lemma Ints_induct [case_names of_int, induct set: Ints]: ``` haftmann@25919 ` 630` ``` "q \ \ \ (\z. P (of_int z)) \ P q" ``` haftmann@25919 ` 631` ``` by (rule Ints_cases) auto ``` haftmann@25919 ` 632` haftmann@25919 ` 633` ```end ``` haftmann@25919 ` 634` haftmann@25919 ` 635` ```text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *} ``` haftmann@25919 ` 636` haftmann@25919 ` 637` ```lemma Ints_double_eq_0_iff: ``` haftmann@25919 ` 638` ``` assumes in_Ints: "a \ Ints" ``` haftmann@25919 ` 639` ``` shows "(a + a = 0) = (a = (0::'a::ring_char_0))" ``` haftmann@25919 ` 640` ```proof - ``` haftmann@25919 ` 641` ``` from in_Ints have "a \ range of_int" unfolding Ints_def [symmetric] . ``` haftmann@25919 ` 642` ``` then obtain z where a: "a = of_int z" .. ``` haftmann@25919 ` 643` ``` show ?thesis ``` haftmann@25919 ` 644` ``` proof ``` haftmann@25919 ` 645` ``` assume "a = 0" ``` haftmann@25919 ` 646` ``` thus "a + a = 0" by simp ``` haftmann@25919 ` 647` ``` next ``` haftmann@25919 ` 648` ``` assume eq: "a + a = 0" ``` haftmann@25919 ` 649` ``` hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a) ``` haftmann@25919 ` 650` ``` hence "z + z = 0" by (simp only: of_int_eq_iff) ``` haftmann@25919 ` 651` ``` hence "z = 0" by (simp only: double_eq_0_iff) ``` haftmann@25919 ` 652` ``` thus "a = 0" by (simp add: a) ``` haftmann@25919 ` 653` ``` qed ``` haftmann@25919 ` 654` ```qed ``` haftmann@25919 ` 655` haftmann@25919 ` 656` ```lemma Ints_odd_nonzero: ``` haftmann@25919 ` 657` ``` assumes in_Ints: "a \ Ints" ``` haftmann@25919 ` 658` ``` shows "1 + a + a \ (0::'a::ring_char_0)" ``` haftmann@25919 ` 659` ```proof - ``` haftmann@25919 ` 660` ``` from in_Ints have "a \ range of_int" unfolding Ints_def [symmetric] . ``` haftmann@25919 ` 661` ``` then obtain z where a: "a = of_int z" .. ``` haftmann@25919 ` 662` ``` show ?thesis ``` haftmann@25919 ` 663` ``` proof ``` haftmann@25919 ` 664` ``` assume eq: "1 + a + a = 0" ``` haftmann@25919 ` 665` ``` hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a) ``` haftmann@25919 ` 666` ``` hence "1 + z + z = 0" by (simp only: of_int_eq_iff) ``` haftmann@25919 ` 667` ``` with odd_nonzero show False by blast ``` haftmann@25919 ` 668` ``` qed ``` haftmann@25919 ` 669` ```qed ``` haftmann@25919 ` 670` huffman@47108 ` 671` ```lemma Nats_numeral [simp]: "numeral w \ Nats" ``` huffman@47108 ` 672` ``` using of_nat_in_Nats [of "numeral w"] by simp ``` huffman@35634 ` 673` haftmann@25919 ` 674` ```lemma Ints_odd_less_0: ``` haftmann@25919 ` 675` ``` assumes in_Ints: "a \ Ints" ``` haftmann@35028 ` 676` ``` shows "(1 + a + a < 0) = (a < (0::'a::linordered_idom))" ``` haftmann@25919 ` 677` ```proof - ``` haftmann@25919 ` 678` ``` from in_Ints have "a \ range of_int" unfolding Ints_def [symmetric] . ``` haftmann@25919 ` 679` ``` then obtain z where a: "a = of_int z" .. ``` haftmann@25919 ` 680` ``` hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))" ``` haftmann@25919 ` 681` ``` by (simp add: a) ``` huffman@45532 ` 682` ``` also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0_iff) ``` haftmann@25919 ` 683` ``` also have "... = (a < 0)" by (simp add: a) ``` haftmann@25919 ` 684` ``` finally show ?thesis . ``` haftmann@25919 ` 685` ```qed ``` haftmann@25919 ` 686` haftmann@25919 ` 687` haftmann@25919 ` 688` ```subsection {* @{term setsum} and @{term setprod} *} ``` haftmann@25919 ` 689` haftmann@25919 ` 690` ```lemma of_nat_setsum: "of_nat (setsum f A) = (\x\A. of_nat(f x))" ``` haftmann@25919 ` 691` ``` apply (cases "finite A") ``` haftmann@25919 ` 692` ``` apply (erule finite_induct, auto) ``` haftmann@25919 ` 693` ``` done ``` haftmann@25919 ` 694` haftmann@25919 ` 695` ```lemma of_int_setsum: "of_int (setsum f A) = (\x\A. of_int(f x))" ``` haftmann@25919 ` 696` ``` apply (cases "finite A") ``` haftmann@25919 ` 697` ``` apply (erule finite_induct, auto) ``` haftmann@25919 ` 698` ``` done ``` haftmann@25919 ` 699` haftmann@25919 ` 700` ```lemma of_nat_setprod: "of_nat (setprod f A) = (\x\A. of_nat(f x))" ``` haftmann@25919 ` 701` ``` apply (cases "finite A") ``` haftmann@25919 ` 702` ``` apply (erule finite_induct, auto simp add: of_nat_mult) ``` haftmann@25919 ` 703` ``` done ``` haftmann@25919 ` 704` haftmann@25919 ` 705` ```lemma of_int_setprod: "of_int (setprod f A) = (\x\A. of_int(f x))" ``` haftmann@25919 ` 706` ``` apply (cases "finite A") ``` haftmann@25919 ` 707` ``` apply (erule finite_induct, auto) ``` haftmann@25919 ` 708` ``` done ``` haftmann@25919 ` 709` haftmann@25919 ` 710` ```lemmas int_setsum = of_nat_setsum [where 'a=int] ``` haftmann@25919 ` 711` ```lemmas int_setprod = of_nat_setprod [where 'a=int] ``` haftmann@25919 ` 712` haftmann@25919 ` 713` haftmann@25919 ` 714` ```text {* Legacy theorems *} ``` haftmann@25919 ` 715` haftmann@25919 ` 716` ```lemmas zle_int = of_nat_le_iff [where 'a=int] ``` haftmann@25919 ` 717` ```lemmas int_int_eq = of_nat_eq_iff [where 'a=int] ``` huffman@47108 ` 718` ```lemmas numeral_1_eq_1 = numeral_One ``` haftmann@25919 ` 719` huffman@30802 ` 720` ```subsection {* Setting up simplification procedures *} ``` huffman@30802 ` 721` huffman@30802 ` 722` ```lemmas int_arith_rules = ``` huffman@47108 ` 723` ``` neg_le_iff_le numeral_One ``` huffman@30802 ` 724` ``` minus_zero diff_minus left_minus right_minus ``` huffman@45219 ` 725` ``` mult_zero_left mult_zero_right mult_1_left mult_1_right ``` huffman@30802 ` 726` ``` mult_minus_left mult_minus_right ``` huffman@30802 ` 727` ``` minus_add_distrib minus_minus mult_assoc ``` huffman@30802 ` 728` ``` of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult ``` huffman@30802 ` 729` ``` of_int_0 of_int_1 of_int_add of_int_mult ``` huffman@30802 ` 730` haftmann@28952 ` 731` ```use "Tools/int_arith.ML" ``` haftmann@30496 ` 732` ```declaration {* K Int_Arith.setup *} ``` haftmann@25919 ` 733` huffman@47108 ` 734` ```simproc_setup fast_arith ("(m::'a::linordered_idom) < n" | ``` huffman@47108 ` 735` ``` "(m::'a::linordered_idom) <= n" | ``` huffman@47108 ` 736` ``` "(m::'a::linordered_idom) = n") = ``` wenzelm@43595 ` 737` ``` {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (term_of ct) *} ``` wenzelm@43595 ` 738` haftmann@25919 ` 739` haftmann@25919 ` 740` ```subsection{*Lemmas About Small Numerals*} ``` haftmann@25919 ` 741` haftmann@25919 ` 742` ```lemma abs_power_minus_one [simp]: ``` huffman@47108 ` 743` ``` "abs(-1 ^ n) = (1::'a::linordered_idom)" ``` haftmann@25919 ` 744` ```by (simp add: power_abs) ``` haftmann@25919 ` 745` haftmann@25919 ` 746` haftmann@25919 ` 747` ```subsection{*More Inequality Reasoning*} ``` haftmann@25919 ` 748` haftmann@25919 ` 749` ```lemma zless_add1_eq: "(w < z + (1::int)) = (w z) = (w z - (1::int)) = (wz)" ``` haftmann@25919 ` 759` ```by arith ``` haftmann@25919 ` 760` haftmann@25919 ` 761` ```lemma int_one_le_iff_zero_less: "((1::int) \ z) = (0 < z)" ``` haftmann@25919 ` 762` ```by arith ``` haftmann@25919 ` 763` haftmann@25919 ` 764` huffman@28958 ` 765` ```subsection{*The functions @{term nat} and @{term int}*} ``` haftmann@25919 ` 766` huffman@48044 ` 767` ```text{*Simplify the term @{term "w + - z"}*} ``` huffman@48045 ` 768` ```lemmas diff_int_def_symmetric = diff_def [where 'a=int, symmetric, simp] ``` haftmann@25919 ` 769` huffman@44695 ` 770` ```lemma nat_0 [simp]: "nat 0 = 0" ``` haftmann@25919 ` 771` ```by (simp add: nat_eq_iff) ``` haftmann@25919 ` 772` huffman@47207 ` 773` ```lemma nat_1 [simp]: "nat 1 = Suc 0" ``` haftmann@25919 ` 774` ```by (subst nat_eq_iff, simp) ``` haftmann@25919 ` 775` haftmann@25919 ` 776` ```lemma nat_2: "nat 2 = Suc (Suc 0)" ``` haftmann@25919 ` 777` ```by (subst nat_eq_iff, simp) ``` haftmann@25919 ` 778` haftmann@25919 ` 779` ```lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)" ``` haftmann@25919 ` 780` ```apply (insert zless_nat_conj [of 1 z]) ``` huffman@47207 ` 781` ```apply auto ``` haftmann@25919 ` 782` ```done ``` haftmann@25919 ` 783` haftmann@25919 ` 784` ```text{*This simplifies expressions of the form @{term "int n = z"} where ``` haftmann@25919 ` 785` ``` z is an integer literal.*} ``` huffman@47108 ` 786` ```lemmas int_eq_iff_numeral [simp] = int_eq_iff [of _ "numeral v"] for v ``` haftmann@25919 ` 787` haftmann@25919 ` 788` ```lemma split_nat [arith_split]: ``` huffman@44709 ` 789` ``` "P(nat(i::int)) = ((\n. i = int n \ P n) & (i < 0 \ P 0))" ``` haftmann@25919 ` 790` ``` (is "?P = (?L & ?R)") ``` haftmann@25919 ` 791` ```proof (cases "i < 0") ``` haftmann@25919 ` 792` ``` case True thus ?thesis by auto ``` haftmann@25919 ` 793` ```next ``` haftmann@25919 ` 794` ``` case False ``` haftmann@25919 ` 795` ``` have "?P = ?L" ``` haftmann@25919 ` 796` ``` proof ``` haftmann@25919 ` 797` ``` assume ?P thus ?L using False by clarsimp ``` haftmann@25919 ` 798` ``` next ``` haftmann@25919 ` 799` ``` assume ?L thus ?P using False by simp ``` haftmann@25919 ` 800` ``` qed ``` haftmann@25919 ` 801` ``` with False show ?thesis by simp ``` haftmann@25919 ` 802` ```qed ``` haftmann@25919 ` 803` haftmann@25919 ` 804` ```context ring_1 ``` haftmann@25919 ` 805` ```begin ``` haftmann@25919 ` 806` blanchet@33056 ` 807` ```lemma of_int_of_nat [nitpick_simp]: ``` haftmann@25919 ` 808` ``` "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))" ``` haftmann@25919 ` 809` ```proof (cases "k < 0") ``` haftmann@25919 ` 810` ``` case True then have "0 \ - k" by simp ``` haftmann@25919 ` 811` ``` then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat) ``` haftmann@25919 ` 812` ``` with True show ?thesis by simp ``` haftmann@25919 ` 813` ```next ``` haftmann@25919 ` 814` ``` case False then show ?thesis by (simp add: not_less of_nat_nat) ``` haftmann@25919 ` 815` ```qed ``` haftmann@25919 ` 816` haftmann@25919 ` 817` ```end ``` haftmann@25919 ` 818` haftmann@25919 ` 819` ```lemma nat_mult_distrib: ``` haftmann@25919 ` 820` ``` fixes z z' :: int ``` haftmann@25919 ` 821` ``` assumes "0 \ z" ``` haftmann@25919 ` 822` ``` shows "nat (z * z') = nat z * nat z'" ``` haftmann@25919 ` 823` ```proof (cases "0 \ z'") ``` haftmann@25919 ` 824` ``` case False with assms have "z * z' \ 0" ``` haftmann@25919 ` 825` ``` by (simp add: not_le mult_le_0_iff) ``` haftmann@25919 ` 826` ``` then have "nat (z * z') = 0" by simp ``` haftmann@25919 ` 827` ``` moreover from False have "nat z' = 0" by simp ``` haftmann@25919 ` 828` ``` ultimately show ?thesis by simp ``` haftmann@25919 ` 829` ```next ``` haftmann@25919 ` 830` ``` case True with assms have ge_0: "z * z' \ 0" by (simp add: zero_le_mult_iff) ``` haftmann@25919 ` 831` ``` show ?thesis ``` haftmann@25919 ` 832` ``` by (rule injD [of "of_nat :: nat \ int", OF inj_of_nat]) ``` haftmann@25919 ` 833` ``` (simp only: of_nat_mult of_nat_nat [OF True] ``` haftmann@25919 ` 834` ``` of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp) ``` haftmann@25919 ` 835` ```qed ``` haftmann@25919 ` 836` haftmann@25919 ` 837` ```lemma nat_mult_distrib_neg: "z \ (0::int) ==> nat(z*z') = nat(-z) * nat(-z')" ``` haftmann@25919 ` 838` ```apply (rule trans) ``` haftmann@25919 ` 839` ```apply (rule_tac [2] nat_mult_distrib, auto) ``` haftmann@25919 ` 840` ```done ``` haftmann@25919 ` 841` haftmann@25919 ` 842` ```lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)" ``` haftmann@25919 ` 843` ```apply (cases "z=0 | w=0") ``` haftmann@25919 ` 844` ```apply (auto simp add: abs_if nat_mult_distrib [symmetric] ``` haftmann@25919 ` 845` ``` nat_mult_distrib_neg [symmetric] mult_less_0_iff) ``` haftmann@25919 ` 846` ```done ``` haftmann@25919 ` 847` huffman@47207 ` 848` ```lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" ``` huffman@47207 ` 849` ```apply (rule sym) ``` huffman@47207 ` 850` ```apply (simp add: nat_eq_iff) ``` huffman@47207 ` 851` ```done ``` huffman@47207 ` 852` huffman@47207 ` 853` ```lemma diff_nat_eq_if: ``` huffman@47207 ` 854` ``` "nat z - nat z' = ``` huffman@47207 ` 855` ``` (if z' < 0 then nat z ``` huffman@47207 ` 856` ``` else let d = z-z' in ``` huffman@47207 ` 857` ``` if d < 0 then 0 else nat d)" ``` huffman@47207 ` 858` ```by (simp add: Let_def nat_diff_distrib [symmetric]) ``` huffman@47207 ` 859` huffman@47207 ` 860` ```(* nat_diff_distrib has too-strong premises *) ``` huffman@47207 ` 861` ```lemma nat_diff_distrib': "\0 \ x; 0 \ y\ \ nat (x - y) = nat x - nat y" ``` huffman@47207 ` 862` ```apply (rule int_int_eq [THEN iffD1], clarsimp) ``` huffman@47207 ` 863` ```apply (subst of_nat_diff) ``` huffman@47207 ` 864` ```apply (rule nat_mono, simp_all) ``` huffman@47207 ` 865` ```done ``` huffman@47207 ` 866` huffman@47207 ` 867` ```lemma nat_numeral [simp, code_abbrev]: ``` huffman@47207 ` 868` ``` "nat (numeral k) = numeral k" ``` huffman@47207 ` 869` ``` by (simp add: nat_eq_iff) ``` huffman@47207 ` 870` huffman@47207 ` 871` ```lemma nat_neg_numeral [simp]: ``` huffman@47207 ` 872` ``` "nat (neg_numeral k) = 0" ``` huffman@47207 ` 873` ``` by simp ``` huffman@47207 ` 874` huffman@47207 ` 875` ```lemma diff_nat_numeral [simp]: ``` huffman@47207 ` 876` ``` "(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')" ``` huffman@47207 ` 877` ``` by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral) ``` huffman@47207 ` 878` huffman@47207 ` 879` ```lemma nat_numeral_diff_1 [simp]: ``` huffman@47207 ` 880` ``` "numeral v - (1::nat) = nat (numeral v - 1)" ``` huffman@47207 ` 881` ``` using diff_nat_numeral [of v Num.One] by simp ``` huffman@47207 ` 882` huffman@47255 ` 883` ```lemmas nat_arith = diff_nat_numeral ``` huffman@47255 ` 884` haftmann@25919 ` 885` haftmann@25919 ` 886` ```subsection "Induction principles for int" ``` haftmann@25919 ` 887` haftmann@25919 ` 888` ```text{*Well-founded segments of the integers*} ``` haftmann@25919 ` 889` haftmann@25919 ` 890` ```definition ``` haftmann@25919 ` 891` ``` int_ge_less_than :: "int => (int * int) set" ``` haftmann@25919 ` 892` ```where ``` haftmann@25919 ` 893` ``` "int_ge_less_than d = {(z',z). d \ z' & z' < z}" ``` haftmann@25919 ` 894` haftmann@25919 ` 895` ```theorem wf_int_ge_less_than: "wf (int_ge_less_than d)" ``` haftmann@25919 ` 896` ```proof - ``` haftmann@25919 ` 897` ``` have "int_ge_less_than d \ measure (%z. nat (z-d))" ``` haftmann@25919 ` 898` ``` by (auto simp add: int_ge_less_than_def) ``` haftmann@25919 ` 899` ``` thus ?thesis ``` haftmann@25919 ` 900` ``` by (rule wf_subset [OF wf_measure]) ``` haftmann@25919 ` 901` ```qed ``` haftmann@25919 ` 902` haftmann@25919 ` 903` ```text{*This variant looks odd, but is typical of the relations suggested ``` haftmann@25919 ` 904` ```by RankFinder.*} ``` haftmann@25919 ` 905` haftmann@25919 ` 906` ```definition ``` haftmann@25919 ` 907` ``` int_ge_less_than2 :: "int => (int * int) set" ``` haftmann@25919 ` 908` ```where ``` haftmann@25919 ` 909` ``` "int_ge_less_than2 d = {(z',z). d \ z & z' < z}" ``` haftmann@25919 ` 910` haftmann@25919 ` 911` ```theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)" ``` haftmann@25919 ` 912` ```proof - ``` haftmann@25919 ` 913` ``` have "int_ge_less_than2 d \ measure (%z. nat (1+z-d))" ``` haftmann@25919 ` 914` ``` by (auto simp add: int_ge_less_than2_def) ``` haftmann@25919 ` 915` ``` thus ?thesis ``` haftmann@25919 ` 916` ``` by (rule wf_subset [OF wf_measure]) ``` haftmann@25919 ` 917` ```qed ``` haftmann@25919 ` 918` haftmann@25919 ` 919` ```(* `set:int': dummy construction *) ``` haftmann@25919 ` 920` ```theorem int_ge_induct [case_names base step, induct set: int]: ``` haftmann@25919 ` 921` ``` fixes i :: int ``` haftmann@25919 ` 922` ``` assumes ge: "k \ i" and ``` haftmann@25919 ` 923` ``` base: "P k" and ``` haftmann@25919 ` 924` ``` step: "\i. k \ i \ P i \ P (i + 1)" ``` haftmann@25919 ` 925` ``` shows "P i" ``` haftmann@25919 ` 926` ```proof - ``` wenzelm@42676 ` 927` ``` { fix n ``` wenzelm@42676 ` 928` ``` have "\i::int. n = nat (i - k) \ k \ i \ P i" ``` haftmann@25919 ` 929` ``` proof (induct n) ``` haftmann@25919 ` 930` ``` case 0 ``` haftmann@25919 ` 931` ``` hence "i = k" by arith ``` haftmann@25919 ` 932` ``` thus "P i" using base by simp ``` haftmann@25919 ` 933` ``` next ``` haftmann@25919 ` 934` ``` case (Suc n) ``` haftmann@25919 ` 935` ``` then have "n = nat((i - 1) - k)" by arith ``` haftmann@25919 ` 936` ``` moreover ``` haftmann@25919 ` 937` ``` have ki1: "k \ i - 1" using Suc.prems by arith ``` haftmann@25919 ` 938` ``` ultimately ``` wenzelm@42676 ` 939` ``` have "P (i - 1)" by (rule Suc.hyps) ``` wenzelm@42676 ` 940` ``` from step [OF ki1 this] show ?case by simp ``` haftmann@25919 ` 941` ``` qed ``` haftmann@25919 ` 942` ``` } ``` haftmann@25919 ` 943` ``` with ge show ?thesis by fast ``` haftmann@25919 ` 944` ```qed ``` haftmann@25919 ` 945` haftmann@25928 ` 946` ```(* `set:int': dummy construction *) ``` haftmann@25928 ` 947` ```theorem int_gr_induct [case_names base step, induct set: int]: ``` haftmann@25919 ` 948` ``` assumes gr: "k < (i::int)" and ``` haftmann@25919 ` 949` ``` base: "P(k+1)" and ``` haftmann@25919 ` 950` ``` step: "\i. \k < i; P i\ \ P(i+1)" ``` haftmann@25919 ` 951` ``` shows "P i" ``` haftmann@25919 ` 952` ```apply(rule int_ge_induct[of "k + 1"]) ``` haftmann@25919 ` 953` ``` using gr apply arith ``` haftmann@25919 ` 954` ``` apply(rule base) ``` haftmann@25919 ` 955` ```apply (rule step, simp+) ``` haftmann@25919 ` 956` ```done ``` haftmann@25919 ` 957` wenzelm@42676 ` 958` ```theorem int_le_induct [consumes 1, case_names base step]: ``` haftmann@25919 ` 959` ``` assumes le: "i \ (k::int)" and ``` haftmann@25919 ` 960` ``` base: "P(k)" and ``` haftmann@25919 ` 961` ``` step: "\i. \i \ k; P i\ \ P(i - 1)" ``` haftmann@25919 ` 962` ``` shows "P i" ``` haftmann@25919 ` 963` ```proof - ``` wenzelm@42676 ` 964` ``` { fix n ``` wenzelm@42676 ` 965` ``` have "\i::int. n = nat(k-i) \ i \ k \ P i" ``` haftmann@25919 ` 966` ``` proof (induct n) ``` haftmann@25919 ` 967` ``` case 0 ``` haftmann@25919 ` 968` ``` hence "i = k" by arith ``` haftmann@25919 ` 969` ``` thus "P i" using base by simp ``` haftmann@25919 ` 970` ``` next ``` haftmann@25919 ` 971` ``` case (Suc n) ``` wenzelm@42676 ` 972` ``` hence "n = nat (k - (i + 1))" by arith ``` haftmann@25919 ` 973` ``` moreover ``` haftmann@25919 ` 974` ``` have ki1: "i + 1 \ k" using Suc.prems by arith ``` haftmann@25919 ` 975` ``` ultimately ``` wenzelm@42676 ` 976` ``` have "P (i + 1)" by(rule Suc.hyps) ``` haftmann@25919 ` 977` ``` from step[OF ki1 this] show ?case by simp ``` haftmann@25919 ` 978` ``` qed ``` haftmann@25919 ` 979` ``` } ``` haftmann@25919 ` 980` ``` with le show ?thesis by fast ``` haftmann@25919 ` 981` ```qed ``` haftmann@25919 ` 982` wenzelm@42676 ` 983` ```theorem int_less_induct [consumes 1, case_names base step]: ``` haftmann@25919 ` 984` ``` assumes less: "(i::int) < k" and ``` haftmann@25919 ` 985` ``` base: "P(k - 1)" and ``` haftmann@25919 ` 986` ``` step: "\i. \i < k; P i\ \ P(i - 1)" ``` haftmann@25919 ` 987` ``` shows "P i" ``` haftmann@25919 ` 988` ```apply(rule int_le_induct[of _ "k - 1"]) ``` haftmann@25919 ` 989` ``` using less apply arith ``` haftmann@25919 ` 990` ``` apply(rule base) ``` haftmann@25919 ` 991` ```apply (rule step, simp+) ``` haftmann@25919 ` 992` ```done ``` haftmann@25919 ` 993` haftmann@36811 ` 994` ```theorem int_induct [case_names base step1 step2]: ``` haftmann@36801 ` 995` ``` fixes k :: int ``` haftmann@36801 ` 996` ``` assumes base: "P k" ``` haftmann@36801 ` 997` ``` and step1: "\i. k \ i \ P i \ P (i + 1)" ``` haftmann@36801 ` 998` ``` and step2: "\i. k \ i \ P i \ P (i - 1)" ``` haftmann@36801 ` 999` ``` shows "P i" ``` haftmann@36801 ` 1000` ```proof - ``` haftmann@36801 ` 1001` ``` have "i \ k \ i \ k" by arith ``` wenzelm@42676 ` 1002` ``` then show ?thesis ``` wenzelm@42676 ` 1003` ``` proof ``` wenzelm@42676 ` 1004` ``` assume "i \ k" ``` wenzelm@42676 ` 1005` ``` then show ?thesis using base ``` haftmann@36801 ` 1006` ``` by (rule int_ge_induct) (fact step1) ``` haftmann@36801 ` 1007` ``` next ``` wenzelm@42676 ` 1008` ``` assume "i \ k" ``` wenzelm@42676 ` 1009` ``` then show ?thesis using base ``` haftmann@36801 ` 1010` ``` by (rule int_le_induct) (fact step2) ``` haftmann@36801 ` 1011` ``` qed ``` haftmann@36801 ` 1012` ```qed ``` haftmann@36801 ` 1013` haftmann@25919 ` 1014` ```subsection{*Intermediate value theorems*} ``` haftmann@25919 ` 1015` haftmann@25919 ` 1016` ```lemma int_val_lemma: ``` haftmann@25919 ` 1017` ``` "(\i 1) --> ``` haftmann@25919 ` 1018` ``` f 0 \ k --> k \ f n --> (\i \ n. f i = (k::int))" ``` huffman@30079 ` 1019` ```unfolding One_nat_def ``` wenzelm@42676 ` 1020` ```apply (induct n) ``` wenzelm@42676 ` 1021` ```apply simp ``` haftmann@25919 ` 1022` ```apply (intro strip) ``` haftmann@25919 ` 1023` ```apply (erule impE, simp) ``` haftmann@25919 ` 1024` ```apply (erule_tac x = n in allE, simp) ``` huffman@30079 ` 1025` ```apply (case_tac "k = f (Suc n)") ``` haftmann@27106 ` 1026` ```apply force ``` haftmann@25919 ` 1027` ```apply (erule impE) ``` haftmann@25919 ` 1028` ``` apply (simp add: abs_if split add: split_if_asm) ``` haftmann@25919 ` 1029` ```apply (blast intro: le_SucI) ``` haftmann@25919 ` 1030` ```done ``` haftmann@25919 ` 1031` haftmann@25919 ` 1032` ```lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)] ``` haftmann@25919 ` 1033` haftmann@25919 ` 1034` ```lemma nat_intermed_int_val: ``` haftmann@25919 ` 1035` ``` "[| \i. m \ i & i < n --> abs(f(i + 1::nat) - f i) \ 1; m < n; ``` haftmann@25919 ` 1036` ``` f m \ k; k \ f n |] ==> ? i. m \ i & i \ n & f i = (k::int)" ``` haftmann@25919 ` 1037` ```apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k ``` haftmann@25919 ` 1038` ``` in int_val_lemma) ``` huffman@30079 ` 1039` ```unfolding One_nat_def ``` haftmann@25919 ` 1040` ```apply simp ``` haftmann@25919 ` 1041` ```apply (erule exE) ``` haftmann@25919 ` 1042` ```apply (rule_tac x = "i+m" in exI, arith) ``` haftmann@25919 ` 1043` ```done ``` haftmann@25919 ` 1044` haftmann@25919 ` 1045` haftmann@25919 ` 1046` ```subsection{*Products and 1, by T. M. Rasmussen*} ``` haftmann@25919 ` 1047` haftmann@25919 ` 1048` ```lemma zabs_less_one_iff [simp]: "(\z\ < 1) = (z = (0::int))" ``` haftmann@25919 ` 1049` ```by arith ``` haftmann@25919 ` 1050` paulson@34055 ` 1051` ```lemma abs_zmult_eq_1: ``` paulson@34055 ` 1052` ``` assumes mn: "\m * n\ = 1" ``` paulson@34055 ` 1053` ``` shows "\m\ = (1::int)" ``` paulson@34055 ` 1054` ```proof - ``` paulson@34055 ` 1055` ``` have 0: "m \ 0 & n \ 0" using mn ``` paulson@34055 ` 1056` ``` by auto ``` paulson@34055 ` 1057` ``` have "~ (2 \ \m\)" ``` paulson@34055 ` 1058` ``` proof ``` paulson@34055 ` 1059` ``` assume "2 \ \m\" ``` paulson@34055 ` 1060` ``` hence "2*\n\ \ \m\*\n\" ``` paulson@34055 ` 1061` ``` by (simp add: mult_mono 0) ``` paulson@34055 ` 1062` ``` also have "... = \m*n\" ``` paulson@34055 ` 1063` ``` by (simp add: abs_mult) ``` paulson@34055 ` 1064` ``` also have "... = 1" ``` paulson@34055 ` 1065` ``` by (simp add: mn) ``` paulson@34055 ` 1066` ``` finally have "2*\n\ \ 1" . ``` paulson@34055 ` 1067` ``` thus "False" using 0 ``` huffman@47108 ` 1068` ``` by arith ``` paulson@34055 ` 1069` ``` qed ``` paulson@34055 ` 1070` ``` thus ?thesis using 0 ``` paulson@34055 ` 1071` ``` by auto ``` paulson@34055 ` 1072` ```qed ``` haftmann@25919 ` 1073` huffman@47108 ` 1074` ```ML_val {* @{const_name neg_numeral} *} ``` huffman@47108 ` 1075` haftmann@25919 ` 1076` ```lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1" ``` haftmann@25919 ` 1077` ```by (insert abs_zmult_eq_1 [of m n], arith) ``` haftmann@25919 ` 1078` boehmes@35815 ` 1079` ```lemma pos_zmult_eq_1_iff: ``` boehmes@35815 ` 1080` ``` assumes "0 < (m::int)" shows "(m * n = 1) = (m = 1 & n = 1)" ``` boehmes@35815 ` 1081` ```proof - ``` boehmes@35815 ` 1082` ``` from assms have "m * n = 1 ==> m = 1" by (auto dest: pos_zmult_eq_1_iff_lemma) ``` boehmes@35815 ` 1083` ``` thus ?thesis by (auto dest: pos_zmult_eq_1_iff_lemma) ``` boehmes@35815 ` 1084` ```qed ``` haftmann@25919 ` 1085` haftmann@25919 ` 1086` ```lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))" ``` haftmann@25919 ` 1087` ```apply (rule iffI) ``` haftmann@25919 ` 1088` ``` apply (frule pos_zmult_eq_1_iff_lemma) ``` haftmann@25919 ` 1089` ``` apply (simp add: mult_commute [of m]) ``` haftmann@25919 ` 1090` ``` apply (frule pos_zmult_eq_1_iff_lemma, auto) ``` haftmann@25919 ` 1091` ```done ``` haftmann@25919 ` 1092` haftmann@33296 ` 1093` ```lemma infinite_UNIV_int: "\ finite (UNIV::int set)" ``` haftmann@25919 ` 1094` ```proof ``` haftmann@33296 ` 1095` ``` assume "finite (UNIV::int set)" ``` haftmann@33296 ` 1096` ``` moreover have "inj (\i\int. 2 * i)" ``` haftmann@33296 ` 1097` ``` by (rule injI) simp ``` haftmann@33296 ` 1098` ``` ultimately have "surj (\i\int. 2 * i)" ``` haftmann@33296 ` 1099` ``` by (rule finite_UNIV_inj_surj) ``` haftmann@33296 ` 1100` ``` then obtain i :: int where "1 = 2 * i" by (rule surjE) ``` haftmann@33296 ` 1101` ``` then show False by (simp add: pos_zmult_eq_1_iff) ``` haftmann@25919 ` 1102` ```qed ``` haftmann@25919 ` 1103` haftmann@25919 ` 1104` haftmann@30652 ` 1105` ```subsection {* Further theorems on numerals *} ``` haftmann@30652 ` 1106` haftmann@30652 ` 1107` ```subsubsection{*Special Simplification for Constants*} ``` haftmann@30652 ` 1108` haftmann@30652 ` 1109` ```text{*These distributive laws move literals inside sums and differences.*} ``` haftmann@30652 ` 1110` huffman@47108 ` 1111` ```lemmas left_distrib_numeral [simp] = left_distrib [of _ _ "numeral v"] for v ``` huffman@47108 ` 1112` ```lemmas right_distrib_numeral [simp] = right_distrib [of "numeral v"] for v ``` huffman@47108 ` 1113` ```lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ "numeral v"] for v ``` huffman@47108 ` 1114` ```lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of "numeral v"] for v ``` haftmann@30652 ` 1115` haftmann@30652 ` 1116` ```text{*These are actually for fields, like real: but where else to put them?*} ``` haftmann@30652 ` 1117` huffman@47108 ` 1118` ```lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of "numeral w"] for w ``` huffman@47108 ` 1119` ```lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of "numeral w"] for w ``` huffman@47108 ` 1120` ```lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of "numeral w"] for w ``` huffman@47108 ` 1121` ```lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of "numeral w"] for w ``` haftmann@30652 ` 1122` haftmann@30652 ` 1123` haftmann@30652 ` 1124` ```text {*Replaces @{text "inverse #nn"} by @{text "1/#nn"}. It looks ``` haftmann@30652 ` 1125` ``` strange, but then other simprocs simplify the quotient.*} ``` haftmann@30652 ` 1126` huffman@47108 ` 1127` ```lemmas inverse_eq_divide_numeral [simp] = ``` huffman@47108 ` 1128` ``` inverse_eq_divide [of "numeral w"] for w ``` huffman@47108 ` 1129` huffman@47108 ` 1130` ```lemmas inverse_eq_divide_neg_numeral [simp] = ``` huffman@47108 ` 1131` ``` inverse_eq_divide [of "neg_numeral w"] for w ``` haftmann@30652 ` 1132` haftmann@30652 ` 1133` ```text {*These laws simplify inequalities, moving unary minus from a term ``` haftmann@30652 ` 1134` ```into the literal.*} ``` haftmann@30652 ` 1135` huffman@47108 ` 1136` ```lemmas le_minus_iff_numeral [simp, no_atp] = ``` huffman@47108 ` 1137` ``` le_minus_iff [of "numeral v"] ``` huffman@47108 ` 1138` ``` le_minus_iff [of "neg_numeral v"] for v ``` huffman@47108 ` 1139` huffman@47108 ` 1140` ```lemmas equation_minus_iff_numeral [simp, no_atp] = ``` huffman@47108 ` 1141` ``` equation_minus_iff [of "numeral v"] ``` huffman@47108 ` 1142` ``` equation_minus_iff [of "neg_numeral v"] for v ``` huffman@47108 ` 1143` huffman@47108 ` 1144` ```lemmas minus_less_iff_numeral [simp, no_atp] = ``` huffman@47108 ` 1145` ``` minus_less_iff [of _ "numeral v"] ``` huffman@47108 ` 1146` ``` minus_less_iff [of _ "neg_numeral v"] for v ``` huffman@47108 ` 1147` huffman@47108 ` 1148` ```lemmas minus_le_iff_numeral [simp, no_atp] = ``` huffman@47108 ` 1149` ``` minus_le_iff [of _ "numeral v"] ``` huffman@47108 ` 1150` ``` minus_le_iff [of _ "neg_numeral v"] for v ``` huffman@47108 ` 1151` huffman@47108 ` 1152` ```lemmas minus_equation_iff_numeral [simp, no_atp] = ``` huffman@47108 ` 1153` ``` minus_equation_iff [of _ "numeral v"] ``` huffman@47108 ` 1154` ``` minus_equation_iff [of _ "neg_numeral v"] for v ``` haftmann@30652 ` 1155` haftmann@30652 ` 1156` ```text{*To Simplify Inequalities Where One Side is the Constant 1*} ``` haftmann@30652 ` 1157` blanchet@35828 ` 1158` ```lemma less_minus_iff_1 [simp,no_atp]: ``` huffman@47108 ` 1159` ``` fixes b::"'b::linordered_idom" ``` haftmann@30652 ` 1160` ``` shows "(1 < - b) = (b < -1)" ``` haftmann@30652 ` 1161` ```by auto ``` haftmann@30652 ` 1162` blanchet@35828 ` 1163` ```lemma le_minus_iff_1 [simp,no_atp]: ``` huffman@47108 ` 1164` ``` fixes b::"'b::linordered_idom" ``` haftmann@30652 ` 1165` ``` shows "(1 \ - b) = (b \ -1)" ``` haftmann@30652 ` 1166` ```by auto ``` haftmann@30652 ` 1167` blanchet@35828 ` 1168` ```lemma equation_minus_iff_1 [simp,no_atp]: ``` huffman@47108 ` 1169` ``` fixes b::"'b::ring_1" ``` haftmann@30652 ` 1170` ``` shows "(1 = - b) = (b = -1)" ``` haftmann@30652 ` 1171` ```by (subst equation_minus_iff, auto) ``` haftmann@30652 ` 1172` blanchet@35828 ` 1173` ```lemma minus_less_iff_1 [simp,no_atp]: ``` huffman@47108 ` 1174` ``` fixes a::"'b::linordered_idom" ``` haftmann@30652 ` 1175` ``` shows "(- a < 1) = (-1 < a)" ``` haftmann@30652 ` 1176` ```by auto ``` haftmann@30652 ` 1177` blanchet@35828 ` 1178` ```lemma minus_le_iff_1 [simp,no_atp]: ``` huffman@47108 ` 1179` ``` fixes a::"'b::linordered_idom" ``` haftmann@30652 ` 1180` ``` shows "(- a \ 1) = (-1 \ a)" ``` haftmann@30652 ` 1181` ```by auto ``` haftmann@30652 ` 1182` blanchet@35828 ` 1183` ```lemma minus_equation_iff_1 [simp,no_atp]: ``` huffman@47108 ` 1184` ``` fixes a::"'b::ring_1" ``` haftmann@30652 ` 1185` ``` shows "(- a = 1) = (a = -1)" ``` haftmann@30652 ` 1186` ```by (subst minus_equation_iff, auto) ``` haftmann@30652 ` 1187` haftmann@30652 ` 1188` haftmann@30652 ` 1189` ```text {*Cancellation of constant factors in comparisons (@{text "<"} and @{text "\"}) *} ``` haftmann@30652 ` 1190` huffman@47108 ` 1191` ```lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of "numeral v"] for v ``` huffman@47108 ` 1192` ```lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ "numeral v"] for v ``` huffman@47108 ` 1193` ```lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of "numeral v"] for v ``` huffman@47108 ` 1194` ```lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ "numeral v"] for v ``` haftmann@30652 ` 1195` haftmann@30652 ` 1196` haftmann@30652 ` 1197` ```text {*Multiplying out constant divisors in comparisons (@{text "<"}, @{text "\"} and @{text "="}) *} ``` haftmann@30652 ` 1198` huffman@47108 ` 1199` ```lemmas le_divide_eq_numeral1 [simp] = ``` huffman@47108 ` 1200` ``` pos_le_divide_eq [of "numeral w", OF zero_less_numeral] ``` huffman@47108 ` 1201` ``` neg_le_divide_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w ``` huffman@47108 ` 1202` huffman@47108 ` 1203` ```lemmas divide_le_eq_numeral1 [simp] = ``` huffman@47108 ` 1204` ``` pos_divide_le_eq [of "numeral w", OF zero_less_numeral] ``` huffman@47108 ` 1205` ``` neg_divide_le_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w ``` huffman@47108 ` 1206` huffman@47108 ` 1207` ```lemmas less_divide_eq_numeral1 [simp] = ``` huffman@47108 ` 1208` ``` pos_less_divide_eq [of "numeral w", OF zero_less_numeral] ``` huffman@47108 ` 1209` ``` neg_less_divide_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w ``` haftmann@30652 ` 1210` huffman@47108 ` 1211` ```lemmas divide_less_eq_numeral1 [simp] = ``` huffman@47108 ` 1212` ``` pos_divide_less_eq [of "numeral w", OF zero_less_numeral] ``` huffman@47108 ` 1213` ``` neg_divide_less_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w ``` huffman@47108 ` 1214` huffman@47108 ` 1215` ```lemmas eq_divide_eq_numeral1 [simp] = ``` huffman@47108 ` 1216` ``` eq_divide_eq [of _ _ "numeral w"] ``` huffman@47108 ` 1217` ``` eq_divide_eq [of _ _ "neg_numeral w"] for w ``` huffman@47108 ` 1218` huffman@47108 ` 1219` ```lemmas divide_eq_eq_numeral1 [simp] = ``` huffman@47108 ` 1220` ``` divide_eq_eq [of _ "numeral w"] ``` huffman@47108 ` 1221` ``` divide_eq_eq [of _ "neg_numeral w"] for w ``` haftmann@30652 ` 1222` haftmann@30652 ` 1223` ```subsubsection{*Optional Simplification Rules Involving Constants*} ``` haftmann@30652 ` 1224` haftmann@30652 ` 1225` ```text{*Simplify quotients that are compared with a literal constant.*} ``` haftmann@30652 ` 1226` huffman@47108 ` 1227` ```lemmas le_divide_eq_numeral = ``` huffman@47108 ` 1228` ``` le_divide_eq [of "numeral w"] ``` huffman@47108 ` 1229` ``` le_divide_eq [of "neg_numeral w"] for w ``` huffman@47108 ` 1230` huffman@47108 ` 1231` ```lemmas divide_le_eq_numeral = ``` huffman@47108 ` 1232` ``` divide_le_eq [of _ _ "numeral w"] ``` huffman@47108 ` 1233` ``` divide_le_eq [of _ _ "neg_numeral w"] for w ``` huffman@47108 ` 1234` huffman@47108 ` 1235` ```lemmas less_divide_eq_numeral = ``` huffman@47108 ` 1236` ``` less_divide_eq [of "numeral w"] ``` huffman@47108 ` 1237` ``` less_divide_eq [of "neg_numeral w"] for w ``` huffman@47108 ` 1238` huffman@47108 ` 1239` ```lemmas divide_less_eq_numeral = ``` huffman@47108 ` 1240` ``` divide_less_eq [of _ _ "numeral w"] ``` huffman@47108 ` 1241` ``` divide_less_eq [of _ _ "neg_numeral w"] for w ``` huffman@47108 ` 1242` huffman@47108 ` 1243` ```lemmas eq_divide_eq_numeral = ``` huffman@47108 ` 1244` ``` eq_divide_eq [of "numeral w"] ``` huffman@47108 ` 1245` ``` eq_divide_eq [of "neg_numeral w"] for w ``` huffman@47108 ` 1246` huffman@47108 ` 1247` ```lemmas divide_eq_eq_numeral = ``` huffman@47108 ` 1248` ``` divide_eq_eq [of _ _ "numeral w"] ``` huffman@47108 ` 1249` ``` divide_eq_eq [of _ _ "neg_numeral w"] for w ``` haftmann@30652 ` 1250` haftmann@30652 ` 1251` haftmann@30652 ` 1252` ```text{*Not good as automatic simprules because they cause case splits.*} ``` haftmann@30652 ` 1253` ```lemmas divide_const_simps = ``` huffman@47108 ` 1254` ``` le_divide_eq_numeral divide_le_eq_numeral less_divide_eq_numeral ``` huffman@47108 ` 1255` ``` divide_less_eq_numeral eq_divide_eq_numeral divide_eq_eq_numeral ``` haftmann@30652 ` 1256` ``` le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1 ``` haftmann@30652 ` 1257` haftmann@30652 ` 1258` ```text{*Division By @{text "-1"}*} ``` haftmann@30652 ` 1259` huffman@47108 ` 1260` ```lemma divide_minus1 [simp]: "(x::'a::field) / -1 = - x" ``` huffman@47108 ` 1261` ``` unfolding minus_one [symmetric] ``` huffman@47108 ` 1262` ``` unfolding nonzero_minus_divide_right [OF one_neq_zero, symmetric] ``` huffman@47108 ` 1263` ``` by simp ``` haftmann@30652 ` 1264` huffman@47108 ` 1265` ```lemma minus1_divide [simp]: "-1 / (x::'a::field) = - (1 / x)" ``` huffman@47108 ` 1266` ``` unfolding minus_one [symmetric] by (rule divide_minus_left) ``` haftmann@30652 ` 1267` haftmann@30652 ` 1268` ```lemma half_gt_zero_iff: ``` huffman@47108 ` 1269` ``` "(0 < r/2) = (0 < (r::'a::linordered_field_inverse_zero))" ``` haftmann@30652 ` 1270` ```by auto ``` haftmann@30652 ` 1271` wenzelm@45607 ` 1272` ```lemmas half_gt_zero [simp] = half_gt_zero_iff [THEN iffD2] ``` haftmann@30652 ` 1273` huffman@47108 ` 1274` ```lemma divide_Numeral1: "(x::'a::field) / Numeral1 = x" ``` haftmann@36719 ` 1275` ``` by simp ``` haftmann@36719 ` 1276` haftmann@30652 ` 1277` haftmann@33320 ` 1278` ```subsection {* The divides relation *} ``` haftmann@33320 ` 1279` nipkow@33657 ` 1280` ```lemma zdvd_antisym_nonneg: ``` nipkow@33657 ` 1281` ``` "0 <= m ==> 0 <= n ==> m dvd n ==> n dvd m ==> m = (n::int)" ``` haftmann@33320 ` 1282` ``` apply (simp add: dvd_def, auto) ``` nipkow@33657 ` 1283` ``` apply (auto simp add: mult_assoc zero_le_mult_iff zmult_eq_1_iff) ``` haftmann@33320 ` 1284` ``` done ``` haftmann@33320 ` 1285` nipkow@33657 ` 1286` ```lemma zdvd_antisym_abs: assumes "(a::int) dvd b" and "b dvd a" ``` haftmann@33320 ` 1287` ``` shows "\a\ = \b\" ``` nipkow@33657 ` 1288` ```proof cases ``` nipkow@33657 ` 1289` ``` assume "a = 0" with assms show ?thesis by simp ``` nipkow@33657 ` 1290` ```next ``` nipkow@33657 ` 1291` ``` assume "a \ 0" ``` haftmann@33320 ` 1292` ``` from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast ``` haftmann@33320 ` 1293` ``` from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast ``` haftmann@33320 ` 1294` ``` from k k' have "a = a*k*k'" by simp ``` haftmann@33320 ` 1295` ``` with mult_cancel_left1[where c="a" and b="k*k'"] ``` haftmann@33320 ` 1296` ``` have kk':"k*k' = 1" using `a\0` by (simp add: mult_assoc) ``` haftmann@33320 ` 1297` ``` hence "k = 1 \ k' = 1 \ k = -1 \ k' = -1" by (simp add: zmult_eq_1_iff) ``` haftmann@33320 ` 1298` ``` thus ?thesis using k k' by auto ``` haftmann@33320 ` 1299` ```qed ``` haftmann@33320 ` 1300` haftmann@33320 ` 1301` ```lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)" ``` haftmann@33320 ` 1302` ``` apply (subgoal_tac "m = n + (m - n)") ``` haftmann@33320 ` 1303` ``` apply (erule ssubst) ``` haftmann@33320 ` 1304` ``` apply (blast intro: dvd_add, simp) ``` haftmann@33320 ` 1305` ``` done ``` haftmann@33320 ` 1306` haftmann@33320 ` 1307` ```lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))" ``` haftmann@33320 ` 1308` ```apply (rule iffI) ``` haftmann@33320 ` 1309` ``` apply (erule_tac [2] dvd_add) ``` haftmann@33320 ` 1310` ``` apply (subgoal_tac "n = (n + k * m) - k * m") ``` haftmann@33320 ` 1311` ``` apply (erule ssubst) ``` haftmann@33320 ` 1312` ``` apply (erule dvd_diff) ``` haftmann@33320 ` 1313` ``` apply(simp_all) ``` haftmann@33320 ` 1314` ```done ``` haftmann@33320 ` 1315` haftmann@33320 ` 1316` ```lemma dvd_imp_le_int: ``` haftmann@33320 ` 1317` ``` fixes d i :: int ``` haftmann@33320 ` 1318` ``` assumes "i \ 0" and "d dvd i" ``` haftmann@33320 ` 1319` ``` shows "\d\ \ \i\" ``` haftmann@33320 ` 1320` ```proof - ``` haftmann@33320 ` 1321` ``` from `d dvd i` obtain k where "i = d * k" .. ``` haftmann@33320 ` 1322` ``` with `i \ 0` have "k \ 0" by auto ``` haftmann@33320 ` 1323` ``` then have "1 \ \k\" and "0 \ \d\" by auto ``` haftmann@33320 ` 1324` ``` then have "\d\ * 1 \ \d\ * \k\" by (rule mult_left_mono) ``` haftmann@33320 ` 1325` ``` with `i = d * k` show ?thesis by (simp add: abs_mult) ``` haftmann@33320 ` 1326` ```qed ``` haftmann@33320 ` 1327` haftmann@33320 ` 1328` ```lemma zdvd_not_zless: ``` haftmann@33320 ` 1329` ``` fixes m n :: int ``` haftmann@33320 ` 1330` ``` assumes "0 < m" and "m < n" ``` haftmann@33320 ` 1331` ``` shows "\ n dvd m" ``` haftmann@33320 ` 1332` ```proof ``` haftmann@33320 ` 1333` ``` from assms have "0 < n" by auto ``` haftmann@33320 ` 1334` ``` assume "n dvd m" then obtain k where k: "m = n * k" .. ``` haftmann@33320 ` 1335` ``` with `0 < m` have "0 < n * k" by auto ``` haftmann@33320 ` 1336` ``` with `0 < n` have "0 < k" by (simp add: zero_less_mult_iff) ``` haftmann@33320 ` 1337` ``` with k `0 < n` `m < n` have "n * k < n * 1" by simp ``` haftmann@33320 ` 1338` ``` with `0 < n` `0 < k` show False unfolding mult_less_cancel_left by auto ``` haftmann@33320 ` 1339` ```qed ``` haftmann@33320 ` 1340` haftmann@33320 ` 1341` ```lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \ (0::int)" ``` haftmann@33320 ` 1342` ``` shows "m dvd n" ``` haftmann@33320 ` 1343` ```proof- ``` haftmann@33320 ` 1344` ``` from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast ``` haftmann@33320 ` 1345` ``` {assume "n \ m*h" hence "k* n \ k* (m*h)" using kz by simp ``` haftmann@33320 ` 1346` ``` with h have False by (simp add: mult_assoc)} ``` haftmann@33320 ` 1347` ``` hence "n = m * h" by blast ``` haftmann@33320 ` 1348` ``` thus ?thesis by simp ``` haftmann@33320 ` 1349` ```qed ``` haftmann@33320 ` 1350` haftmann@33320 ` 1351` ```theorem zdvd_int: "(x dvd y) = (int x dvd int y)" ``` haftmann@33320 ` 1352` ```proof - ``` haftmann@33320 ` 1353` ``` have "\k. int y = int x * k \ x dvd y" ``` haftmann@33320 ` 1354` ``` proof - ``` haftmann@33320 ` 1355` ``` fix k ``` haftmann@33320 ` 1356` ``` assume A: "int y = int x * k" ``` wenzelm@42676 ` 1357` ``` then show "x dvd y" ``` wenzelm@42676 ` 1358` ``` proof (cases k) ``` wenzelm@42676 ` 1359` ``` case (nonneg n) ``` wenzelm@42676 ` 1360` ``` with A have "y = x * n" by (simp add: of_nat_mult [symmetric]) ``` haftmann@33320 ` 1361` ``` then show ?thesis .. ``` haftmann@33320 ` 1362` ``` next ``` wenzelm@42676 ` 1363` ``` case (neg n) ``` wenzelm@42676 ` 1364` ``` with A have "int y = int x * (- int (Suc n))" by simp ``` haftmann@33320 ` 1365` ``` also have "\ = - (int x * int (Suc n))" by (simp only: mult_minus_right) ``` haftmann@33320 ` 1366` ``` also have "\ = - int (x * Suc n)" by (simp only: of_nat_mult [symmetric]) ``` haftmann@33320 ` 1367` ``` finally have "- int (x * Suc n) = int y" .. ``` haftmann@33320 ` 1368` ``` then show ?thesis by (simp only: negative_eq_positive) auto ``` haftmann@33320 ` 1369` ``` qed ``` haftmann@33320 ` 1370` ``` qed ``` haftmann@33320 ` 1371` ``` then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left of_nat_mult) ``` haftmann@33320 ` 1372` ```qed ``` haftmann@33320 ` 1373` wenzelm@42676 ` 1374` ```lemma zdvd1_eq[simp]: "(x::int) dvd 1 = (\x\ = 1)" ``` haftmann@33320 ` 1375` ```proof ``` haftmann@33320 ` 1376` ``` assume d: "x dvd 1" hence "int (nat \x\) dvd int (nat 1)" by simp ``` haftmann@33320 ` 1377` ``` hence "nat \x\ dvd 1" by (simp add: zdvd_int) ``` haftmann@33320 ` 1378` ``` hence "nat \x\ = 1" by simp ``` wenzelm@42676 ` 1379` ``` thus "\x\ = 1" by (cases "x < 0") auto ``` haftmann@33320 ` 1380` ```next ``` haftmann@33320 ` 1381` ``` assume "\x\=1" ``` haftmann@33320 ` 1382` ``` then have "x = 1 \ x = -1" by auto ``` haftmann@33320 ` 1383` ``` then show "x dvd 1" by (auto intro: dvdI) ``` haftmann@33320 ` 1384` ```qed ``` haftmann@33320 ` 1385` haftmann@33320 ` 1386` ```lemma zdvd_mult_cancel1: ``` haftmann@33320 ` 1387` ``` assumes mp:"m \(0::int)" shows "(m * n dvd m) = (\n\ = 1)" ``` haftmann@33320 ` 1388` ```proof ``` haftmann@33320 ` 1389` ``` assume n1: "\n\ = 1" thus "m * n dvd m" ``` wenzelm@42676 ` 1390` ``` by (cases "n >0") (auto simp add: minus_equation_iff) ``` haftmann@33320 ` 1391` ```next ``` haftmann@33320 ` 1392` ``` assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp ``` haftmann@33320 ` 1393` ``` from zdvd_mult_cancel[OF H2 mp] show "\n\ = 1" by (simp only: zdvd1_eq) ``` haftmann@33320 ` 1394` ```qed ``` haftmann@33320 ` 1395` haftmann@33320 ` 1396` ```lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))" ``` haftmann@33320 ` 1397` ``` unfolding zdvd_int by (cases "z \ 0") simp_all ``` haftmann@33320 ` 1398` haftmann@33320 ` 1399` ```lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)" ``` haftmann@33320 ` 1400` ``` unfolding zdvd_int by (cases "z \ 0") simp_all ``` haftmann@33320 ` 1401` haftmann@33320 ` 1402` ```lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \ z then (z dvd int m) else m = 0)" ``` haftmann@33320 ` 1403` ``` by (auto simp add: dvd_int_iff) ``` haftmann@33320 ` 1404` haftmann@33341 ` 1405` ```lemma eq_nat_nat_iff: ``` haftmann@33341 ` 1406` ``` "0 \ z \ 0 \ z' \ nat z = nat z' \ z = z'" ``` haftmann@33341 ` 1407` ``` by (auto elim!: nonneg_eq_int) ``` haftmann@33341 ` 1408` haftmann@33341 ` 1409` ```lemma nat_power_eq: ``` haftmann@33341 ` 1410` ``` "0 \ z \ nat (z ^ n) = nat z ^ n" ``` haftmann@33341 ` 1411` ``` by (induct n) (simp_all add: nat_mult_distrib) ``` haftmann@33341 ` 1412` haftmann@33320 ` 1413` ```lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \ (n::int)" ``` wenzelm@42676 ` 1414` ``` apply (cases n) ``` haftmann@33320 ` 1415` ``` apply (auto simp add: dvd_int_iff) ``` wenzelm@42676 ` 1416` ``` apply (cases z) ``` haftmann@33320 ` 1417` ``` apply (auto simp add: dvd_imp_le) ``` haftmann@33320 ` 1418` ``` done ``` haftmann@33320 ` 1419` haftmann@36749 ` 1420` ```lemma zdvd_period: ``` haftmann@36749 ` 1421` ``` fixes a d :: int ``` haftmann@36749 ` 1422` ``` assumes "a dvd d" ``` haftmann@36749 ` 1423` ``` shows "a dvd (x + t) \ a dvd ((x + c * d) + t)" ``` haftmann@36749 ` 1424` ```proof - ``` haftmann@36749 ` 1425` ``` from assms obtain k where "d = a * k" by (rule dvdE) ``` wenzelm@42676 ` 1426` ``` show ?thesis ``` wenzelm@42676 ` 1427` ``` proof ``` haftmann@36749 ` 1428` ``` assume "a dvd (x + t)" ``` haftmann@36749 ` 1429` ``` then obtain l where "x + t = a * l" by (rule dvdE) ``` haftmann@36749 ` 1430` ``` then have "x = a * l - t" by simp ``` haftmann@36749 ` 1431` ``` with `d = a * k` show "a dvd x + c * d + t" by simp ``` haftmann@36749 ` 1432` ``` next ``` haftmann@36749 ` 1433` ``` assume "a dvd x + c * d + t" ``` haftmann@36749 ` 1434` ``` then obtain l where "x + c * d + t = a * l" by (rule dvdE) ``` haftmann@36749 ` 1435` ``` then have "x = a * l - c * d - t" by simp ``` haftmann@36749 ` 1436` ``` with `d = a * k` show "a dvd (x + t)" by simp ``` haftmann@36749 ` 1437` ``` qed ``` haftmann@36749 ` 1438` ```qed ``` haftmann@36749 ` 1439` haftmann@33320 ` 1440` bulwahn@46756 ` 1441` ```subsection {* Finiteness of intervals *} ``` bulwahn@46756 ` 1442` bulwahn@46756 ` 1443` ```lemma finite_interval_int1 [iff]: "finite {i :: int. a <= i & i <= b}" ``` bulwahn@46756 ` 1444` ```proof (cases "a <= b") ``` bulwahn@46756 ` 1445` ``` case True ``` bulwahn@46756 ` 1446` ``` from this show ?thesis ``` bulwahn@46756 ` 1447` ``` proof (induct b rule: int_ge_induct) ``` bulwahn@46756 ` 1448` ``` case base ``` bulwahn@46756 ` 1449` ``` have "{i. a <= i & i <= a} = {a}" by auto ``` bulwahn@46756 ` 1450` ``` from this show ?case by simp ``` bulwahn@46756 ` 1451` ``` next ``` bulwahn@46756 ` 1452` ``` case (step b) ``` bulwahn@46756 ` 1453` ``` from this have "{i. a <= i & i <= b + 1} = {i. a <= i & i <= b} \ {b + 1}" by auto ``` bulwahn@46756 ` 1454` ``` from this step show ?case by simp ``` bulwahn@46756 ` 1455` ``` qed ``` bulwahn@46756 ` 1456` ```next ``` bulwahn@46756 ` 1457` ``` case False from this show ?thesis ``` bulwahn@46756 ` 1458` ``` by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans) ``` bulwahn@46756 ` 1459` ```qed ``` bulwahn@46756 ` 1460` bulwahn@46756 ` 1461` ```lemma finite_interval_int2 [iff]: "finite {i :: int. a <= i & i < b}" ``` bulwahn@46756 ` 1462` ```by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto ``` bulwahn@46756 ` 1463` bulwahn@46756 ` 1464` ```lemma finite_interval_int3 [iff]: "finite {i :: int. a < i & i <= b}" ``` bulwahn@46756 ` 1465` ```by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto ``` bulwahn@46756 ` 1466` bulwahn@46756 ` 1467` ```lemma finite_interval_int4 [iff]: "finite {i :: int. a < i & i < b}" ``` bulwahn@46756 ` 1468` ```by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto ``` bulwahn@46756 ` 1469` bulwahn@46756 ` 1470` haftmann@25919 ` 1471` ```subsection {* Configuration of the code generator *} ``` haftmann@25919 ` 1472` huffman@47108 ` 1473` ```text {* Constructors *} ``` huffman@47108 ` 1474` huffman@47108 ` 1475` ```definition Pos :: "num \ int" where ``` huffman@47108 ` 1476` ``` [simp, code_abbrev]: "Pos = numeral" ``` huffman@47108 ` 1477` huffman@47108 ` 1478` ```definition Neg :: "num \ int" where ``` huffman@47108 ` 1479` ``` [simp, code_abbrev]: "Neg = neg_numeral" ``` huffman@47108 ` 1480` huffman@47108 ` 1481` ```code_datatype "0::int" Pos Neg ``` huffman@47108 ` 1482` huffman@47108 ` 1483` huffman@47108 ` 1484` ```text {* Auxiliary operations *} ``` huffman@47108 ` 1485` huffman@47108 ` 1486` ```definition dup :: "int \ int" where ``` huffman@47108 ` 1487` ``` [simp]: "dup k = k + k" ``` haftmann@26507 ` 1488` huffman@47108 ` 1489` ```lemma dup_code [code]: ``` huffman@47108 ` 1490` ``` "dup 0 = 0" ``` huffman@47108 ` 1491` ``` "dup (Pos n) = Pos (Num.Bit0 n)" ``` huffman@47108 ` 1492` ``` "dup (Neg n) = Neg (Num.Bit0 n)" ``` huffman@47108 ` 1493` ``` unfolding Pos_def Neg_def neg_numeral_def ``` huffman@47108 ` 1494` ``` by (simp_all add: numeral_Bit0) ``` huffman@47108 ` 1495` huffman@47108 ` 1496` ```definition sub :: "num \ num \ int" where ``` huffman@47108 ` 1497` ``` [simp]: "sub m n = numeral m - numeral n" ``` haftmann@26507 ` 1498` huffman@47108 ` 1499` ```lemma sub_code [code]: ``` huffman@47108 ` 1500` ``` "sub Num.One Num.One = 0" ``` huffman@47108 ` 1501` ``` "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)" ``` huffman@47108 ` 1502` ``` "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)" ``` huffman@47108 ` 1503` ``` "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)" ``` huffman@47108 ` 1504` ``` "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)" ``` huffman@47108 ` 1505` ``` "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)" ``` huffman@47108 ` 1506` ``` "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)" ``` huffman@47108 ` 1507` ``` "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1" ``` huffman@47108 ` 1508` ``` "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1" ``` huffman@47108 ` 1509` ``` unfolding sub_def dup_def numeral.simps Pos_def Neg_def ``` huffman@47108 ` 1510` ``` neg_numeral_def numeral_BitM ``` huffman@47108 ` 1511` ``` by (simp_all only: algebra_simps) ``` haftmann@26507 ` 1512` huffman@47108 ` 1513` huffman@47108 ` 1514` ```text {* Implementations *} ``` huffman@47108 ` 1515` huffman@47108 ` 1516` ```lemma one_int_code [code, code_unfold]: ``` huffman@47108 ` 1517` ``` "1 = Pos Num.One" ``` huffman@47108 ` 1518` ``` by simp ``` huffman@47108 ` 1519` huffman@47108 ` 1520` ```lemma plus_int_code [code]: ``` huffman@47108 ` 1521` ``` "k + 0 = (k::int)" ``` huffman@47108 ` 1522` ``` "0 + l = (l::int)" ``` huffman@47108 ` 1523` ``` "Pos m + Pos n = Pos (m + n)" ``` huffman@47108 ` 1524` ``` "Pos m + Neg n = sub m n" ``` huffman@47108 ` 1525` ``` "Neg m + Pos n = sub n m" ``` huffman@47108 ` 1526` ``` "Neg m + Neg n = Neg (m + n)" ``` huffman@47108 ` 1527` ``` by simp_all ``` haftmann@26507 ` 1528` huffman@47108 ` 1529` ```lemma uminus_int_code [code]: ``` huffman@47108 ` 1530` ``` "uminus 0 = (0::int)" ``` huffman@47108 ` 1531` ``` "uminus (Pos m) = Neg m" ``` huffman@47108 ` 1532` ``` "uminus (Neg m) = Pos m" ``` huffman@47108 ` 1533` ``` by simp_all ``` huffman@47108 ` 1534` huffman@47108 ` 1535` ```lemma minus_int_code [code]: ``` huffman@47108 ` 1536` ``` "k - 0 = (k::int)" ``` huffman@47108 ` 1537` ``` "0 - l = uminus (l::int)" ``` huffman@47108 ` 1538` ``` "Pos m - Pos n = sub m n" ``` huffman@47108 ` 1539` ``` "Pos m - Neg n = Pos (m + n)" ``` huffman@47108 ` 1540` ``` "Neg m - Pos n = Neg (m + n)" ``` huffman@47108 ` 1541` ``` "Neg m - Neg n = sub n m" ``` huffman@47108 ` 1542` ``` by simp_all ``` huffman@47108 ` 1543` huffman@47108 ` 1544` ```lemma times_int_code [code]: ``` huffman@47108 ` 1545` ``` "k * 0 = (0::int)" ``` huffman@47108 ` 1546` ``` "0 * l = (0::int)" ``` huffman@47108 ` 1547` ``` "Pos m * Pos n = Pos (m * n)" ``` huffman@47108 ` 1548` ``` "Pos m * Neg n = Neg (m * n)" ``` huffman@47108 ` 1549` ``` "Neg m * Pos n = Neg (m * n)" ``` huffman@47108 ` 1550` ``` "Neg m * Neg n = Pos (m * n)" ``` huffman@47108 ` 1551` ``` by simp_all ``` haftmann@26507 ` 1552` haftmann@38857 ` 1553` ```instantiation int :: equal ``` haftmann@26507 ` 1554` ```begin ``` haftmann@26507 ` 1555` haftmann@37767 ` 1556` ```definition ``` huffman@47108 ` 1557` ``` "HOL.equal k l \ k = (l::int)" ``` haftmann@38857 ` 1558` huffman@47108 ` 1559` ```instance by default (rule equal_int_def) ``` haftmann@26507 ` 1560` haftmann@26507 ` 1561` ```end ``` haftmann@26507 ` 1562` huffman@47108 ` 1563` ```lemma equal_int_code [code]: ``` huffman@47108 ` 1564` ``` "HOL.equal 0 (0::int) \ True" ``` huffman@47108 ` 1565` ``` "HOL.equal 0 (Pos l) \ False" ``` huffman@47108 ` 1566` ``` "HOL.equal 0 (Neg l) \ False" ``` huffman@47108 ` 1567` ``` "HOL.equal (Pos k) 0 \ False" ``` huffman@47108 ` 1568` ``` "HOL.equal (Pos k) (Pos l) \ HOL.equal k l" ``` huffman@47108 ` 1569` ``` "HOL.equal (Pos k) (Neg l) \ False" ``` huffman@47108 ` 1570` ``` "HOL.equal (Neg k) 0 \ False" ``` huffman@47108 ` 1571` ``` "HOL.equal (Neg k) (Pos l) \ False" ``` huffman@47108 ` 1572` ``` "HOL.equal (Neg k) (Neg l) \ HOL.equal k l" ``` huffman@47108 ` 1573` ``` by (auto simp add: equal) ``` haftmann@26507 ` 1574` huffman@47108 ` 1575` ```lemma equal_int_refl [code nbe]: ``` haftmann@38857 ` 1576` ``` "HOL.equal (k::int) k \ True" ``` huffman@47108 ` 1577` ``` by (fact equal_refl) ``` haftmann@26507 ` 1578` haftmann@28562 ` 1579` ```lemma less_eq_int_code [code]: ``` huffman@47108 ` 1580` ``` "0 \ (0::int) \ True" ``` huffman@47108 ` 1581` ``` "0 \ Pos l \ True" ``` huffman@47108 ` 1582` ``` "0 \ Neg l \ False" ``` huffman@47108 ` 1583` ``` "Pos k \ 0 \ False" ``` huffman@47108 ` 1584` ``` "Pos k \ Pos l \ k \ l" ``` huffman@47108 ` 1585` ``` "Pos k \ Neg l \ False" ``` huffman@47108 ` 1586` ``` "Neg k \ 0 \ True" ``` huffman@47108 ` 1587` ``` "Neg k \ Pos l \ True" ``` huffman@47108 ` 1588` ``` "Neg k \ Neg l \ l \ k" ``` huffman@28958 ` 1589` ``` by simp_all ``` haftmann@26507 ` 1590` haftmann@28562 ` 1591` ```lemma less_int_code [code]: ``` huffman@47108 ` 1592` ``` "0 < (0::int) \ False" ``` huffman@47108 ` 1593` ``` "0 < Pos l \ True" ``` huffman@47108 ` 1594` ``` "0 < Neg l \ False" ``` huffman@47108 ` 1595` ``` "Pos k < 0 \ False" ``` huffman@47108 ` 1596` ``` "Pos k < Pos l \ k < l" ``` huffman@47108 ` 1597` ``` "Pos k < Neg l \ False" ``` huffman@47108 ` 1598` ``` "Neg k < 0 \ True" ``` huffman@47108 ` 1599` ``` "Neg k < Pos l \ True" ``` huffman@47108 ` 1600` ``` "Neg k < Neg l \ l < k" ``` huffman@28958 ` 1601` ``` by simp_all ``` haftmann@25919 ` 1602` huffman@47108 ` 1603` ```lemma nat_code [code]: ``` huffman@47108 ` 1604` ``` "nat (Int.Neg k) = 0" ``` huffman@47108 ` 1605` ``` "nat 0 = 0" ``` huffman@47108 ` 1606` ``` "nat (Int.Pos k) = nat_of_num k" ``` huffman@47108 ` 1607` ``` by (simp_all add: nat_of_num_numeral nat_numeral) ``` haftmann@25928 ` 1608` huffman@47108 ` 1609` ```lemma (in ring_1) of_int_code [code]: ``` huffman@47108 ` 1610` ``` "of_int (Int.Neg k) = neg_numeral k" ``` huffman@47108 ` 1611` ``` "of_int 0 = 0" ``` huffman@47108 ` 1612` ``` "of_int (Int.Pos k) = numeral k" ``` huffman@47108 ` 1613` ``` by simp_all ``` haftmann@25919 ` 1614` huffman@47108 ` 1615` huffman@47108 ` 1616` ```text {* Serializer setup *} ``` haftmann@25919 ` 1617` haftmann@25919 ` 1618` ```code_modulename SML ``` haftmann@33364 ` 1619` ``` Int Arith ``` haftmann@25919 ` 1620` haftmann@25919 ` 1621` ```code_modulename OCaml ``` haftmann@33364 ` 1622` ``` Int Arith ``` haftmann@25919 ` 1623` haftmann@25919 ` 1624` ```code_modulename Haskell ``` haftmann@33364 ` 1625` ``` Int Arith ``` haftmann@25919 ` 1626` haftmann@25919 ` 1627` ```quickcheck_params [default_type = int] ``` haftmann@25919 ` 1628` huffman@47108 ` 1629` ```hide_const (open) Pos Neg sub dup ``` haftmann@25919 ` 1630` haftmann@25919 ` 1631` haftmann@25919 ` 1632` ```subsection {* Legacy theorems *} ``` haftmann@25919 ` 1633` haftmann@25919 ` 1634` ```lemmas inj_int = inj_of_nat [where 'a=int] ``` haftmann@25919 ` 1635` ```lemmas zadd_int = of_nat_add [where 'a=int, symmetric] ``` haftmann@25919 ` 1636` ```lemmas int_mult = of_nat_mult [where 'a=int] ``` haftmann@25919 ` 1637` ```lemmas zmult_int = of_nat_mult [where 'a=int, symmetric] ``` wenzelm@45607 ` 1638` ```lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n"] for n ``` haftmann@25919 ` 1639` ```lemmas zless_int = of_nat_less_iff [where 'a=int] ``` wenzelm@45607 ` 1640` ```lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k"] for k ``` haftmann@25919 ` 1641` ```lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int] ``` haftmann@25919 ` 1642` ```lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int] ``` wenzelm@45607 ` 1643` ```lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n"] for n ``` haftmann@25919 ` 1644` ```lemmas int_0 = of_nat_0 [where 'a=int] ``` haftmann@25919 ` 1645` ```lemmas int_1 = of_nat_1 [where 'a=int] ``` haftmann@25919 ` 1646` ```lemmas int_Suc = of_nat_Suc [where 'a=int] ``` huffman@47207 ` 1647` ```lemmas int_numeral = of_nat_numeral [where 'a=int] ``` wenzelm@45607 ` 1648` ```lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m"] for m ``` haftmann@25919 ` 1649` ```lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int] ``` haftmann@25919 ` 1650` ```lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric] ``` huffman@47255 ` 1651` ```lemmas zpower_numeral_even = power_numeral_even [where 'a=int] ``` huffman@47255 ` 1652` ```lemmas zpower_numeral_odd = power_numeral_odd [where 'a=int] ``` haftmann@30960 ` 1653` haftmann@31015 ` 1654` ```lemma zpower_zpower: ``` haftmann@31015 ` 1655` ``` "(x ^ y) ^ z = (x ^ (y * z)::int)" ``` haftmann@31015 ` 1656` ``` by (rule power_mult [symmetric]) ``` haftmann@31015 ` 1657` haftmann@31015 ` 1658` ```lemma int_power: ``` haftmann@31015 ` 1659` ``` "int (m ^ n) = int m ^ n" ``` haftmann@31015 ` 1660` ``` by (rule of_nat_power) ``` haftmann@31015 ` 1661` haftmann@31015 ` 1662` ```lemmas zpower_int = int_power [symmetric] ``` haftmann@31015 ` 1663` huffman@48045 ` 1664` ```text {* De-register @{text "int"} as a quotient type: *} ``` huffman@48045 ` 1665` huffman@48045 ` 1666` ```lemmas [transfer_rule del] = ``` huffman@48045 ` 1667` ``` int.id_abs_transfer int.rel_eq_transfer zero_int.transfer one_int.transfer ``` huffman@48045 ` 1668` ``` plus_int.transfer uminus_int.transfer minus_int.transfer times_int.transfer ``` huffman@48045 ` 1669` ``` int_transfer less_eq_int.transfer less_int.transfer of_int.transfer ``` huffman@48045 ` 1670` ``` nat.transfer ``` huffman@48045 ` 1671` huffman@48045 ` 1672` ```declare Quotient_int [quot_del] ``` huffman@48045 ` 1673` haftmann@25919 ` 1674` ```end ```