src/Pure/thm.ML
author wenzelm
Sat Apr 14 17:36:17 2007 +0200 (2007-04-14)
changeset 22685 fc4ef3807fb9
parent 22596 d0d2af4db18f
child 22909 7de3b0ac4189
permissions -rw-r--r--
removed obsolete read_ctyp, read_def_cterm;
moved read_def_cterms, read_cterm to more_thm.ML;
avoid rep_theory;
wenzelm@250
     1
(*  Title:      Pure/thm.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@250
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@229
     4
    Copyright   1994  University of Cambridge
lcp@229
     5
wenzelm@16425
     6
The very core of Isabelle's Meta Logic: certified types and terms,
wenzelm@16425
     7
meta theorems, meta rules (including lifting and resolution).
clasohm@0
     8
*)
clasohm@0
     9
wenzelm@6089
    10
signature BASIC_THM =
paulson@1503
    11
  sig
wenzelm@1160
    12
  (*certified types*)
wenzelm@387
    13
  type ctyp
wenzelm@16656
    14
  val rep_ctyp: ctyp ->
wenzelm@16656
    15
   {thy: theory,
wenzelm@16656
    16
    T: typ,
wenzelm@20512
    17
    maxidx: int,
wenzelm@16656
    18
    sorts: sort list}
wenzelm@16425
    19
  val theory_of_ctyp: ctyp -> theory
wenzelm@16425
    20
  val typ_of: ctyp -> typ
wenzelm@16425
    21
  val ctyp_of: theory -> typ -> ctyp
wenzelm@1160
    22
wenzelm@1160
    23
  (*certified terms*)
wenzelm@1160
    24
  type cterm
wenzelm@22584
    25
  exception CTERM of string * cterm list
wenzelm@16601
    26
  val rep_cterm: cterm ->
wenzelm@16656
    27
   {thy: theory,
wenzelm@16656
    28
    t: term,
wenzelm@16656
    29
    T: typ,
wenzelm@16656
    30
    maxidx: int,
wenzelm@16656
    31
    sorts: sort list}
wenzelm@22596
    32
  val crep_cterm: cterm -> {thy: theory, t: term, T: ctyp, maxidx: int, sorts: sort list}
wenzelm@16425
    33
  val theory_of_cterm: cterm -> theory
wenzelm@16425
    34
  val term_of: cterm -> term
wenzelm@16425
    35
  val cterm_of: theory -> term -> cterm
wenzelm@16425
    36
  val ctyp_of_term: cterm -> ctyp
wenzelm@1160
    37
wenzelm@16425
    38
  type tag              (* = string * string list *)
paulson@1529
    39
wenzelm@1160
    40
  (*meta theorems*)
wenzelm@1160
    41
  type thm
wenzelm@22365
    42
  type attribute     (* = Context.generic * thm -> Context.generic * thm *)
wenzelm@16425
    43
  val rep_thm: thm ->
wenzelm@16656
    44
   {thy: theory,
wenzelm@16425
    45
    der: bool * Proofterm.proof,
wenzelm@21646
    46
    tags: tag list,
wenzelm@16425
    47
    maxidx: int,
wenzelm@16425
    48
    shyps: sort list,
wenzelm@16425
    49
    hyps: term list,
wenzelm@16425
    50
    tpairs: (term * term) list,
wenzelm@16425
    51
    prop: term}
wenzelm@16425
    52
  val crep_thm: thm ->
wenzelm@16656
    53
   {thy: theory,
wenzelm@16425
    54
    der: bool * Proofterm.proof,
wenzelm@21646
    55
    tags: tag list,
wenzelm@16425
    56
    maxidx: int,
wenzelm@16425
    57
    shyps: sort list,
wenzelm@16425
    58
    hyps: cterm list,
wenzelm@16425
    59
    tpairs: (cterm * cterm) list,
wenzelm@16425
    60
    prop: cterm}
wenzelm@6089
    61
  exception THM of string * int * thm list
wenzelm@16425
    62
  val theory_of_thm: thm -> theory
wenzelm@16425
    63
  val prop_of: thm -> term
wenzelm@16425
    64
  val proof_of: thm -> Proofterm.proof
wenzelm@16425
    65
  val tpairs_of: thm -> (term * term) list
wenzelm@16656
    66
  val concl_of: thm -> term
wenzelm@16425
    67
  val prems_of: thm -> term list
wenzelm@16425
    68
  val nprems_of: thm -> int
wenzelm@16425
    69
  val cprop_of: thm -> cterm
wenzelm@18145
    70
  val cprem_of: thm -> int -> cterm
wenzelm@16656
    71
  val transfer: theory -> thm -> thm
wenzelm@16945
    72
  val weaken: cterm -> thm -> thm
wenzelm@16425
    73
  val extra_shyps: thm -> sort list
wenzelm@16425
    74
  val strip_shyps: thm -> thm
wenzelm@16425
    75
  val get_axiom_i: theory -> string -> thm
wenzelm@16425
    76
  val get_axiom: theory -> xstring -> thm
wenzelm@16425
    77
  val def_name: string -> string
wenzelm@20884
    78
  val def_name_optional: string -> string -> string
wenzelm@16425
    79
  val get_def: theory -> xstring -> thm
wenzelm@16425
    80
  val axioms_of: theory -> (string * thm) list
wenzelm@1160
    81
wenzelm@1160
    82
  (*meta rules*)
wenzelm@16425
    83
  val assume: cterm -> thm
wenzelm@16425
    84
  val implies_intr: cterm -> thm -> thm
wenzelm@16425
    85
  val implies_elim: thm -> thm -> thm
wenzelm@16425
    86
  val forall_intr: cterm -> thm -> thm
wenzelm@16425
    87
  val forall_elim: cterm -> thm -> thm
wenzelm@16425
    88
  val reflexive: cterm -> thm
wenzelm@16425
    89
  val symmetric: thm -> thm
wenzelm@16425
    90
  val transitive: thm -> thm -> thm
wenzelm@16425
    91
  val beta_conversion: bool -> cterm -> thm
wenzelm@16425
    92
  val eta_conversion: cterm -> thm
wenzelm@16425
    93
  val abstract_rule: string -> cterm -> thm -> thm
wenzelm@16425
    94
  val combination: thm -> thm -> thm
wenzelm@16425
    95
  val equal_intr: thm -> thm -> thm
wenzelm@16425
    96
  val equal_elim: thm -> thm -> thm
wenzelm@16425
    97
  val flexflex_rule: thm -> thm Seq.seq
wenzelm@19910
    98
  val generalize: string list * string list -> int -> thm -> thm
wenzelm@16425
    99
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@22584
   100
  val instantiate_cterm: (ctyp * ctyp) list * (cterm * cterm) list -> cterm -> cterm
wenzelm@16425
   101
  val trivial: cterm -> thm
wenzelm@16425
   102
  val class_triv: theory -> class -> thm
wenzelm@19505
   103
  val unconstrainT: ctyp -> thm -> thm
wenzelm@16425
   104
  val dest_state: thm * int -> (term * term) list * term list * term * term
wenzelm@18035
   105
  val lift_rule: cterm -> thm -> thm
wenzelm@16425
   106
  val incr_indexes: int -> thm -> thm
wenzelm@16425
   107
  val assumption: int -> thm -> thm Seq.seq
wenzelm@16425
   108
  val eq_assumption: int -> thm -> thm
wenzelm@16425
   109
  val rotate_rule: int -> int -> thm -> thm
wenzelm@16425
   110
  val permute_prems: int -> int -> thm -> thm
wenzelm@1160
   111
  val rename_params_rule: string list * int -> thm -> thm
wenzelm@18501
   112
  val compose_no_flatten: bool -> thm * int -> int -> thm -> thm Seq.seq
wenzelm@16425
   113
  val bicompose: bool -> bool * thm * int -> int -> thm -> thm Seq.seq
wenzelm@16425
   114
  val biresolution: bool -> (bool * thm) list -> int -> thm -> thm Seq.seq
wenzelm@16425
   115
  val invoke_oracle: theory -> xstring -> theory * Object.T -> thm
wenzelm@16425
   116
  val invoke_oracle_i: theory -> string -> theory * Object.T -> thm
wenzelm@250
   117
end;
clasohm@0
   118
wenzelm@6089
   119
signature THM =
wenzelm@6089
   120
sig
wenzelm@6089
   121
  include BASIC_THM
wenzelm@16425
   122
  val dest_ctyp: ctyp -> ctyp list
wenzelm@16425
   123
  val dest_comb: cterm -> cterm * cterm
wenzelm@20580
   124
  val dest_arg: cterm -> cterm
wenzelm@20673
   125
  val dest_binop: cterm -> cterm * cterm
wenzelm@16425
   126
  val dest_abs: string option -> cterm -> cterm * cterm
wenzelm@20261
   127
  val adjust_maxidx_cterm: int -> cterm -> cterm
wenzelm@16425
   128
  val capply: cterm -> cterm -> cterm
wenzelm@16425
   129
  val cabs: cterm -> cterm -> cterm
wenzelm@16425
   130
  val major_prem_of: thm -> term
wenzelm@16425
   131
  val no_prems: thm -> bool
wenzelm@16945
   132
  val terms_of_tpairs: (term * term) list -> term list
wenzelm@19881
   133
  val maxidx_of: thm -> int
wenzelm@19910
   134
  val maxidx_thm: thm -> int -> int
wenzelm@19881
   135
  val hyps_of: thm -> term list
wenzelm@16945
   136
  val full_prop_of: thm -> term
wenzelm@21646
   137
  val get_name: thm -> string
wenzelm@21646
   138
  val put_name: string -> thm -> thm
wenzelm@21646
   139
  val get_tags: thm -> tag list
wenzelm@21646
   140
  val map_tags: (tag list -> tag list) -> thm -> thm
wenzelm@16945
   141
  val compress: thm -> thm
wenzelm@20261
   142
  val adjust_maxidx_thm: int -> thm -> thm
wenzelm@16425
   143
  val rename_boundvars: term -> term -> thm -> thm
wenzelm@16425
   144
  val cterm_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   145
  val cterm_first_order_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   146
  val cterm_incr_indexes: int -> cterm -> cterm
wenzelm@20002
   147
  val varifyT: thm -> thm
wenzelm@20002
   148
  val varifyT': (string * sort) list -> thm -> ((string * sort) * indexname) list * thm
wenzelm@19881
   149
  val freezeT: thm -> thm
wenzelm@6089
   150
end;
wenzelm@6089
   151
wenzelm@3550
   152
structure Thm: THM =
clasohm@0
   153
struct
wenzelm@250
   154
wenzelm@22237
   155
structure Pt = Proofterm;
wenzelm@22237
   156
wenzelm@16656
   157
wenzelm@387
   158
(*** Certified terms and types ***)
wenzelm@387
   159
wenzelm@16656
   160
(** collect occurrences of sorts -- unless all sorts non-empty **)
wenzelm@16656
   161
wenzelm@16679
   162
fun may_insert_typ_sorts thy T = if Sign.all_sorts_nonempty thy then I else Sorts.insert_typ T;
wenzelm@16679
   163
fun may_insert_term_sorts thy t = if Sign.all_sorts_nonempty thy then I else Sorts.insert_term t;
wenzelm@16656
   164
wenzelm@16656
   165
(*NB: type unification may invent new sorts*)
wenzelm@16656
   166
fun may_insert_env_sorts thy (env as Envir.Envir {iTs, ...}) =
wenzelm@16656
   167
  if Sign.all_sorts_nonempty thy then I
wenzelm@16656
   168
  else Vartab.fold (fn (_, (_, T)) => Sorts.insert_typ T) iTs;
wenzelm@16656
   169
wenzelm@16656
   170
wenzelm@16656
   171
wenzelm@250
   172
(** certified types **)
wenzelm@250
   173
wenzelm@22237
   174
abstype ctyp = Ctyp of
wenzelm@20512
   175
 {thy_ref: theory_ref,
wenzelm@20512
   176
  T: typ,
wenzelm@20512
   177
  maxidx: int,
wenzelm@22237
   178
  sorts: sort list}
wenzelm@22237
   179
with
wenzelm@250
   180
wenzelm@20512
   181
fun rep_ctyp (Ctyp {thy_ref, T, maxidx, sorts}) =
wenzelm@16425
   182
  let val thy = Theory.deref thy_ref
wenzelm@22596
   183
  in {thy = thy, T = T, maxidx = maxidx, sorts = sorts} end;
wenzelm@250
   184
wenzelm@16656
   185
fun theory_of_ctyp (Ctyp {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   186
wenzelm@250
   187
fun typ_of (Ctyp {T, ...}) = T;
wenzelm@250
   188
wenzelm@16656
   189
fun ctyp_of thy raw_T =
wenzelm@20512
   190
  let val T = Sign.certify_typ thy raw_T in
wenzelm@20512
   191
    Ctyp {thy_ref = Theory.self_ref thy, T = T,
wenzelm@20512
   192
      maxidx = Term.maxidx_of_typ T, sorts = may_insert_typ_sorts thy T []}
wenzelm@20512
   193
  end;
wenzelm@250
   194
wenzelm@20512
   195
fun dest_ctyp (Ctyp {thy_ref, T = Type (s, Ts), maxidx, sorts}) =
wenzelm@20512
   196
      map (fn T => Ctyp {thy_ref = thy_ref, T = T, maxidx = maxidx, sorts = sorts}) Ts
wenzelm@16679
   197
  | dest_ctyp cT = raise TYPE ("dest_ctyp", [typ_of cT], []);
berghofe@15087
   198
lcp@229
   199
lcp@229
   200
wenzelm@250
   201
(** certified terms **)
lcp@229
   202
wenzelm@16601
   203
(*certified terms with checked typ, maxidx, and sorts*)
wenzelm@22237
   204
abstype cterm = Cterm of
wenzelm@16601
   205
 {thy_ref: theory_ref,
wenzelm@16601
   206
  t: term,
wenzelm@16601
   207
  T: typ,
wenzelm@16601
   208
  maxidx: int,
wenzelm@22237
   209
  sorts: sort list}
wenzelm@22237
   210
with
wenzelm@16425
   211
wenzelm@22584
   212
exception CTERM of string * cterm list;
wenzelm@16679
   213
wenzelm@16601
   214
fun rep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   215
  let val thy =  Theory.deref thy_ref
wenzelm@22596
   216
  in {thy = thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   217
wenzelm@16601
   218
fun crep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   219
  let val thy = Theory.deref thy_ref in
wenzelm@22596
   220
   {thy = thy, t = t,
wenzelm@20512
   221
      T = Ctyp {thy_ref = thy_ref, T = T, maxidx = maxidx, sorts = sorts},
wenzelm@16601
   222
    maxidx = maxidx, sorts = sorts}
wenzelm@16425
   223
  end;
wenzelm@3967
   224
wenzelm@16425
   225
fun theory_of_cterm (Cterm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@250
   226
fun term_of (Cterm {t, ...}) = t;
lcp@229
   227
wenzelm@20512
   228
fun ctyp_of_term (Cterm {thy_ref, T, maxidx, sorts, ...}) =
wenzelm@20512
   229
  Ctyp {thy_ref = thy_ref, T = T, maxidx = maxidx, sorts = sorts};
paulson@2671
   230
wenzelm@16425
   231
fun cterm_of thy tm =
wenzelm@16601
   232
  let
wenzelm@18969
   233
    val (t, T, maxidx) = Sign.certify_term thy tm;
wenzelm@16656
   234
    val sorts = may_insert_term_sorts thy t [];
wenzelm@16601
   235
  in Cterm {thy_ref = Theory.self_ref thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   236
wenzelm@20057
   237
fun merge_thys0 (Cterm {thy_ref = r1, t = t1, ...}) (Cterm {thy_ref = r2, t = t2, ...}) =
wenzelm@20057
   238
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise TERM (msg, [t1, t2]);
wenzelm@16656
   239
wenzelm@20580
   240
wenzelm@22584
   241
fun dest_comb (ct as Cterm {t = t $ u, T, thy_ref, maxidx, sorts}) =
wenzelm@16679
   242
      let val A = Term.argument_type_of t in
wenzelm@16679
   243
        (Cterm {t = t, T = A --> T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   244
         Cterm {t = u, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   245
      end
wenzelm@22584
   246
  | dest_comb ct = raise CTERM ("dest_comb", [ct]);
clasohm@1493
   247
wenzelm@22584
   248
fun dest_arg (ct as Cterm {t = t $ u, T, thy_ref, maxidx, sorts}) =
wenzelm@20580
   249
      let val A = Term.argument_type_of t in
wenzelm@20580
   250
         Cterm {t = u, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts}
wenzelm@20580
   251
      end
wenzelm@22584
   252
  | dest_arg ct = raise CTERM ("dest_arg", [ct]);
wenzelm@20580
   253
wenzelm@22584
   254
fun dest_binop (ct as Cterm {t = tm, T = _, thy_ref, maxidx, sorts}) =
wenzelm@20673
   255
  let fun cterm t T = Cterm {t = t, T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts} in
wenzelm@20673
   256
    (case tm of
wenzelm@20673
   257
      Const (_, Type ("fun", [A, Type ("fun", [B, _])])) $ a $ b => (cterm a A, cterm b B)
wenzelm@20673
   258
    |  Free (_, Type ("fun", [A, Type ("fun", [B, _])])) $ a $ b => (cterm a A, cterm b B)
wenzelm@20673
   259
    |   Var (_, Type ("fun", [A, Type ("fun", [B, _])])) $ a $ b => (cterm a A, cterm b B)
wenzelm@22584
   260
    | _ => raise CTERM ("dest_binop", [ct]))
wenzelm@20673
   261
  end;
wenzelm@20673
   262
wenzelm@22584
   263
fun dest_abs a (ct as
wenzelm@22584
   264
        Cterm {t = Abs (x, T, t), T = Type ("fun", [_, U]), thy_ref, maxidx, sorts}) =
wenzelm@18944
   265
      let val (y', t') = Term.dest_abs (the_default x a, T, t) in
wenzelm@16679
   266
        (Cterm {t = Free (y', T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   267
          Cterm {t = t', T = U, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   268
      end
wenzelm@22584
   269
  | dest_abs _ ct = raise CTERM ("dest_abs", [ct]);
clasohm@1493
   270
wenzelm@16601
   271
fun capply
wenzelm@16656
   272
  (cf as Cterm {t = f, T = Type ("fun", [dty, rty]), maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   273
  (cx as Cterm {t = x, T, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   274
    if T = dty then
wenzelm@16656
   275
      Cterm {thy_ref = merge_thys0 cf cx,
wenzelm@16656
   276
        t = f $ x,
wenzelm@16656
   277
        T = rty,
wenzelm@16656
   278
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16601
   279
        sorts = Sorts.union sorts1 sorts2}
wenzelm@22584
   280
      else raise CTERM ("capply: types don't agree", [cf, cx])
wenzelm@22584
   281
  | capply cf cx = raise CTERM ("capply: first arg is not a function", [cf, cx]);
wenzelm@250
   282
wenzelm@16601
   283
fun cabs
wenzelm@16656
   284
  (ct1 as Cterm {t = t1, T = T1, maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   285
  (ct2 as Cterm {t = t2, T = T2, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@21975
   286
    let val t = Term.lambda t1 t2 in
wenzelm@16656
   287
      Cterm {thy_ref = merge_thys0 ct1 ct2,
wenzelm@16656
   288
        t = t, T = T1 --> T2,
wenzelm@16656
   289
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16656
   290
        sorts = Sorts.union sorts1 sorts2}
wenzelm@16601
   291
    end;
lcp@229
   292
wenzelm@20580
   293
wenzelm@20580
   294
fun adjust_maxidx_cterm i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@20580
   295
  if maxidx = i then ct
wenzelm@20580
   296
  else if maxidx < i then
wenzelm@20580
   297
    Cterm {maxidx = i, thy_ref = thy_ref, t = t, T = T, sorts = sorts}
wenzelm@20580
   298
  else
wenzelm@20580
   299
    Cterm {maxidx = Int.max (maxidx_of_term t, i), thy_ref = thy_ref, t = t, T = T, sorts = sorts};
wenzelm@20580
   300
berghofe@10416
   301
(*Matching of cterms*)
wenzelm@16656
   302
fun gen_cterm_match match
wenzelm@20512
   303
    (ct1 as Cterm {t = t1, sorts = sorts1, ...},
wenzelm@20815
   304
     ct2 as Cterm {t = t2, sorts = sorts2, maxidx = maxidx2, ...}) =
berghofe@10416
   305
  let
wenzelm@16656
   306
    val thy_ref = merge_thys0 ct1 ct2;
wenzelm@18184
   307
    val (Tinsts, tinsts) = match (Theory.deref thy_ref) (t1, t2) (Vartab.empty, Vartab.empty);
wenzelm@16601
   308
    val sorts = Sorts.union sorts1 sorts2;
wenzelm@20512
   309
    fun mk_cTinst ((a, i), (S, T)) =
wenzelm@20512
   310
      (Ctyp {T = TVar ((a, i), S), thy_ref = thy_ref, maxidx = i, sorts = sorts},
wenzelm@20815
   311
       Ctyp {T = T, thy_ref = thy_ref, maxidx = maxidx2, sorts = sorts});
wenzelm@20512
   312
    fun mk_ctinst ((x, i), (T, t)) =
wenzelm@16601
   313
      let val T = Envir.typ_subst_TVars Tinsts T in
wenzelm@20512
   314
        (Cterm {t = Var ((x, i), T), T = T, thy_ref = thy_ref, maxidx = i, sorts = sorts},
wenzelm@20815
   315
         Cterm {t = t, T = T, thy_ref = thy_ref, maxidx = maxidx2, sorts = sorts})
berghofe@10416
   316
      end;
wenzelm@16656
   317
  in (Vartab.fold (cons o mk_cTinst) Tinsts [], Vartab.fold (cons o mk_ctinst) tinsts []) end;
berghofe@10416
   318
berghofe@10416
   319
val cterm_match = gen_cterm_match Pattern.match;
berghofe@10416
   320
val cterm_first_order_match = gen_cterm_match Pattern.first_order_match;
berghofe@10416
   321
berghofe@10416
   322
(*Incrementing indexes*)
wenzelm@16601
   323
fun cterm_incr_indexes i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@22584
   324
  if i < 0 then raise CTERM ("negative increment", [ct])
wenzelm@16601
   325
  else if i = 0 then ct
wenzelm@16601
   326
  else Cterm {thy_ref = thy_ref, t = Logic.incr_indexes ([], i) t,
wenzelm@16884
   327
    T = Logic.incr_tvar i T, maxidx = maxidx + i, sorts = sorts};
berghofe@10416
   328
wenzelm@2509
   329
wenzelm@2509
   330
wenzelm@387
   331
(*** Meta theorems ***)
lcp@229
   332
wenzelm@21646
   333
type tag = string * string list;
wenzelm@21646
   334
wenzelm@22237
   335
abstype thm = Thm of
wenzelm@16425
   336
 {thy_ref: theory_ref,         (*dynamic reference to theory*)
berghofe@11518
   337
  der: bool * Pt.proof,        (*derivation*)
wenzelm@21646
   338
  tags: tag list,              (*additional annotations/comments*)
wenzelm@3967
   339
  maxidx: int,                 (*maximum index of any Var or TVar*)
wenzelm@16601
   340
  shyps: sort list,            (*sort hypotheses as ordered list*)
wenzelm@16601
   341
  hyps: term list,             (*hypotheses as ordered list*)
berghofe@13658
   342
  tpairs: (term * term) list,  (*flex-flex pairs*)
wenzelm@22237
   343
  prop: term}                  (*conclusion*)
wenzelm@22237
   344
with
clasohm@0
   345
wenzelm@22365
   346
(*attributes subsume any kind of rules or context modifiers*)
wenzelm@22365
   347
type attribute = Context.generic * thm -> Context.generic * thm;
wenzelm@22365
   348
wenzelm@16725
   349
(*errors involving theorems*)
wenzelm@16725
   350
exception THM of string * int * thm list;
berghofe@13658
   351
wenzelm@21646
   352
fun rep_thm (Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   353
  let val thy = Theory.deref thy_ref in
wenzelm@22596
   354
   {thy = thy, der = der, tags = tags, maxidx = maxidx,
wenzelm@16425
   355
    shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@16425
   356
  end;
clasohm@0
   357
wenzelm@16425
   358
(*version of rep_thm returning cterms instead of terms*)
wenzelm@21646
   359
fun crep_thm (Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   360
  let
wenzelm@16425
   361
    val thy = Theory.deref thy_ref;
wenzelm@16601
   362
    fun cterm max t = Cterm {thy_ref = thy_ref, t = t, T = propT, maxidx = max, sorts = shyps};
wenzelm@16425
   363
  in
wenzelm@22596
   364
   {thy = thy, der = der, tags = tags, maxidx = maxidx, shyps = shyps,
wenzelm@16425
   365
    hyps = map (cterm ~1) hyps,
wenzelm@16425
   366
    tpairs = map (pairself (cterm maxidx)) tpairs,
wenzelm@16425
   367
    prop = cterm maxidx prop}
clasohm@1517
   368
  end;
clasohm@1517
   369
wenzelm@16725
   370
fun terms_of_tpairs tpairs = fold_rev (fn (t, u) => cons t o cons u) tpairs [];
wenzelm@16725
   371
wenzelm@16725
   372
fun eq_tpairs ((t, u), (t', u')) = t aconv t' andalso u aconv u';
wenzelm@18944
   373
fun union_tpairs ts us = Library.merge eq_tpairs (ts, us);
wenzelm@16884
   374
val maxidx_tpairs = fold (fn (t, u) => Term.maxidx_term t #> Term.maxidx_term u);
wenzelm@16725
   375
wenzelm@16725
   376
fun attach_tpairs tpairs prop =
wenzelm@16725
   377
  Logic.list_implies (map Logic.mk_equals tpairs, prop);
wenzelm@16725
   378
wenzelm@16725
   379
fun full_prop_of (Thm {tpairs, prop, ...}) = attach_tpairs tpairs prop;
wenzelm@16945
   380
wenzelm@22365
   381
val union_hyps = OrdList.union Term.fast_term_ord;
wenzelm@22365
   382
wenzelm@16945
   383
wenzelm@16945
   384
(* merge theories of cterms/thms; raise exception if incompatible *)
wenzelm@16945
   385
wenzelm@16945
   386
fun merge_thys1 (Cterm {thy_ref = r1, ...}) (th as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   387
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@16945
   388
wenzelm@16945
   389
fun merge_thys2 (th1 as Thm {thy_ref = r1, ...}) (th2 as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   390
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th1, th2]);
wenzelm@16945
   391
clasohm@0
   392
wenzelm@22365
   393
(* basic components *)
wenzelm@16135
   394
wenzelm@16425
   395
fun theory_of_thm (Thm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@19429
   396
fun maxidx_of (Thm {maxidx, ...}) = maxidx;
wenzelm@19910
   397
fun maxidx_thm th i = Int.max (maxidx_of th, i);
wenzelm@19881
   398
fun hyps_of (Thm {hyps, ...}) = hyps;
wenzelm@12803
   399
fun prop_of (Thm {prop, ...}) = prop;
wenzelm@13528
   400
fun proof_of (Thm {der = (_, proof), ...}) = proof;
wenzelm@16601
   401
fun tpairs_of (Thm {tpairs, ...}) = tpairs;
clasohm@0
   402
wenzelm@16601
   403
val concl_of = Logic.strip_imp_concl o prop_of;
wenzelm@16601
   404
val prems_of = Logic.strip_imp_prems o prop_of;
wenzelm@21576
   405
val nprems_of = Logic.count_prems o prop_of;
wenzelm@19305
   406
fun no_prems th = nprems_of th = 0;
wenzelm@16601
   407
wenzelm@16601
   408
fun major_prem_of th =
wenzelm@16601
   409
  (case prems_of th of
wenzelm@16601
   410
    prem :: _ => Logic.strip_assums_concl prem
wenzelm@16601
   411
  | [] => raise THM ("major_prem_of: rule with no premises", 0, [th]));
wenzelm@16601
   412
wenzelm@16601
   413
(*the statement of any thm is a cterm*)
wenzelm@16601
   414
fun cprop_of (Thm {thy_ref, maxidx, shyps, prop, ...}) =
wenzelm@16601
   415
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, t = prop, sorts = shyps};
wenzelm@16601
   416
wenzelm@18145
   417
fun cprem_of (th as Thm {thy_ref, maxidx, shyps, prop, ...}) i =
wenzelm@18035
   418
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, sorts = shyps,
wenzelm@18145
   419
    t = Logic.nth_prem (i, prop) handle TERM _ => raise THM ("cprem_of", i, [th])};
wenzelm@18035
   420
wenzelm@16656
   421
(*explicit transfer to a super theory*)
wenzelm@16425
   422
fun transfer thy' thm =
wenzelm@3895
   423
  let
wenzelm@21646
   424
    val Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop} = thm;
wenzelm@16425
   425
    val thy = Theory.deref thy_ref;
wenzelm@3895
   426
  in
wenzelm@16945
   427
    if not (subthy (thy, thy')) then
wenzelm@16945
   428
      raise THM ("transfer: not a super theory", 0, [thm])
wenzelm@16945
   429
    else if eq_thy (thy, thy') then thm
wenzelm@16945
   430
    else
wenzelm@16945
   431
      Thm {thy_ref = Theory.self_ref thy',
wenzelm@16945
   432
        der = der,
wenzelm@21646
   433
        tags = tags,
wenzelm@16945
   434
        maxidx = maxidx,
wenzelm@16945
   435
        shyps = shyps,
wenzelm@16945
   436
        hyps = hyps,
wenzelm@16945
   437
        tpairs = tpairs,
wenzelm@16945
   438
        prop = prop}
wenzelm@3895
   439
  end;
wenzelm@387
   440
wenzelm@16945
   441
(*explicit weakening: maps |- B to A |- B*)
wenzelm@16945
   442
fun weaken raw_ct th =
wenzelm@16945
   443
  let
wenzelm@20261
   444
    val ct as Cterm {t = A, T, sorts, maxidx = maxidxA, ...} = adjust_maxidx_cterm ~1 raw_ct;
wenzelm@21646
   445
    val Thm {der, tags, maxidx, shyps, hyps, tpairs, prop, ...} = th;
wenzelm@16945
   446
  in
wenzelm@16945
   447
    if T <> propT then
wenzelm@16945
   448
      raise THM ("weaken: assumptions must have type prop", 0, [])
wenzelm@16945
   449
    else if maxidxA <> ~1 then
wenzelm@16945
   450
      raise THM ("weaken: assumptions may not contain schematic variables", maxidxA, [])
wenzelm@16945
   451
    else
wenzelm@16945
   452
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16945
   453
        der = der,
wenzelm@21646
   454
        tags = tags,
wenzelm@16945
   455
        maxidx = maxidx,
wenzelm@16945
   456
        shyps = Sorts.union sorts shyps,
wenzelm@22365
   457
        hyps = OrdList.insert Term.fast_term_ord A hyps,
wenzelm@16945
   458
        tpairs = tpairs,
wenzelm@16945
   459
        prop = prop}
wenzelm@16945
   460
  end;
wenzelm@16656
   461
wenzelm@16656
   462
clasohm@0
   463
wenzelm@1238
   464
(** sort contexts of theorems **)
wenzelm@1238
   465
wenzelm@16656
   466
fun present_sorts (Thm {hyps, tpairs, prop, ...}) =
wenzelm@16656
   467
  fold (fn (t, u) => Sorts.insert_term t o Sorts.insert_term u) tpairs
wenzelm@16656
   468
    (Sorts.insert_terms hyps (Sorts.insert_term prop []));
wenzelm@1238
   469
wenzelm@7642
   470
(*remove extra sorts that are non-empty by virtue of type signature information*)
wenzelm@7642
   471
fun strip_shyps (thm as Thm {shyps = [], ...}) = thm
wenzelm@21646
   472
  | strip_shyps (thm as Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@7642
   473
      let
wenzelm@16425
   474
        val thy = Theory.deref thy_ref;
wenzelm@16656
   475
        val shyps' =
wenzelm@16656
   476
          if Sign.all_sorts_nonempty thy then []
wenzelm@16656
   477
          else
wenzelm@16656
   478
            let
wenzelm@16656
   479
              val present = present_sorts thm;
wenzelm@16656
   480
              val extra = Sorts.subtract present shyps;
wenzelm@16656
   481
              val witnessed = map #2 (Sign.witness_sorts thy present extra);
wenzelm@16656
   482
            in Sorts.subtract witnessed shyps end;
wenzelm@7642
   483
      in
wenzelm@21646
   484
        Thm {thy_ref = thy_ref, der = der, tags = tags, maxidx = maxidx,
wenzelm@16656
   485
          shyps = shyps', hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@7642
   486
      end;
wenzelm@1238
   487
wenzelm@16656
   488
(*dangling sort constraints of a thm*)
wenzelm@16656
   489
fun extra_shyps (th as Thm {shyps, ...}) = Sorts.subtract (present_sorts th) shyps;
wenzelm@16656
   490
wenzelm@1238
   491
wenzelm@1238
   492
paulson@1529
   493
(** Axioms **)
wenzelm@387
   494
wenzelm@16425
   495
(*look up the named axiom in the theory or its ancestors*)
wenzelm@15672
   496
fun get_axiom_i theory name =
wenzelm@387
   497
  let
wenzelm@16425
   498
    fun get_ax thy =
wenzelm@22685
   499
      Symtab.lookup (Theory.axiom_table thy) name
wenzelm@16601
   500
      |> Option.map (fn prop =>
wenzelm@16601
   501
          Thm {thy_ref = Theory.self_ref thy,
wenzelm@16601
   502
            der = Pt.infer_derivs' I (false, Pt.axm_proof name prop),
wenzelm@21646
   503
            tags = [],
wenzelm@16601
   504
            maxidx = maxidx_of_term prop,
wenzelm@16656
   505
            shyps = may_insert_term_sorts thy prop [],
wenzelm@16601
   506
            hyps = [],
wenzelm@16601
   507
            tpairs = [],
wenzelm@16601
   508
            prop = prop});
wenzelm@387
   509
  in
wenzelm@16425
   510
    (case get_first get_ax (theory :: Theory.ancestors_of theory) of
skalberg@15531
   511
      SOME thm => thm
skalberg@15531
   512
    | NONE => raise THEORY ("No axiom " ^ quote name, [theory]))
wenzelm@387
   513
  end;
wenzelm@387
   514
wenzelm@16352
   515
fun get_axiom thy =
wenzelm@16425
   516
  get_axiom_i thy o NameSpace.intern (Theory.axiom_space thy);
wenzelm@15672
   517
wenzelm@20884
   518
fun def_name c = c ^ "_def";
wenzelm@20884
   519
wenzelm@20884
   520
fun def_name_optional c "" = def_name c
wenzelm@20884
   521
  | def_name_optional _ name = name;
wenzelm@20884
   522
wenzelm@6368
   523
fun get_def thy = get_axiom thy o def_name;
wenzelm@4847
   524
paulson@1529
   525
wenzelm@776
   526
(*return additional axioms of this theory node*)
wenzelm@776
   527
fun axioms_of thy =
wenzelm@22685
   528
  map (fn s => (s, get_axiom_i thy s)) (Symtab.keys (Theory.axiom_table thy));
wenzelm@776
   529
wenzelm@6089
   530
wenzelm@21646
   531
(* official name and additional tags *)
wenzelm@6089
   532
wenzelm@21646
   533
fun get_name (Thm {hyps, prop, der = (_, prf), ...}) =
wenzelm@21646
   534
  Pt.get_name hyps prop prf;
wenzelm@4018
   535
wenzelm@21646
   536
fun put_name name (Thm {thy_ref, der = (ora, prf), tags, maxidx, shyps, hyps, tpairs = [], prop}) =
wenzelm@21646
   537
      Thm {thy_ref = thy_ref,
wenzelm@21646
   538
        der = (ora, Pt.thm_proof (Theory.deref thy_ref) name hyps prop prf),
wenzelm@21646
   539
        tags = tags, maxidx = maxidx, shyps = shyps, hyps = hyps, tpairs = [], prop = prop}
wenzelm@21646
   540
  | put_name _ thm = raise THM ("name_thm: unsolved flex-flex constraints", 0, [thm]);
wenzelm@6089
   541
wenzelm@21646
   542
val get_tags = #tags o rep_thm;
wenzelm@6089
   543
wenzelm@21646
   544
fun map_tags f (Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@21646
   545
  Thm {thy_ref = thy_ref, der = der, tags = f tags, maxidx = maxidx,
wenzelm@21646
   546
    shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop};
clasohm@0
   547
clasohm@0
   548
paulson@1529
   549
(*Compression of theorems -- a separate rule, not integrated with the others,
paulson@1529
   550
  as it could be slow.*)
wenzelm@21646
   551
fun compress (Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16991
   552
  let val thy = Theory.deref thy_ref in
wenzelm@16991
   553
    Thm {thy_ref = thy_ref,
wenzelm@16991
   554
      der = der,
wenzelm@21646
   555
      tags = tags,
wenzelm@16991
   556
      maxidx = maxidx,
wenzelm@16991
   557
      shyps = shyps,
wenzelm@16991
   558
      hyps = map (Compress.term thy) hyps,
wenzelm@16991
   559
      tpairs = map (pairself (Compress.term thy)) tpairs,
wenzelm@16991
   560
      prop = Compress.term thy prop}
wenzelm@16991
   561
  end;
wenzelm@16945
   562
wenzelm@21646
   563
fun adjust_maxidx_thm i (th as Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@20261
   564
  if maxidx = i then th
wenzelm@20261
   565
  else if maxidx < i then
wenzelm@21646
   566
    Thm {maxidx = i, thy_ref = thy_ref, der = der, tags = tags, shyps = shyps,
wenzelm@20261
   567
      hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@20261
   568
  else
wenzelm@21646
   569
    Thm {maxidx = Int.max (maxidx_tpairs tpairs (maxidx_of_term prop), i), thy_ref = thy_ref,
wenzelm@21646
   570
      der = der, tags = tags, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop};
wenzelm@564
   571
wenzelm@387
   572
wenzelm@2509
   573
paulson@1529
   574
(*** Meta rules ***)
clasohm@0
   575
wenzelm@16601
   576
(** primitive rules **)
clasohm@0
   577
wenzelm@16656
   578
(*The assumption rule A |- A*)
wenzelm@16601
   579
fun assume raw_ct =
wenzelm@20261
   580
  let val Cterm {thy_ref, t = prop, T, maxidx, sorts} = adjust_maxidx_cterm ~1 raw_ct in
wenzelm@16601
   581
    if T <> propT then
mengj@19230
   582
      raise THM ("assume: prop", 0, [])
wenzelm@16601
   583
    else if maxidx <> ~1 then
mengj@19230
   584
      raise THM ("assume: variables", maxidx, [])
wenzelm@16601
   585
    else Thm {thy_ref = thy_ref,
wenzelm@16601
   586
      der = Pt.infer_derivs' I (false, Pt.Hyp prop),
wenzelm@21646
   587
      tags = [],
wenzelm@16601
   588
      maxidx = ~1,
wenzelm@16601
   589
      shyps = sorts,
wenzelm@16601
   590
      hyps = [prop],
wenzelm@16601
   591
      tpairs = [],
wenzelm@16601
   592
      prop = prop}
clasohm@0
   593
  end;
clasohm@0
   594
wenzelm@1220
   595
(*Implication introduction
wenzelm@3529
   596
    [A]
wenzelm@3529
   597
     :
wenzelm@3529
   598
     B
wenzelm@1220
   599
  -------
wenzelm@1220
   600
  A ==> B
wenzelm@1220
   601
*)
wenzelm@16601
   602
fun implies_intr
wenzelm@16679
   603
    (ct as Cterm {t = A, T, maxidx = maxidxA, sorts, ...})
wenzelm@16679
   604
    (th as Thm {der, maxidx, hyps, shyps, tpairs, prop, ...}) =
wenzelm@16601
   605
  if T <> propT then
wenzelm@16601
   606
    raise THM ("implies_intr: assumptions must have type prop", 0, [th])
wenzelm@16601
   607
  else
wenzelm@16601
   608
    Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   609
      der = Pt.infer_derivs' (Pt.implies_intr_proof A) der,
wenzelm@21646
   610
      tags = [],
wenzelm@16601
   611
      maxidx = Int.max (maxidxA, maxidx),
wenzelm@16601
   612
      shyps = Sorts.union sorts shyps,
wenzelm@22365
   613
      hyps = OrdList.remove Term.fast_term_ord A hyps,
wenzelm@16601
   614
      tpairs = tpairs,
wenzelm@16601
   615
      prop = implies $ A $ prop};
clasohm@0
   616
paulson@1529
   617
wenzelm@1220
   618
(*Implication elimination
wenzelm@1220
   619
  A ==> B    A
wenzelm@1220
   620
  ------------
wenzelm@1220
   621
        B
wenzelm@1220
   622
*)
wenzelm@16601
   623
fun implies_elim thAB thA =
wenzelm@16601
   624
  let
wenzelm@16601
   625
    val Thm {maxidx = maxA, der = derA, hyps = hypsA, shyps = shypsA, tpairs = tpairsA,
wenzelm@16601
   626
      prop = propA, ...} = thA
wenzelm@16601
   627
    and Thm {der, maxidx, hyps, shyps, tpairs, prop, ...} = thAB;
wenzelm@16601
   628
    fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]);
wenzelm@16601
   629
  in
wenzelm@16601
   630
    case prop of
wenzelm@20512
   631
      Const ("==>", _) $ A $ B =>
wenzelm@20512
   632
        if A aconv propA then
wenzelm@16656
   633
          Thm {thy_ref = merge_thys2 thAB thA,
wenzelm@16601
   634
            der = Pt.infer_derivs (curry Pt.%%) der derA,
wenzelm@21646
   635
            tags = [],
wenzelm@16601
   636
            maxidx = Int.max (maxA, maxidx),
wenzelm@16601
   637
            shyps = Sorts.union shypsA shyps,
wenzelm@16601
   638
            hyps = union_hyps hypsA hyps,
wenzelm@16601
   639
            tpairs = union_tpairs tpairsA tpairs,
wenzelm@16601
   640
            prop = B}
wenzelm@16601
   641
        else err ()
wenzelm@16601
   642
    | _ => err ()
wenzelm@16601
   643
  end;
wenzelm@250
   644
wenzelm@1220
   645
(*Forall introduction.  The Free or Var x must not be free in the hypotheses.
wenzelm@16656
   646
    [x]
wenzelm@16656
   647
     :
wenzelm@16656
   648
     A
wenzelm@16656
   649
  ------
wenzelm@16656
   650
  !!x. A
wenzelm@1220
   651
*)
wenzelm@16601
   652
fun forall_intr
wenzelm@16601
   653
    (ct as Cterm {t = x, T, sorts, ...})
wenzelm@16679
   654
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   655
  let
wenzelm@16601
   656
    fun result a =
wenzelm@16601
   657
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   658
        der = Pt.infer_derivs' (Pt.forall_intr_proof x a) der,
wenzelm@21646
   659
        tags = [],
wenzelm@16601
   660
        maxidx = maxidx,
wenzelm@16601
   661
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   662
        hyps = hyps,
wenzelm@16601
   663
        tpairs = tpairs,
wenzelm@16601
   664
        prop = all T $ Abs (a, T, abstract_over (x, prop))};
wenzelm@21798
   665
    fun check_occs a x ts =
wenzelm@16847
   666
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@21798
   667
        raise THM ("forall_intr: variable " ^ quote a ^ " free in assumptions", 0, [th])
wenzelm@16601
   668
      else ();
wenzelm@16601
   669
  in
wenzelm@16601
   670
    case x of
wenzelm@21798
   671
      Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result a)
wenzelm@21798
   672
    | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   673
    | _ => raise THM ("forall_intr: not a variable", 0, [th])
clasohm@0
   674
  end;
clasohm@0
   675
wenzelm@1220
   676
(*Forall elimination
wenzelm@16656
   677
  !!x. A
wenzelm@1220
   678
  ------
wenzelm@1220
   679
  A[t/x]
wenzelm@1220
   680
*)
wenzelm@16601
   681
fun forall_elim
wenzelm@16601
   682
    (ct as Cterm {t, T, maxidx = maxt, sorts, ...})
wenzelm@16601
   683
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   684
  (case prop of
wenzelm@16601
   685
    Const ("all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A =>
wenzelm@16601
   686
      if T <> qary then
wenzelm@16601
   687
        raise THM ("forall_elim: type mismatch", 0, [th])
wenzelm@16601
   688
      else
wenzelm@16601
   689
        Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   690
          der = Pt.infer_derivs' (Pt.% o rpair (SOME t)) der,
wenzelm@21646
   691
          tags = [],
wenzelm@16601
   692
          maxidx = Int.max (maxidx, maxt),
wenzelm@16601
   693
          shyps = Sorts.union sorts shyps,
wenzelm@16601
   694
          hyps = hyps,
wenzelm@16601
   695
          tpairs = tpairs,
wenzelm@16601
   696
          prop = Term.betapply (A, t)}
wenzelm@16601
   697
  | _ => raise THM ("forall_elim: not quantified", 0, [th]));
clasohm@0
   698
clasohm@0
   699
wenzelm@1220
   700
(* Equality *)
clasohm@0
   701
wenzelm@16601
   702
(*Reflexivity
wenzelm@16601
   703
  t == t
wenzelm@16601
   704
*)
wenzelm@16601
   705
fun reflexive (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16656
   706
  Thm {thy_ref = thy_ref,
wenzelm@16601
   707
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@21646
   708
    tags = [],
wenzelm@16601
   709
    maxidx = maxidx,
wenzelm@16601
   710
    shyps = sorts,
wenzelm@16601
   711
    hyps = [],
wenzelm@16601
   712
    tpairs = [],
wenzelm@16601
   713
    prop = Logic.mk_equals (t, t)};
clasohm@0
   714
wenzelm@16601
   715
(*Symmetry
wenzelm@16601
   716
  t == u
wenzelm@16601
   717
  ------
wenzelm@16601
   718
  u == t
wenzelm@1220
   719
*)
wenzelm@21646
   720
fun symmetric (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   721
  (case prop of
wenzelm@16601
   722
    (eq as Const ("==", Type (_, [T, _]))) $ t $ u =>
wenzelm@16601
   723
      Thm {thy_ref = thy_ref,
wenzelm@16601
   724
        der = Pt.infer_derivs' Pt.symmetric der,
wenzelm@21646
   725
        tags = [],
wenzelm@16601
   726
        maxidx = maxidx,
wenzelm@16601
   727
        shyps = shyps,
wenzelm@16601
   728
        hyps = hyps,
wenzelm@16601
   729
        tpairs = tpairs,
wenzelm@16601
   730
        prop = eq $ u $ t}
wenzelm@16601
   731
    | _ => raise THM ("symmetric", 0, [th]));
clasohm@0
   732
wenzelm@16601
   733
(*Transitivity
wenzelm@16601
   734
  t1 == u    u == t2
wenzelm@16601
   735
  ------------------
wenzelm@16601
   736
       t1 == t2
wenzelm@1220
   737
*)
clasohm@0
   738
fun transitive th1 th2 =
wenzelm@16601
   739
  let
wenzelm@16601
   740
    val Thm {der = der1, maxidx = max1, hyps = hyps1, shyps = shyps1, tpairs = tpairs1,
wenzelm@16601
   741
      prop = prop1, ...} = th1
wenzelm@16601
   742
    and Thm {der = der2, maxidx = max2, hyps = hyps2, shyps = shyps2, tpairs = tpairs2,
wenzelm@16601
   743
      prop = prop2, ...} = th2;
wenzelm@16601
   744
    fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   745
  in
wenzelm@16601
   746
    case (prop1, prop2) of
wenzelm@16601
   747
      ((eq as Const ("==", Type (_, [T, _]))) $ t1 $ u, Const ("==", _) $ u' $ t2) =>
wenzelm@16601
   748
        if not (u aconv u') then err "middle term"
wenzelm@16601
   749
        else
wenzelm@16656
   750
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   751
            der = Pt.infer_derivs (Pt.transitive u T) der1 der2,
wenzelm@21646
   752
            tags = [],
wenzelm@16601
   753
            maxidx = Int.max (max1, max2),
wenzelm@16601
   754
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   755
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   756
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   757
            prop = eq $ t1 $ t2}
wenzelm@16601
   758
     | _ =>  err "premises"
clasohm@0
   759
  end;
clasohm@0
   760
wenzelm@16601
   761
(*Beta-conversion
wenzelm@16656
   762
  (%x. t)(u) == t[u/x]
wenzelm@16601
   763
  fully beta-reduces the term if full = true
berghofe@10416
   764
*)
wenzelm@16601
   765
fun beta_conversion full (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   766
  let val t' =
wenzelm@16601
   767
    if full then Envir.beta_norm t
wenzelm@16601
   768
    else
wenzelm@16601
   769
      (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt)
wenzelm@16601
   770
      | _ => raise THM ("beta_conversion: not a redex", 0, []));
wenzelm@16601
   771
  in
wenzelm@16601
   772
    Thm {thy_ref = thy_ref,
wenzelm@16601
   773
      der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@21646
   774
      tags = [],
wenzelm@16601
   775
      maxidx = maxidx,
wenzelm@16601
   776
      shyps = sorts,
wenzelm@16601
   777
      hyps = [],
wenzelm@16601
   778
      tpairs = [],
wenzelm@16601
   779
      prop = Logic.mk_equals (t, t')}
berghofe@10416
   780
  end;
berghofe@10416
   781
wenzelm@16601
   782
fun eta_conversion (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   783
  Thm {thy_ref = thy_ref,
wenzelm@16601
   784
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@21646
   785
    tags = [],
wenzelm@16601
   786
    maxidx = maxidx,
wenzelm@16601
   787
    shyps = sorts,
wenzelm@16601
   788
    hyps = [],
wenzelm@16601
   789
    tpairs = [],
wenzelm@18944
   790
    prop = Logic.mk_equals (t, Envir.eta_contract t)};
clasohm@0
   791
clasohm@0
   792
(*The abstraction rule.  The Free or Var x must not be free in the hypotheses.
clasohm@0
   793
  The bound variable will be named "a" (since x will be something like x320)
wenzelm@16601
   794
      t == u
wenzelm@16601
   795
  --------------
wenzelm@16601
   796
  %x. t == %x. u
wenzelm@1220
   797
*)
wenzelm@16601
   798
fun abstract_rule a
wenzelm@16601
   799
    (Cterm {t = x, T, sorts, ...})
wenzelm@21646
   800
    (th as Thm {thy_ref, der, maxidx, hyps, shyps, tpairs, prop, ...}) =
wenzelm@16601
   801
  let
wenzelm@16601
   802
    val (t, u) = Logic.dest_equals prop
wenzelm@16601
   803
      handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]);
wenzelm@16601
   804
    val result =
wenzelm@16601
   805
      Thm {thy_ref = thy_ref,
wenzelm@16601
   806
        der = Pt.infer_derivs' (Pt.abstract_rule x a) der,
wenzelm@21646
   807
        tags = [],
wenzelm@16601
   808
        maxidx = maxidx,
wenzelm@16601
   809
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   810
        hyps = hyps,
wenzelm@16601
   811
        tpairs = tpairs,
wenzelm@16601
   812
        prop = Logic.mk_equals
wenzelm@16601
   813
          (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))};
wenzelm@21798
   814
    fun check_occs a x ts =
wenzelm@16847
   815
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@21798
   816
        raise THM ("abstract_rule: variable " ^ quote a ^ " free in assumptions", 0, [th])
wenzelm@16601
   817
      else ();
wenzelm@16601
   818
  in
wenzelm@16601
   819
    case x of
wenzelm@21798
   820
      Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result)
wenzelm@21798
   821
    | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result)
wenzelm@21798
   822
    | _ => raise THM ("abstract_rule: not a variable", 0, [th])
clasohm@0
   823
  end;
clasohm@0
   824
clasohm@0
   825
(*The combination rule
wenzelm@3529
   826
  f == g  t == u
wenzelm@3529
   827
  --------------
wenzelm@16601
   828
    f t == g u
wenzelm@1220
   829
*)
clasohm@0
   830
fun combination th1 th2 =
wenzelm@16601
   831
  let
wenzelm@16601
   832
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   833
      prop = prop1, ...} = th1
wenzelm@16601
   834
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   835
      prop = prop2, ...} = th2;
wenzelm@16601
   836
    fun chktypes fT tT =
wenzelm@16601
   837
      (case fT of
wenzelm@16601
   838
        Type ("fun", [T1, T2]) =>
wenzelm@16601
   839
          if T1 <> tT then
wenzelm@16601
   840
            raise THM ("combination: types", 0, [th1, th2])
wenzelm@16601
   841
          else ()
wenzelm@16601
   842
      | _ => raise THM ("combination: not function type", 0, [th1, th2]));
wenzelm@16601
   843
  in
wenzelm@16601
   844
    case (prop1, prop2) of
wenzelm@16601
   845
      (Const ("==", Type ("fun", [fT, _])) $ f $ g,
wenzelm@16601
   846
       Const ("==", Type ("fun", [tT, _])) $ t $ u) =>
wenzelm@16601
   847
        (chktypes fT tT;
wenzelm@16601
   848
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   849
            der = Pt.infer_derivs (Pt.combination f g t u fT) der1 der2,
wenzelm@21646
   850
            tags = [],
wenzelm@16601
   851
            maxidx = Int.max (max1, max2),
wenzelm@16601
   852
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   853
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   854
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   855
            prop = Logic.mk_equals (f $ t, g $ u)})
wenzelm@16601
   856
     | _ => raise THM ("combination: premises", 0, [th1, th2])
clasohm@0
   857
  end;
clasohm@0
   858
wenzelm@16601
   859
(*Equality introduction
wenzelm@3529
   860
  A ==> B  B ==> A
wenzelm@3529
   861
  ----------------
wenzelm@3529
   862
       A == B
wenzelm@1220
   863
*)
clasohm@0
   864
fun equal_intr th1 th2 =
wenzelm@16601
   865
  let
wenzelm@16601
   866
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   867
      prop = prop1, ...} = th1
wenzelm@16601
   868
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   869
      prop = prop2, ...} = th2;
wenzelm@16601
   870
    fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   871
  in
wenzelm@16601
   872
    case (prop1, prop2) of
wenzelm@16601
   873
      (Const("==>", _) $ A $ B, Const("==>", _) $ B' $ A') =>
wenzelm@16601
   874
        if A aconv A' andalso B aconv B' then
wenzelm@16601
   875
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   876
            der = Pt.infer_derivs (Pt.equal_intr A B) der1 der2,
wenzelm@21646
   877
            tags = [],
wenzelm@16601
   878
            maxidx = Int.max (max1, max2),
wenzelm@16601
   879
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   880
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   881
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   882
            prop = Logic.mk_equals (A, B)}
wenzelm@16601
   883
        else err "not equal"
wenzelm@16601
   884
    | _ =>  err "premises"
paulson@1529
   885
  end;
paulson@1529
   886
paulson@1529
   887
(*The equal propositions rule
wenzelm@3529
   888
  A == B  A
paulson@1529
   889
  ---------
paulson@1529
   890
      B
paulson@1529
   891
*)
paulson@1529
   892
fun equal_elim th1 th2 =
wenzelm@16601
   893
  let
wenzelm@16601
   894
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1,
wenzelm@16601
   895
      tpairs = tpairs1, prop = prop1, ...} = th1
wenzelm@16601
   896
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2,
wenzelm@16601
   897
      tpairs = tpairs2, prop = prop2, ...} = th2;
wenzelm@16601
   898
    fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   899
  in
wenzelm@16601
   900
    case prop1 of
wenzelm@16601
   901
      Const ("==", _) $ A $ B =>
wenzelm@16601
   902
        if prop2 aconv A then
wenzelm@16601
   903
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   904
            der = Pt.infer_derivs (Pt.equal_elim A B) der1 der2,
wenzelm@21646
   905
            tags = [],
wenzelm@16601
   906
            maxidx = Int.max (max1, max2),
wenzelm@16601
   907
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   908
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   909
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   910
            prop = B}
wenzelm@16601
   911
        else err "not equal"
paulson@1529
   912
     | _ =>  err"major premise"
paulson@1529
   913
  end;
clasohm@0
   914
wenzelm@1220
   915
wenzelm@1220
   916
clasohm@0
   917
(**** Derived rules ****)
clasohm@0
   918
wenzelm@16601
   919
(*Smash unifies the list of term pairs leaving no flex-flex pairs.
wenzelm@250
   920
  Instantiates the theorem and deletes trivial tpairs.
clasohm@0
   921
  Resulting sequence may contain multiple elements if the tpairs are
clasohm@0
   922
    not all flex-flex. *)
wenzelm@21646
   923
fun flexflex_rule (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@19861
   924
  Unify.smash_unifiers (Theory.deref thy_ref) tpairs (Envir.empty maxidx)
wenzelm@16601
   925
  |> Seq.map (fn env =>
wenzelm@16601
   926
      if Envir.is_empty env then th
wenzelm@16601
   927
      else
wenzelm@16601
   928
        let
wenzelm@16601
   929
          val tpairs' = tpairs |> map (pairself (Envir.norm_term env))
wenzelm@16601
   930
            (*remove trivial tpairs, of the form t==t*)
wenzelm@16884
   931
            |> filter_out (op aconv);
wenzelm@16601
   932
          val prop' = Envir.norm_term env prop;
wenzelm@16601
   933
        in
wenzelm@16601
   934
          Thm {thy_ref = thy_ref,
wenzelm@16601
   935
            der = Pt.infer_derivs' (Pt.norm_proof' env) der,
wenzelm@21646
   936
            tags = [],
wenzelm@16711
   937
            maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'),
wenzelm@16656
   938
            shyps = may_insert_env_sorts (Theory.deref thy_ref) env shyps,
wenzelm@16601
   939
            hyps = hyps,
wenzelm@16601
   940
            tpairs = tpairs',
wenzelm@16601
   941
            prop = prop'}
wenzelm@16601
   942
        end);
wenzelm@16601
   943
clasohm@0
   944
wenzelm@19910
   945
(*Generalization of fixed variables
wenzelm@19910
   946
           A
wenzelm@19910
   947
  --------------------
wenzelm@19910
   948
  A[?'a/'a, ?x/x, ...]
wenzelm@19910
   949
*)
wenzelm@19910
   950
wenzelm@19910
   951
fun generalize ([], []) _ th = th
wenzelm@19910
   952
  | generalize (tfrees, frees) idx th =
wenzelm@19910
   953
      let
wenzelm@21646
   954
        val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop, ...} = th;
wenzelm@19910
   955
        val _ = idx <= maxidx andalso raise THM ("generalize: bad index", idx, [th]);
wenzelm@19910
   956
wenzelm@19910
   957
        val bad_type = if null tfrees then K false else
wenzelm@19910
   958
          Term.exists_subtype (fn TFree (a, _) => member (op =) tfrees a | _ => false);
wenzelm@19910
   959
        fun bad_term (Free (x, T)) = bad_type T orelse member (op =) frees x
wenzelm@19910
   960
          | bad_term (Var (_, T)) = bad_type T
wenzelm@19910
   961
          | bad_term (Const (_, T)) = bad_type T
wenzelm@19910
   962
          | bad_term (Abs (_, T, t)) = bad_type T orelse bad_term t
wenzelm@19910
   963
          | bad_term (t $ u) = bad_term t orelse bad_term u
wenzelm@19910
   964
          | bad_term (Bound _) = false;
wenzelm@19910
   965
        val _ = exists bad_term hyps andalso
wenzelm@19910
   966
          raise THM ("generalize: variable free in assumptions", 0, [th]);
wenzelm@19910
   967
wenzelm@20512
   968
        val gen = TermSubst.generalize (tfrees, frees) idx;
wenzelm@19910
   969
        val prop' = gen prop;
wenzelm@19910
   970
        val tpairs' = map (pairself gen) tpairs;
wenzelm@19910
   971
        val maxidx' = maxidx_tpairs tpairs' (maxidx_of_term prop');
wenzelm@19910
   972
      in
wenzelm@19910
   973
        Thm {
wenzelm@19910
   974
          thy_ref = thy_ref,
wenzelm@19910
   975
          der = Pt.infer_derivs' (Pt.generalize (tfrees, frees) idx) der,
wenzelm@21646
   976
          tags = [],
wenzelm@19910
   977
          maxidx = maxidx',
wenzelm@19910
   978
          shyps = shyps,
wenzelm@19910
   979
          hyps = hyps,
wenzelm@19910
   980
          tpairs = tpairs',
wenzelm@19910
   981
          prop = prop'}
wenzelm@19910
   982
      end;
wenzelm@19910
   983
wenzelm@19910
   984
wenzelm@22584
   985
(*Instantiation of schematic variables
wenzelm@16656
   986
           A
wenzelm@16656
   987
  --------------------
wenzelm@16656
   988
  A[t1/v1, ..., tn/vn]
wenzelm@1220
   989
*)
clasohm@0
   990
wenzelm@6928
   991
local
wenzelm@6928
   992
wenzelm@16425
   993
fun pretty_typing thy t T =
wenzelm@16425
   994
  Pretty.block [Sign.pretty_term thy t, Pretty.str " ::", Pretty.brk 1, Sign.pretty_typ thy T];
berghofe@15797
   995
wenzelm@16884
   996
fun add_inst (ct, cu) (thy_ref, sorts) =
wenzelm@6928
   997
  let
wenzelm@16884
   998
    val Cterm {t = t, T = T, ...} = ct
wenzelm@20512
   999
    and Cterm {t = u, T = U, sorts = sorts_u, maxidx = maxidx_u, ...} = cu;
wenzelm@16884
  1000
    val thy_ref' = Theory.merge_refs (thy_ref, merge_thys0 ct cu);
wenzelm@16884
  1001
    val sorts' = Sorts.union sorts_u sorts;
wenzelm@3967
  1002
  in
wenzelm@16884
  1003
    (case t of Var v =>
wenzelm@20512
  1004
      if T = U then ((v, (u, maxidx_u)), (thy_ref', sorts'))
wenzelm@16884
  1005
      else raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
  1006
       [Pretty.str "instantiate: type conflict",
wenzelm@16884
  1007
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') t T,
wenzelm@16884
  1008
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') u U]), [T, U], [t, u])
wenzelm@16884
  1009
    | _ => raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
  1010
       [Pretty.str "instantiate: not a variable",
wenzelm@16884
  1011
        Pretty.fbrk, Sign.pretty_term (Theory.deref thy_ref') t]), [], [t]))
clasohm@0
  1012
  end;
clasohm@0
  1013
wenzelm@16884
  1014
fun add_instT (cT, cU) (thy_ref, sorts) =
wenzelm@16656
  1015
  let
wenzelm@16884
  1016
    val Ctyp {T, thy_ref = thy_ref1, ...} = cT
wenzelm@20512
  1017
    and Ctyp {T = U, thy_ref = thy_ref2, sorts = sorts_U, maxidx = maxidx_U, ...} = cU;
wenzelm@16884
  1018
    val thy_ref' = Theory.merge_refs (thy_ref, Theory.merge_refs (thy_ref1, thy_ref2));
wenzelm@16884
  1019
    val thy' = Theory.deref thy_ref';
wenzelm@16884
  1020
    val sorts' = Sorts.union sorts_U sorts;
wenzelm@16656
  1021
  in
wenzelm@16884
  1022
    (case T of TVar (v as (_, S)) =>
wenzelm@20512
  1023
      if Sign.of_sort thy' (U, S) then ((v, (U, maxidx_U)), (thy_ref', sorts'))
wenzelm@16656
  1024
      else raise TYPE ("Type not of sort " ^ Sign.string_of_sort thy' S, [U], [])
wenzelm@16656
  1025
    | _ => raise TYPE (Pretty.string_of (Pretty.block
berghofe@15797
  1026
        [Pretty.str "instantiate: not a type variable",
wenzelm@16656
  1027
         Pretty.fbrk, Sign.pretty_typ thy' T]), [T], []))
wenzelm@16656
  1028
  end;
clasohm@0
  1029
wenzelm@6928
  1030
in
wenzelm@6928
  1031
wenzelm@16601
  1032
(*Left-to-right replacements: ctpairs = [..., (vi, ti), ...].
clasohm@0
  1033
  Instantiates distinct Vars by terms of same type.
wenzelm@16601
  1034
  Does NOT normalize the resulting theorem!*)
paulson@1529
  1035
fun instantiate ([], []) th = th
wenzelm@16884
  1036
  | instantiate (instT, inst) th =
wenzelm@16656
  1037
      let
wenzelm@16884
  1038
        val Thm {thy_ref, der, hyps, shyps, tpairs, prop, ...} = th;
wenzelm@16884
  1039
        val (inst', (instT', (thy_ref', shyps'))) =
wenzelm@16884
  1040
          (thy_ref, shyps) |> fold_map add_inst inst ||> fold_map add_instT instT;
wenzelm@20512
  1041
        val subst = TermSubst.instantiate_maxidx (instT', inst');
wenzelm@20512
  1042
        val (prop', maxidx1) = subst prop ~1;
wenzelm@20512
  1043
        val (tpairs', maxidx') =
wenzelm@20512
  1044
          fold_map (fn (t, u) => fn i => subst t i ||>> subst u) tpairs maxidx1;
wenzelm@16656
  1045
      in
wenzelm@20545
  1046
        Thm {thy_ref = thy_ref',
wenzelm@20545
  1047
          der = Pt.infer_derivs' (fn d =>
wenzelm@20545
  1048
            Pt.instantiate (map (apsnd #1) instT', map (apsnd #1) inst') d) der,
wenzelm@21646
  1049
          tags = [],
wenzelm@20545
  1050
          maxidx = maxidx',
wenzelm@20545
  1051
          shyps = shyps',
wenzelm@20545
  1052
          hyps = hyps,
wenzelm@20545
  1053
          tpairs = tpairs',
wenzelm@20545
  1054
          prop = prop'}
wenzelm@16656
  1055
      end
wenzelm@16656
  1056
      handle TYPE (msg, _, _) => raise THM (msg, 0, [th]);
wenzelm@6928
  1057
wenzelm@22584
  1058
fun instantiate_cterm ([], []) ct = ct
wenzelm@22584
  1059
  | instantiate_cterm (instT, inst) ct =
wenzelm@22584
  1060
      let
wenzelm@22584
  1061
        val Cterm {thy_ref, t, T, sorts, ...} = ct;
wenzelm@22584
  1062
        val (inst', (instT', (thy_ref', sorts'))) =
wenzelm@22584
  1063
          (thy_ref, sorts) |> fold_map add_inst inst ||> fold_map add_instT instT;
wenzelm@22584
  1064
        val subst = TermSubst.instantiate_maxidx (instT', inst');
wenzelm@22584
  1065
        val substT = TermSubst.instantiateT_maxidx instT';
wenzelm@22584
  1066
        val (t', maxidx1) = subst t ~1;
wenzelm@22584
  1067
        val (T', maxidx') = substT T maxidx1;
wenzelm@22584
  1068
      in Cterm {thy_ref = thy_ref', t = t', T = T', sorts = sorts', maxidx = maxidx'} end
wenzelm@22584
  1069
      handle TYPE (msg, _, _) => raise CTERM (msg, [ct]);
wenzelm@22584
  1070
wenzelm@6928
  1071
end;
wenzelm@6928
  1072
clasohm@0
  1073
wenzelm@16601
  1074
(*The trivial implication A ==> A, justified by assume and forall rules.
wenzelm@16601
  1075
  A can contain Vars, not so for assume!*)
wenzelm@16601
  1076
fun trivial (Cterm {thy_ref, t =A, T, maxidx, sorts}) =
wenzelm@16601
  1077
  if T <> propT then
wenzelm@16601
  1078
    raise THM ("trivial: the term must have type prop", 0, [])
wenzelm@16601
  1079
  else
wenzelm@16601
  1080
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1081
      der = Pt.infer_derivs' I (false, Pt.AbsP ("H", NONE, Pt.PBound 0)),
wenzelm@21646
  1082
      tags = [],
wenzelm@16601
  1083
      maxidx = maxidx,
wenzelm@16601
  1084
      shyps = sorts,
wenzelm@16601
  1085
      hyps = [],
wenzelm@16601
  1086
      tpairs = [],
wenzelm@16601
  1087
      prop = implies $ A $ A};
clasohm@0
  1088
paulson@1503
  1089
(*Axiom-scheme reflecting signature contents: "OFCLASS(?'a::c, c_class)" *)
wenzelm@16425
  1090
fun class_triv thy c =
wenzelm@16601
  1091
  let val Cterm {thy_ref, t, maxidx, sorts, ...} =
wenzelm@19525
  1092
    cterm_of thy (Logic.mk_inclass (TVar (("'a", 0), [c]), Sign.certify_class thy c))
wenzelm@6368
  1093
      handle TERM (msg, _) => raise THM ("class_triv: " ^ msg, 0, []);
wenzelm@399
  1094
  in
wenzelm@16601
  1095
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1096
      der = Pt.infer_derivs' I (false, Pt.PAxm ("ProtoPure.class_triv:" ^ c, t, SOME [])),
wenzelm@21646
  1097
      tags = [],
wenzelm@16601
  1098
      maxidx = maxidx,
wenzelm@16601
  1099
      shyps = sorts,
wenzelm@16601
  1100
      hyps = [],
wenzelm@16601
  1101
      tpairs = [],
wenzelm@16601
  1102
      prop = t}
wenzelm@399
  1103
  end;
wenzelm@399
  1104
wenzelm@19505
  1105
(*Internalize sort constraints of type variable*)
wenzelm@19505
  1106
fun unconstrainT
wenzelm@19505
  1107
    (Ctyp {thy_ref = thy_ref1, T, ...})
wenzelm@21646
  1108
    (th as Thm {thy_ref = thy_ref2, der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@19505
  1109
  let
wenzelm@19505
  1110
    val ((x, i), S) = Term.dest_TVar T handle TYPE _ =>
wenzelm@19505
  1111
      raise THM ("unconstrainT: not a type variable", 0, [th]);
wenzelm@19505
  1112
    val T' = TVar ((x, i), []);
wenzelm@20548
  1113
    val unconstrain = Term.map_types (Term.map_atyps (fn U => if U = T then T' else U));
wenzelm@19505
  1114
    val constraints = map (curry Logic.mk_inclass T') S;
wenzelm@19505
  1115
  in
wenzelm@19505
  1116
    Thm {thy_ref = Theory.merge_refs (thy_ref1, thy_ref2),
wenzelm@19505
  1117
      der = Pt.infer_derivs' I (false, Pt.PAxm ("ProtoPure.unconstrainT", prop, SOME [])),
wenzelm@21646
  1118
      tags = [],
wenzelm@19505
  1119
      maxidx = Int.max (maxidx, i),
wenzelm@19505
  1120
      shyps = Sorts.remove_sort S shyps,
wenzelm@19505
  1121
      hyps = hyps,
wenzelm@19505
  1122
      tpairs = map (pairself unconstrain) tpairs,
wenzelm@19505
  1123
      prop = Logic.list_implies (constraints, unconstrain prop)}
wenzelm@19505
  1124
  end;
wenzelm@399
  1125
wenzelm@6786
  1126
(* Replace all TFrees not fixed or in the hyps by new TVars *)
wenzelm@21646
  1127
fun varifyT' fixed (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@12500
  1128
  let
berghofe@15797
  1129
    val tfrees = foldr add_term_tfrees fixed hyps;
berghofe@13658
  1130
    val prop1 = attach_tpairs tpairs prop;
haftmann@21116
  1131
    val (al, prop2) = Type.varify tfrees prop1;
wenzelm@16601
  1132
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1133
  in
wenzelm@18127
  1134
    (al, Thm {thy_ref = thy_ref,
wenzelm@16601
  1135
      der = Pt.infer_derivs' (Pt.varify_proof prop tfrees) der,
wenzelm@21646
  1136
      tags = [],
wenzelm@16601
  1137
      maxidx = Int.max (0, maxidx),
wenzelm@16601
  1138
      shyps = shyps,
wenzelm@16601
  1139
      hyps = hyps,
wenzelm@16601
  1140
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@18127
  1141
      prop = prop3})
clasohm@0
  1142
  end;
clasohm@0
  1143
wenzelm@18127
  1144
val varifyT = #2 o varifyT' [];
wenzelm@6786
  1145
clasohm@0
  1146
(* Replace all TVars by new TFrees *)
wenzelm@21646
  1147
fun freezeT (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop, ...}) =
berghofe@13658
  1148
  let
berghofe@13658
  1149
    val prop1 = attach_tpairs tpairs prop;
wenzelm@16287
  1150
    val prop2 = Type.freeze prop1;
wenzelm@16601
  1151
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1152
  in
wenzelm@16601
  1153
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1154
      der = Pt.infer_derivs' (Pt.freezeT prop1) der,
wenzelm@21646
  1155
      tags = [],
wenzelm@16601
  1156
      maxidx = maxidx_of_term prop2,
wenzelm@16601
  1157
      shyps = shyps,
wenzelm@16601
  1158
      hyps = hyps,
wenzelm@16601
  1159
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@16601
  1160
      prop = prop3}
wenzelm@1220
  1161
  end;
clasohm@0
  1162
clasohm@0
  1163
clasohm@0
  1164
(*** Inference rules for tactics ***)
clasohm@0
  1165
clasohm@0
  1166
(*Destruct proof state into constraints, other goals, goal(i), rest *)
berghofe@13658
  1167
fun dest_state (state as Thm{prop,tpairs,...}, i) =
berghofe@13658
  1168
  (case  Logic.strip_prems(i, [], prop) of
berghofe@13658
  1169
      (B::rBs, C) => (tpairs, rev rBs, B, C)
berghofe@13658
  1170
    | _ => raise THM("dest_state", i, [state]))
clasohm@0
  1171
  handle TERM _ => raise THM("dest_state", i, [state]);
clasohm@0
  1172
lcp@309
  1173
(*Increment variables and parameters of orule as required for
wenzelm@18035
  1174
  resolution with a goal.*)
wenzelm@18035
  1175
fun lift_rule goal orule =
wenzelm@16601
  1176
  let
wenzelm@18035
  1177
    val Cterm {t = gprop, T, maxidx = gmax, sorts, ...} = goal;
wenzelm@18035
  1178
    val inc = gmax + 1;
wenzelm@18035
  1179
    val lift_abs = Logic.lift_abs inc gprop;
wenzelm@18035
  1180
    val lift_all = Logic.lift_all inc gprop;
wenzelm@18035
  1181
    val Thm {der, maxidx, shyps, hyps, tpairs, prop, ...} = orule;
wenzelm@16601
  1182
    val (As, B) = Logic.strip_horn prop;
wenzelm@16601
  1183
  in
wenzelm@18035
  1184
    if T <> propT then raise THM ("lift_rule: the term must have type prop", 0, [])
wenzelm@18035
  1185
    else
wenzelm@18035
  1186
      Thm {thy_ref = merge_thys1 goal orule,
wenzelm@18035
  1187
        der = Pt.infer_derivs' (Pt.lift_proof gprop inc prop) der,
wenzelm@21646
  1188
        tags = [],
wenzelm@18035
  1189
        maxidx = maxidx + inc,
wenzelm@18035
  1190
        shyps = Sorts.union shyps sorts,  (*sic!*)
wenzelm@18035
  1191
        hyps = hyps,
wenzelm@18035
  1192
        tpairs = map (pairself lift_abs) tpairs,
wenzelm@18035
  1193
        prop = Logic.list_implies (map lift_all As, lift_all B)}
clasohm@0
  1194
  end;
clasohm@0
  1195
wenzelm@21646
  1196
fun incr_indexes i (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
  1197
  if i < 0 then raise THM ("negative increment", 0, [thm])
wenzelm@16601
  1198
  else if i = 0 then thm
wenzelm@16601
  1199
  else
wenzelm@16425
  1200
    Thm {thy_ref = thy_ref,
wenzelm@16884
  1201
      der = Pt.infer_derivs'
wenzelm@16884
  1202
        (Pt.map_proof_terms (Logic.incr_indexes ([], i)) (Logic.incr_tvar i)) der,
wenzelm@21646
  1203
      tags = [],
wenzelm@16601
  1204
      maxidx = maxidx + i,
wenzelm@16601
  1205
      shyps = shyps,
wenzelm@16601
  1206
      hyps = hyps,
wenzelm@16601
  1207
      tpairs = map (pairself (Logic.incr_indexes ([], i))) tpairs,
wenzelm@16601
  1208
      prop = Logic.incr_indexes ([], i) prop};
berghofe@10416
  1209
clasohm@0
  1210
(*Solve subgoal Bi of proof state B1...Bn/C by assumption. *)
clasohm@0
  1211
fun assumption i state =
wenzelm@16601
  1212
  let
wenzelm@16601
  1213
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16656
  1214
    val thy = Theory.deref thy_ref;
wenzelm@16601
  1215
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1216
    fun newth n (env as Envir.Envir {maxidx, ...}, tpairs) =
wenzelm@16601
  1217
      Thm {thy_ref = thy_ref,
wenzelm@16601
  1218
        der = Pt.infer_derivs'
wenzelm@16601
  1219
          ((if Envir.is_empty env then I else (Pt.norm_proof' env)) o
wenzelm@16601
  1220
            Pt.assumption_proof Bs Bi n) der,
wenzelm@21646
  1221
        tags = [],
wenzelm@16601
  1222
        maxidx = maxidx,
wenzelm@16656
  1223
        shyps = may_insert_env_sorts thy env shyps,
wenzelm@16601
  1224
        hyps = hyps,
wenzelm@16601
  1225
        tpairs =
wenzelm@16601
  1226
          if Envir.is_empty env then tpairs
wenzelm@16601
  1227
          else map (pairself (Envir.norm_term env)) tpairs,
wenzelm@16601
  1228
        prop =
wenzelm@16601
  1229
          if Envir.is_empty env then (*avoid wasted normalizations*)
wenzelm@16601
  1230
            Logic.list_implies (Bs, C)
wenzelm@16601
  1231
          else (*normalize the new rule fully*)
wenzelm@16601
  1232
            Envir.norm_term env (Logic.list_implies (Bs, C))};
wenzelm@16601
  1233
    fun addprfs [] _ = Seq.empty
wenzelm@16601
  1234
      | addprfs ((t, u) :: apairs) n = Seq.make (fn () => Seq.pull
wenzelm@16601
  1235
          (Seq.mapp (newth n)
wenzelm@16656
  1236
            (Unify.unifiers (thy, Envir.empty maxidx, (t, u) :: tpairs))
wenzelm@16601
  1237
            (addprfs apairs (n + 1))))
wenzelm@16601
  1238
  in addprfs (Logic.assum_pairs (~1, Bi)) 1 end;
clasohm@0
  1239
wenzelm@250
  1240
(*Solve subgoal Bi of proof state B1...Bn/C by assumption.
clasohm@0
  1241
  Checks if Bi's conclusion is alpha-convertible to one of its assumptions*)
clasohm@0
  1242
fun eq_assumption i state =
wenzelm@16601
  1243
  let
wenzelm@16601
  1244
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1245
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1246
  in
wenzelm@16601
  1247
    (case find_index (op aconv) (Logic.assum_pairs (~1, Bi)) of
wenzelm@16601
  1248
      ~1 => raise THM ("eq_assumption", 0, [state])
wenzelm@16601
  1249
    | n =>
wenzelm@16601
  1250
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1251
          der = Pt.infer_derivs' (Pt.assumption_proof Bs Bi (n + 1)) der,
wenzelm@21646
  1252
          tags = [],
wenzelm@16601
  1253
          maxidx = maxidx,
wenzelm@16601
  1254
          shyps = shyps,
wenzelm@16601
  1255
          hyps = hyps,
wenzelm@16601
  1256
          tpairs = tpairs,
wenzelm@16601
  1257
          prop = Logic.list_implies (Bs, C)})
clasohm@0
  1258
  end;
clasohm@0
  1259
clasohm@0
  1260
paulson@2671
  1261
(*For rotate_tac: fast rotation of assumptions of subgoal i*)
paulson@2671
  1262
fun rotate_rule k i state =
wenzelm@16601
  1263
  let
wenzelm@16601
  1264
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1265
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1266
    val params = Term.strip_all_vars Bi
wenzelm@16601
  1267
    and rest   = Term.strip_all_body Bi;
wenzelm@16601
  1268
    val asms   = Logic.strip_imp_prems rest
wenzelm@16601
  1269
    and concl  = Logic.strip_imp_concl rest;
wenzelm@16601
  1270
    val n = length asms;
wenzelm@16601
  1271
    val m = if k < 0 then n + k else k;
wenzelm@16601
  1272
    val Bi' =
wenzelm@16601
  1273
      if 0 = m orelse m = n then Bi
wenzelm@16601
  1274
      else if 0 < m andalso m < n then
wenzelm@19012
  1275
        let val (ps, qs) = chop m asms
wenzelm@16601
  1276
        in list_all (params, Logic.list_implies (qs @ ps, concl)) end
wenzelm@16601
  1277
      else raise THM ("rotate_rule", k, [state]);
wenzelm@16601
  1278
  in
wenzelm@16601
  1279
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1280
      der = Pt.infer_derivs' (Pt.rotate_proof Bs Bi m) der,
wenzelm@21646
  1281
      tags = [],
wenzelm@16601
  1282
      maxidx = maxidx,
wenzelm@16601
  1283
      shyps = shyps,
wenzelm@16601
  1284
      hyps = hyps,
wenzelm@16601
  1285
      tpairs = tpairs,
wenzelm@16601
  1286
      prop = Logic.list_implies (Bs @ [Bi'], C)}
paulson@2671
  1287
  end;
paulson@2671
  1288
paulson@2671
  1289
paulson@7248
  1290
(*Rotates a rule's premises to the left by k, leaving the first j premises
paulson@7248
  1291
  unchanged.  Does nothing if k=0 or if k equals n-j, where n is the
wenzelm@16656
  1292
  number of premises.  Useful with etac and underlies defer_tac*)
paulson@7248
  1293
fun permute_prems j k rl =
wenzelm@16601
  1294
  let
wenzelm@21646
  1295
    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop, ...} = rl;
wenzelm@16601
  1296
    val prems = Logic.strip_imp_prems prop
wenzelm@16601
  1297
    and concl = Logic.strip_imp_concl prop;
wenzelm@16601
  1298
    val moved_prems = List.drop (prems, j)
wenzelm@16601
  1299
    and fixed_prems = List.take (prems, j)
wenzelm@16601
  1300
      handle Subscript => raise THM ("permute_prems: j", j, [rl]);
wenzelm@16601
  1301
    val n_j = length moved_prems;
wenzelm@16601
  1302
    val m = if k < 0 then n_j + k else k;
wenzelm@16601
  1303
    val prop' =
wenzelm@16601
  1304
      if 0 = m orelse m = n_j then prop
wenzelm@16601
  1305
      else if 0 < m andalso m < n_j then
wenzelm@19012
  1306
        let val (ps, qs) = chop m moved_prems
wenzelm@16601
  1307
        in Logic.list_implies (fixed_prems @ qs @ ps, concl) end
wenzelm@16725
  1308
      else raise THM ("permute_prems: k", k, [rl]);
wenzelm@16601
  1309
  in
wenzelm@16601
  1310
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1311
      der = Pt.infer_derivs' (Pt.permute_prems_prf prems j m) der,
wenzelm@21646
  1312
      tags = [],
wenzelm@16601
  1313
      maxidx = maxidx,
wenzelm@16601
  1314
      shyps = shyps,
wenzelm@16601
  1315
      hyps = hyps,
wenzelm@16601
  1316
      tpairs = tpairs,
wenzelm@16601
  1317
      prop = prop'}
paulson@7248
  1318
  end;
paulson@7248
  1319
paulson@7248
  1320
clasohm@0
  1321
(** User renaming of parameters in a subgoal **)
clasohm@0
  1322
clasohm@0
  1323
(*Calls error rather than raising an exception because it is intended
clasohm@0
  1324
  for top-level use -- exception handling would not make sense here.
clasohm@0
  1325
  The names in cs, if distinct, are used for the innermost parameters;
wenzelm@17868
  1326
  preceding parameters may be renamed to make all params distinct.*)
clasohm@0
  1327
fun rename_params_rule (cs, i) state =
wenzelm@16601
  1328
  let
wenzelm@21646
  1329
    val Thm {thy_ref, der, tags, maxidx, shyps, hyps, ...} = state;
wenzelm@16601
  1330
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1331
    val iparams = map #1 (Logic.strip_params Bi);
wenzelm@16601
  1332
    val short = length iparams - length cs;
wenzelm@16601
  1333
    val newnames =
wenzelm@16601
  1334
      if short < 0 then error "More names than abstractions!"
wenzelm@20071
  1335
      else Name.variant_list cs (Library.take (short, iparams)) @ cs;
wenzelm@20330
  1336
    val freenames = Term.fold_aterms (fn Free (x, _) => insert (op =) x | _ => I) Bi [];
wenzelm@16601
  1337
    val newBi = Logic.list_rename_params (newnames, Bi);
wenzelm@250
  1338
  in
wenzelm@21182
  1339
    (case duplicates (op =) cs of
wenzelm@21182
  1340
      a :: _ => (warning ("Can't rename.  Bound variables not distinct: " ^ a); state)
wenzelm@21182
  1341
    | [] =>
wenzelm@16601
  1342
      (case cs inter_string freenames of
wenzelm@16601
  1343
        a :: _ => (warning ("Can't rename.  Bound/Free variable clash: " ^ a); state)
wenzelm@16601
  1344
      | [] =>
wenzelm@16601
  1345
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1346
          der = der,
wenzelm@21646
  1347
          tags = tags,
wenzelm@16601
  1348
          maxidx = maxidx,
wenzelm@16601
  1349
          shyps = shyps,
wenzelm@16601
  1350
          hyps = hyps,
wenzelm@16601
  1351
          tpairs = tpairs,
wenzelm@21182
  1352
          prop = Logic.list_implies (Bs @ [newBi], C)}))
clasohm@0
  1353
  end;
clasohm@0
  1354
wenzelm@12982
  1355
clasohm@0
  1356
(*** Preservation of bound variable names ***)
clasohm@0
  1357
wenzelm@21646
  1358
fun rename_boundvars pat obj (thm as Thm {thy_ref, der, tags, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@12982
  1359
  (case Term.rename_abs pat obj prop of
skalberg@15531
  1360
    NONE => thm
skalberg@15531
  1361
  | SOME prop' => Thm
wenzelm@16425
  1362
      {thy_ref = thy_ref,
wenzelm@12982
  1363
       der = der,
wenzelm@21646
  1364
       tags = tags,
wenzelm@12982
  1365
       maxidx = maxidx,
wenzelm@12982
  1366
       hyps = hyps,
wenzelm@12982
  1367
       shyps = shyps,
berghofe@13658
  1368
       tpairs = tpairs,
wenzelm@12982
  1369
       prop = prop'});
berghofe@10416
  1370
clasohm@0
  1371
wenzelm@16656
  1372
(* strip_apply f (A, B) strips off all assumptions/parameters from A
clasohm@0
  1373
   introduced by lifting over B, and applies f to remaining part of A*)
clasohm@0
  1374
fun strip_apply f =
clasohm@0
  1375
  let fun strip(Const("==>",_)$ A1 $ B1,
wenzelm@250
  1376
                Const("==>",_)$ _  $ B2) = implies $ A1 $ strip(B1,B2)
wenzelm@250
  1377
        | strip((c as Const("all",_)) $ Abs(a,T,t1),
wenzelm@250
  1378
                      Const("all",_)  $ Abs(_,_,t2)) = c$Abs(a,T,strip(t1,t2))
wenzelm@250
  1379
        | strip(A,_) = f A
clasohm@0
  1380
  in strip end;
clasohm@0
  1381
clasohm@0
  1382
(*Use the alist to rename all bound variables and some unknowns in a term
clasohm@0
  1383
  dpairs = current disagreement pairs;  tpairs = permanent ones (flexflex);
clasohm@0
  1384
  Preserves unknowns in tpairs and on lhs of dpairs. *)
clasohm@0
  1385
fun rename_bvs([],_,_,_) = I
clasohm@0
  1386
  | rename_bvs(al,dpairs,tpairs,B) =
wenzelm@20330
  1387
      let
wenzelm@20330
  1388
        val add_var = fold_aterms (fn Var ((x, _), _) => insert (op =) x | _ => I);
wenzelm@20330
  1389
        val vids = []
wenzelm@20330
  1390
          |> fold (add_var o fst) dpairs
wenzelm@20330
  1391
          |> fold (add_var o fst) tpairs
wenzelm@20330
  1392
          |> fold (add_var o snd) tpairs;
wenzelm@250
  1393
        (*unknowns appearing elsewhere be preserved!*)
wenzelm@250
  1394
        fun rename(t as Var((x,i),T)) =
wenzelm@20330
  1395
              (case AList.lookup (op =) al x of
wenzelm@20330
  1396
                SOME y =>
wenzelm@20330
  1397
                  if member (op =) vids x orelse member (op =) vids y then t
wenzelm@20330
  1398
                  else Var((y,i),T)
wenzelm@20330
  1399
              | NONE=> t)
clasohm@0
  1400
          | rename(Abs(x,T,t)) =
wenzelm@18944
  1401
              Abs (the_default x (AList.lookup (op =) al x), T, rename t)
clasohm@0
  1402
          | rename(f$t) = rename f $ rename t
clasohm@0
  1403
          | rename(t) = t;
wenzelm@250
  1404
        fun strip_ren Ai = strip_apply rename (Ai,B)
wenzelm@20330
  1405
      in strip_ren end;
clasohm@0
  1406
clasohm@0
  1407
(*Function to rename bounds/unknowns in the argument, lifted over B*)
clasohm@0
  1408
fun rename_bvars(dpairs, tpairs, B) =
skalberg@15574
  1409
        rename_bvs(foldr Term.match_bvars [] dpairs, dpairs, tpairs, B);
clasohm@0
  1410
clasohm@0
  1411
clasohm@0
  1412
(*** RESOLUTION ***)
clasohm@0
  1413
lcp@721
  1414
(** Lifting optimizations **)
lcp@721
  1415
clasohm@0
  1416
(*strip off pairs of assumptions/parameters in parallel -- they are
clasohm@0
  1417
  identical because of lifting*)
wenzelm@250
  1418
fun strip_assums2 (Const("==>", _) $ _ $ B1,
wenzelm@250
  1419
                   Const("==>", _) $ _ $ B2) = strip_assums2 (B1,B2)
clasohm@0
  1420
  | strip_assums2 (Const("all",_)$Abs(a,T,t1),
wenzelm@250
  1421
                   Const("all",_)$Abs(_,_,t2)) =
clasohm@0
  1422
      let val (B1,B2) = strip_assums2 (t1,t2)
clasohm@0
  1423
      in  (Abs(a,T,B1), Abs(a,T,B2))  end
clasohm@0
  1424
  | strip_assums2 BB = BB;
clasohm@0
  1425
clasohm@0
  1426
lcp@721
  1427
(*Faster normalization: skip assumptions that were lifted over*)
lcp@721
  1428
fun norm_term_skip env 0 t = Envir.norm_term env t
lcp@721
  1429
  | norm_term_skip env n (Const("all",_)$Abs(a,T,t)) =
lcp@721
  1430
        let val Envir.Envir{iTs, ...} = env
berghofe@15797
  1431
            val T' = Envir.typ_subst_TVars iTs T
wenzelm@1238
  1432
            (*Must instantiate types of parameters because they are flattened;
lcp@721
  1433
              this could be a NEW parameter*)
lcp@721
  1434
        in  all T' $ Abs(a, T', norm_term_skip env n t)  end
lcp@721
  1435
  | norm_term_skip env n (Const("==>", _) $ A $ B) =
wenzelm@1238
  1436
        implies $ A $ norm_term_skip env (n-1) B
lcp@721
  1437
  | norm_term_skip env n t = error"norm_term_skip: too few assumptions??";
lcp@721
  1438
lcp@721
  1439
clasohm@0
  1440
(*Composition of object rule r=(A1...Am/B) with proof state s=(B1...Bn/C)
wenzelm@250
  1441
  Unifies B with Bi, replacing subgoal i    (1 <= i <= n)
clasohm@0
  1442
  If match then forbid instantiations in proof state
clasohm@0
  1443
  If lifted then shorten the dpair using strip_assums2.
clasohm@0
  1444
  If eres_flg then simultaneously proves A1 by assumption.
wenzelm@250
  1445
  nsubgoal is the number of new subgoals (written m above).
clasohm@0
  1446
  Curried so that resolution calls dest_state only once.
clasohm@0
  1447
*)
wenzelm@4270
  1448
local exception COMPOSE
clasohm@0
  1449
in
wenzelm@18486
  1450
fun bicompose_aux flatten match (state, (stpairs, Bs, Bi, C), lifted)
clasohm@0
  1451
                        (eres_flg, orule, nsubgoal) =
paulson@1529
  1452
 let val Thm{der=sder, maxidx=smax, shyps=sshyps, hyps=shyps, ...} = state
wenzelm@16425
  1453
     and Thm{der=rder, maxidx=rmax, shyps=rshyps, hyps=rhyps,
berghofe@13658
  1454
             tpairs=rtpairs, prop=rprop,...} = orule
paulson@1529
  1455
         (*How many hyps to skip over during normalization*)
wenzelm@21576
  1456
     and nlift = Logic.count_prems (strip_all_body Bi) + (if eres_flg then ~1 else 0)
wenzelm@16601
  1457
     val thy_ref = merge_thys2 state orule;
wenzelm@16425
  1458
     val thy = Theory.deref thy_ref;
clasohm@0
  1459
     (** Add new theorem with prop = '[| Bs; As |] ==> C' to thq **)
berghofe@11518
  1460
     fun addth A (As, oldAs, rder', n) ((env as Envir.Envir {maxidx, ...}, tpairs), thq) =
wenzelm@250
  1461
       let val normt = Envir.norm_term env;
wenzelm@250
  1462
           (*perform minimal copying here by examining env*)
berghofe@13658
  1463
           val (ntpairs, normp) =
berghofe@13658
  1464
             if Envir.is_empty env then (tpairs, (Bs @ As, C))
wenzelm@250
  1465
             else
wenzelm@250
  1466
             let val ntps = map (pairself normt) tpairs
wenzelm@19861
  1467
             in if Envir.above env smax then
wenzelm@1238
  1468
                  (*no assignments in state; normalize the rule only*)
wenzelm@1238
  1469
                  if lifted
berghofe@13658
  1470
                  then (ntps, (Bs @ map (norm_term_skip env nlift) As, C))
berghofe@13658
  1471
                  else (ntps, (Bs @ map normt As, C))
paulson@1529
  1472
                else if match then raise COMPOSE
wenzelm@250
  1473
                else (*normalize the new rule fully*)
berghofe@13658
  1474
                  (ntps, (map normt (Bs @ As), normt C))
wenzelm@250
  1475
             end
wenzelm@16601
  1476
           val th =
wenzelm@16425
  1477
             Thm{thy_ref = thy_ref,
berghofe@11518
  1478
                 der = Pt.infer_derivs
berghofe@11518
  1479
                   ((if Envir.is_empty env then I
wenzelm@19861
  1480
                     else if Envir.above env smax then
berghofe@11518
  1481
                       (fn f => fn der => f (Pt.norm_proof' env der))
berghofe@11518
  1482
                     else
berghofe@11518
  1483
                       curry op oo (Pt.norm_proof' env))
wenzelm@18486
  1484
                    (Pt.bicompose_proof flatten Bs oldAs As A n)) rder' sder,
wenzelm@21646
  1485
                 tags = [],
wenzelm@2386
  1486
                 maxidx = maxidx,
wenzelm@16656
  1487
                 shyps = may_insert_env_sorts thy env (Sorts.union rshyps sshyps),
wenzelm@16601
  1488
                 hyps = union_hyps rhyps shyps,
berghofe@13658
  1489
                 tpairs = ntpairs,
berghofe@13658
  1490
                 prop = Logic.list_implies normp}
wenzelm@19475
  1491
        in  Seq.cons th thq  end  handle COMPOSE => thq;
berghofe@13658
  1492
     val (rAs,B) = Logic.strip_prems(nsubgoal, [], rprop)
clasohm@0
  1493
       handle TERM _ => raise THM("bicompose: rule", 0, [orule,state]);
clasohm@0
  1494
     (*Modify assumptions, deleting n-th if n>0 for e-resolution*)
clasohm@0
  1495
     fun newAs(As0, n, dpairs, tpairs) =
berghofe@11518
  1496
       let val (As1, rder') =
berghofe@11518
  1497
         if !Logic.auto_rename orelse not lifted then (As0, rder)
berghofe@11518
  1498
         else (map (rename_bvars(dpairs,tpairs,B)) As0,
berghofe@11518
  1499
           Pt.infer_derivs' (Pt.map_proof_terms
berghofe@11518
  1500
             (rename_bvars (dpairs, tpairs, Bound 0)) I) rder);
wenzelm@18486
  1501
       in (map (if flatten then (Logic.flatten_params n) else I) As1, As1, rder', n)
wenzelm@250
  1502
          handle TERM _ =>
wenzelm@250
  1503
          raise THM("bicompose: 1st premise", 0, [orule])
clasohm@0
  1504
       end;
paulson@2147
  1505
     val env = Envir.empty(Int.max(rmax,smax));
clasohm@0
  1506
     val BBi = if lifted then strip_assums2(B,Bi) else (B,Bi);
clasohm@0
  1507
     val dpairs = BBi :: (rtpairs@stpairs);
clasohm@0
  1508
     (*elim-resolution: try each assumption in turn.  Initially n=1*)
berghofe@11518
  1509
     fun tryasms (_, _, _, []) = Seq.empty
berghofe@11518
  1510
       | tryasms (A, As, n, (t,u)::apairs) =
wenzelm@16425
  1511
          (case Seq.pull(Unify.unifiers(thy, env, (t,u)::dpairs))  of
wenzelm@16425
  1512
              NONE                   => tryasms (A, As, n+1, apairs)
wenzelm@16425
  1513
            | cell as SOME((_,tpairs),_) =>
wenzelm@16425
  1514
                Seq.it_right (addth A (newAs(As, n, [BBi,(u,t)], tpairs)))
wenzelm@16425
  1515
                    (Seq.make(fn()=> cell),
wenzelm@16425
  1516
                     Seq.make(fn()=> Seq.pull (tryasms(A, As, n+1, apairs)))))
clasohm@0
  1517
     fun eres [] = raise THM("bicompose: no premises", 0, [orule,state])
skalberg@15531
  1518
       | eres (A1::As) = tryasms(SOME A1, As, 1, Logic.assum_pairs(nlift+1,A1))
clasohm@0
  1519
     (*ordinary resolution*)
skalberg@15531
  1520
     fun res(NONE) = Seq.empty
skalberg@15531
  1521
       | res(cell as SOME((_,tpairs),_)) =
skalberg@15531
  1522
             Seq.it_right (addth NONE (newAs(rev rAs, 0, [BBi], tpairs)))
wenzelm@4270
  1523
                       (Seq.make (fn()=> cell), Seq.empty)
clasohm@0
  1524
 in  if eres_flg then eres(rev rAs)
wenzelm@16425
  1525
     else res(Seq.pull(Unify.unifiers(thy, env, dpairs)))
clasohm@0
  1526
 end;
wenzelm@7528
  1527
end;
clasohm@0
  1528
wenzelm@18501
  1529
fun compose_no_flatten match (orule, nsubgoal) i state =
wenzelm@18501
  1530
  bicompose_aux false match (state, dest_state (state, i), false) (false, orule, nsubgoal);
clasohm@0
  1531
wenzelm@18501
  1532
fun bicompose match arg i state =
wenzelm@18501
  1533
  bicompose_aux true match (state, dest_state (state,i), false) arg;
clasohm@0
  1534
clasohm@0
  1535
(*Quick test whether rule is resolvable with the subgoal with hyps Hs
clasohm@0
  1536
  and conclusion B.  If eres_flg then checks 1st premise of rule also*)
clasohm@0
  1537
fun could_bires (Hs, B, eres_flg, rule) =
wenzelm@16847
  1538
    let fun could_reshyp (A1::_) = exists (fn H => could_unify (A1, H)) Hs
wenzelm@250
  1539
          | could_reshyp [] = false;  (*no premise -- illegal*)
wenzelm@250
  1540
    in  could_unify(concl_of rule, B) andalso
wenzelm@250
  1541
        (not eres_flg  orelse  could_reshyp (prems_of rule))
clasohm@0
  1542
    end;
clasohm@0
  1543
clasohm@0
  1544
(*Bi-resolution of a state with a list of (flag,rule) pairs.
clasohm@0
  1545
  Puts the rule above:  rule/state.  Renames vars in the rules. *)
wenzelm@250
  1546
fun biresolution match brules i state =
wenzelm@18035
  1547
    let val (stpairs, Bs, Bi, C) = dest_state(state,i);
wenzelm@18145
  1548
        val lift = lift_rule (cprem_of state i);
wenzelm@250
  1549
        val B = Logic.strip_assums_concl Bi;
wenzelm@250
  1550
        val Hs = Logic.strip_assums_hyp Bi;
wenzelm@22573
  1551
        val compose = bicompose_aux true match (state, (stpairs, Bs, Bi, C), true);
wenzelm@4270
  1552
        fun res [] = Seq.empty
wenzelm@250
  1553
          | res ((eres_flg, rule)::brules) =
nipkow@13642
  1554
              if !Pattern.trace_unify_fail orelse
nipkow@13642
  1555
                 could_bires (Hs, B, eres_flg, rule)
wenzelm@4270
  1556
              then Seq.make (*delay processing remainder till needed*)
wenzelm@22573
  1557
                  (fn()=> SOME(compose (eres_flg, lift rule, nprems_of rule),
wenzelm@250
  1558
                               res brules))
wenzelm@250
  1559
              else res brules
wenzelm@4270
  1560
    in  Seq.flat (res brules)  end;
clasohm@0
  1561
clasohm@0
  1562
wenzelm@2509
  1563
(*** Oracles ***)
wenzelm@2509
  1564
wenzelm@16425
  1565
fun invoke_oracle_i thy1 name =
wenzelm@3812
  1566
  let
wenzelm@3812
  1567
    val oracle =
wenzelm@22685
  1568
      (case Symtab.lookup (Theory.oracle_table thy1) name of
skalberg@15531
  1569
        NONE => raise THM ("Unknown oracle: " ^ name, 0, [])
skalberg@15531
  1570
      | SOME (f, _) => f);
wenzelm@16847
  1571
    val thy_ref1 = Theory.self_ref thy1;
wenzelm@3812
  1572
  in
wenzelm@16425
  1573
    fn (thy2, data) =>
wenzelm@3812
  1574
      let
wenzelm@16847
  1575
        val thy' = Theory.merge (Theory.deref thy_ref1, thy2);
wenzelm@18969
  1576
        val (prop, T, maxidx) = Sign.certify_term thy' (oracle (thy', data));
wenzelm@3812
  1577
      in
wenzelm@3812
  1578
        if T <> propT then
wenzelm@3812
  1579
          raise THM ("Oracle's result must have type prop: " ^ name, 0, [])
wenzelm@16601
  1580
        else
wenzelm@16601
  1581
          Thm {thy_ref = Theory.self_ref thy',
berghofe@11518
  1582
            der = (true, Pt.oracle_proof name prop),
wenzelm@21646
  1583
            tags = [],
wenzelm@3812
  1584
            maxidx = maxidx,
wenzelm@16656
  1585
            shyps = may_insert_term_sorts thy' prop [],
wenzelm@16425
  1586
            hyps = [],
berghofe@13658
  1587
            tpairs = [],
wenzelm@16601
  1588
            prop = prop}
wenzelm@3812
  1589
      end
wenzelm@3812
  1590
  end;
wenzelm@3812
  1591
wenzelm@15672
  1592
fun invoke_oracle thy =
wenzelm@16425
  1593
  invoke_oracle_i thy o NameSpace.intern (Theory.oracle_space thy);
wenzelm@15672
  1594
wenzelm@22237
  1595
wenzelm@22237
  1596
end;
wenzelm@22237
  1597
end;
wenzelm@22237
  1598
end;
clasohm@0
  1599
end;
paulson@1503
  1600
wenzelm@6089
  1601
structure BasicThm: BASIC_THM = Thm;
wenzelm@6089
  1602
open BasicThm;