31807

1 


2 
(* Author: Florian Haftmann, TU Muenchen *)


3 


4 
header {* Relating (finite) sets and lists *}


5 


6 
theory List_Set


7 
imports Main


8 
begin


9 


10 
subsection {* Various additional list functions *}


11 


12 
definition insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where


13 
"insert x xs = (if x \<in> set xs then xs else x # xs)"


14 


15 
definition remove_all :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where


16 
"remove_all x xs = filter (Not o op = x) xs"


17 


18 


19 
subsection {* Various additional set functions *}


20 


21 
definition is_empty :: "'a set \<Rightarrow> bool" where


22 
"is_empty A \<longleftrightarrow> A = {}"


23 


24 
definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where


25 
"remove x A = A  {x}"


26 


27 
lemma fun_left_comm_idem_remove:


28 
"fun_left_comm_idem remove"


29 
proof 


30 
have rem: "remove = (\<lambda>x A. A  {x})" by (simp add: expand_fun_eq remove_def)


31 
show ?thesis by (simp only: fun_left_comm_idem_remove rem)


32 
qed


33 


34 
lemma minus_fold_remove:


35 
assumes "finite A"


36 
shows "B  A = fold remove B A"


37 
proof 


38 
have rem: "remove = (\<lambda>x A. A  {x})" by (simp add: expand_fun_eq remove_def)


39 
show ?thesis by (simp only: rem assms minus_fold_remove)


40 
qed


41 


42 
definition project :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where


43 
"project P A = {a\<in>A. P a}"


44 


45 


46 
subsection {* Basic set operations *}


47 


48 
lemma is_empty_set:


49 
"is_empty (set xs) \<longleftrightarrow> null xs"


50 
by (simp add: is_empty_def null_empty)


51 


52 
lemma ball_set:


53 
"(\<forall>x\<in>set xs. P x) \<longleftrightarrow> list_all P xs"


54 
by (rule list_ball_code)


55 


56 
lemma bex_set:


57 
"(\<exists>x\<in>set xs. P x) \<longleftrightarrow> list_ex P xs"


58 
by (rule list_bex_code)


59 


60 
lemma empty_set:


61 
"{} = set []"


62 
by simp


63 


64 
lemma insert_set:


65 
"Set.insert x (set xs) = set (insert x xs)"


66 
by (auto simp add: insert_def)


67 

32880

68 
lemma insert_set_compl:


69 
"Set.insert x ( set xs) =  set (List_Set.remove_all x xs)"


70 
by (auto simp del: mem_def simp add: remove_all_def)


71 

31807

72 
lemma remove_set:


73 
"remove x (set xs) = set (remove_all x xs)"


74 
by (auto simp add: remove_def remove_all_def)


75 

32880

76 
lemma remove_set_compl:


77 
"List_Set.remove x ( set xs) =  set (List_Set.insert x xs)"


78 
by (auto simp del: mem_def simp add: remove_def List_Set.insert_def)


79 

31807

80 
lemma image_set:

31846

81 
"image f (set xs) = set (map f xs)"

31807

82 
by simp


83 


84 
lemma project_set:


85 
"project P (set xs) = set (filter P xs)"


86 
by (auto simp add: project_def)


87 

33939

88 
text {* FIXME move the following to @{text Finite_Set.thy} *}


89 


90 
lemma fun_left_comm_idem_inf:


91 
"fun_left_comm_idem inf"


92 
proof


93 
qed (auto simp add: inf_left_commute)


94 


95 
lemma fun_left_comm_idem_sup:


96 
"fun_left_comm_idem sup"


97 
proof


98 
qed (auto simp add: sup_left_commute)


99 


100 
lemma inf_Inf_fold_inf:


101 
fixes A :: "'a::complete_lattice set"


102 
assumes "finite A"


103 
shows "inf B (Inf A) = fold inf B A"


104 
proof 


105 
interpret fun_left_comm_idem inf by (fact fun_left_comm_idem_inf)


106 
from `finite A` show ?thesis by (induct A arbitrary: B)


107 
(simp_all add: top_def [symmetric] Inf_insert inf_commute fold_fun_comm)


108 
qed


109 


110 
lemma sup_Sup_fold_sup:


111 
fixes A :: "'a::complete_lattice set"


112 
assumes "finite A"


113 
shows "sup B (Sup A) = fold sup B A"


114 
proof 


115 
interpret fun_left_comm_idem sup by (fact fun_left_comm_idem_sup)


116 
from `finite A` show ?thesis by (induct A arbitrary: B)


117 
(simp_all add: bot_def [symmetric] Sup_insert sup_commute fold_fun_comm)


118 
qed


119 


120 
lemma Inf_fold_inf:


121 
fixes A :: "'a::complete_lattice set"


122 
assumes "finite A"


123 
shows "Inf A = fold inf top A"


124 
using assms inf_Inf_fold_inf [of A top] by (simp add: inf_absorb2)


125 


126 
lemma Sup_fold_sup:


127 
fixes A :: "'a::complete_lattice set"


128 
assumes "finite A"


129 
shows "Sup A = fold sup bot A"


130 
using assms sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2)


131 

31807

132 


133 
subsection {* Functorial set operations *}


134 


135 
lemma union_set:


136 
"set xs \<union> A = foldl (\<lambda>A x. Set.insert x A) A xs"


137 
proof 


138 
interpret fun_left_comm_idem Set.insert


139 
by (fact fun_left_comm_idem_insert)


140 
show ?thesis by (simp add: union_fold_insert fold_set)


141 
qed


142 


143 
lemma minus_set:


144 
"A  set xs = foldl (\<lambda>A x. remove x A) A xs"


145 
proof 


146 
interpret fun_left_comm_idem remove


147 
by (fact fun_left_comm_idem_remove)


148 
show ?thesis


149 
by (simp add: minus_fold_remove [of _ A] fold_set)


150 
qed


151 

33939

152 
lemma INFI_set_fold:  "FIXME move to List.thy"


153 
"INFI (set xs) f = foldl (\<lambda>y x. inf (f x) y) top xs"


154 
unfolding INFI_def image_set Inf_set_fold foldl_map by (simp add: inf_commute)

31807

155 

33939

156 
lemma SUPR_set_fold:  "FIXME move to List.thy"


157 
"SUPR (set xs) f = foldl (\<lambda>y x. sup (f x) y) bot xs"


158 
unfolding SUPR_def image_set Sup_set_fold foldl_map by (simp add: sup_commute)

31807

159 


160 


161 
subsection {* Derived set operations *}


162 


163 
lemma member:


164 
"a \<in> A \<longleftrightarrow> (\<exists>x\<in>A. a = x)"


165 
by simp


166 


167 
lemma subset_eq:


168 
"A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"


169 
by (fact subset_eq)


170 


171 
lemma subset:


172 
"A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"


173 
by (fact less_le_not_le)


174 


175 
lemma set_eq:


176 
"A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"


177 
by (fact eq_iff)


178 


179 
lemma inter:


180 
"A \<inter> B = project (\<lambda>x. x \<in> A) B"


181 
by (auto simp add: project_def)


182 

31851

183 


184 
hide (open) const insert


185 

31807

186 
end 