src/HOL/Tools/inductive_package.ML
author wenzelm
Wed Apr 14 15:58:01 1999 +0200 (1999-04-14)
changeset 6427 fd36b2e7d80e
parent 6424 ceab9e663e08
child 6430 69400c97d3bf
permissions -rw-r--r--
tuned messages;
berghofe@5094
     1
(*  Title:      HOL/Tools/inductive_package.ML
berghofe@5094
     2
    ID:         $Id$
berghofe@5094
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
berghofe@5094
     4
                Stefan Berghofer,   TU Muenchen
berghofe@5094
     5
    Copyright   1994  University of Cambridge
berghofe@5094
     6
                1998  TU Muenchen     
berghofe@5094
     7
wenzelm@6424
     8
(Co)Inductive Definition module for HOL.
berghofe@5094
     9
berghofe@5094
    10
Features:
wenzelm@6424
    11
  * least or greatest fixedpoints
wenzelm@6424
    12
  * user-specified product and sum constructions
wenzelm@6424
    13
  * mutually recursive definitions
wenzelm@6424
    14
  * definitions involving arbitrary monotone operators
wenzelm@6424
    15
  * automatically proves introduction and elimination rules
berghofe@5094
    16
wenzelm@6424
    17
The recursive sets must *already* be declared as constants in the
wenzelm@6424
    18
current theory!
berghofe@5094
    19
berghofe@5094
    20
  Introduction rules have the form
berghofe@5094
    21
  [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]
berghofe@5094
    22
  where M is some monotone operator (usually the identity)
berghofe@5094
    23
  P(x) is any side condition on the free variables
berghofe@5094
    24
  ti, t are any terms
berghofe@5094
    25
  Sj, Sk are two of the sets being defined in mutual recursion
berghofe@5094
    26
wenzelm@6424
    27
Sums are used only for mutual recursion.  Products are used only to
wenzelm@6424
    28
derive "streamlined" induction rules for relations.
berghofe@5094
    29
*)
berghofe@5094
    30
berghofe@5094
    31
signature INDUCTIVE_PACKAGE =
berghofe@5094
    32
sig
wenzelm@6424
    33
  val quiet_mode: bool ref
wenzelm@6424
    34
  val add_inductive_i: bool -> bool -> bstring -> bool -> bool -> bool -> term list ->
wenzelm@6424
    35
    ((bstring * term) * theory attribute list) list -> thm list -> thm list -> theory -> theory *
wenzelm@6424
    36
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6424
    37
       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold:thm}
wenzelm@6424
    38
  val add_inductive: bool -> bool -> string list -> ((bstring * string) * Args.src list) list ->
wenzelm@6424
    39
    (xstring * Args.src list) list -> (xstring * Args.src list) list -> theory -> theory *
wenzelm@6424
    40
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6424
    41
       intrs:thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
berghofe@5094
    42
end;
berghofe@5094
    43
wenzelm@6424
    44
structure InductivePackage: INDUCTIVE_PACKAGE =
berghofe@5094
    45
struct
berghofe@5094
    46
wenzelm@6424
    47
(** utilities **)
wenzelm@6424
    48
wenzelm@6424
    49
(* messages *)
wenzelm@6424
    50
berghofe@5662
    51
val quiet_mode = ref false;
berghofe@5662
    52
fun message s = if !quiet_mode then () else writeln s;
berghofe@5662
    53
wenzelm@6424
    54
fun coind_prefix true = "co"
wenzelm@6424
    55
  | coind_prefix false = "";
wenzelm@6424
    56
wenzelm@6424
    57
wenzelm@6424
    58
(* misc *)
wenzelm@6424
    59
berghofe@5094
    60
(*For proving monotonicity of recursion operator*)
berghofe@5094
    61
val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono, 
berghofe@5094
    62
                   ex_mono, Collect_mono, in_mono, vimage_mono];
berghofe@5094
    63
berghofe@5094
    64
val Const _ $ (vimage_f $ _) $ _ = HOLogic.dest_Trueprop (concl_of vimageD);
berghofe@5094
    65
berghofe@5094
    66
(*Delete needless equality assumptions*)
berghofe@5094
    67
val refl_thin = prove_goal HOL.thy "!!P. [| a=a;  P |] ==> P"
berghofe@5094
    68
     (fn _ => [assume_tac 1]);
berghofe@5094
    69
berghofe@5094
    70
(*For simplifying the elimination rule*)
berghofe@5120
    71
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE, Pair_inject];
berghofe@5094
    72
wenzelm@6394
    73
val vimage_name = Sign.intern_const (Theory.sign_of Vimage.thy) "op -``";
wenzelm@6394
    74
val mono_name = Sign.intern_const (Theory.sign_of Ord.thy) "mono";
berghofe@5094
    75
berghofe@5094
    76
(* make injections needed in mutually recursive definitions *)
berghofe@5094
    77
berghofe@5094
    78
fun mk_inj cs sumT c x =
berghofe@5094
    79
  let
berghofe@5094
    80
    fun mk_inj' T n i =
berghofe@5094
    81
      if n = 1 then x else
berghofe@5094
    82
      let val n2 = n div 2;
berghofe@5094
    83
          val Type (_, [T1, T2]) = T
berghofe@5094
    84
      in
berghofe@5094
    85
        if i <= n2 then
berghofe@5094
    86
          Const ("Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5094
    87
        else
berghofe@5094
    88
          Const ("Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5094
    89
      end
berghofe@5094
    90
  in mk_inj' sumT (length cs) (1 + find_index_eq c cs)
berghofe@5094
    91
  end;
berghofe@5094
    92
berghofe@5094
    93
(* make "vimage" terms for selecting out components of mutually rec.def. *)
berghofe@5094
    94
berghofe@5094
    95
fun mk_vimage cs sumT t c = if length cs < 2 then t else
berghofe@5094
    96
  let
berghofe@5094
    97
    val cT = HOLogic.dest_setT (fastype_of c);
berghofe@5094
    98
    val vimageT = [cT --> sumT, HOLogic.mk_setT sumT] ---> HOLogic.mk_setT cT
berghofe@5094
    99
  in
berghofe@5094
   100
    Const (vimage_name, vimageT) $
berghofe@5094
   101
      Abs ("y", cT, mk_inj cs sumT c (Bound 0)) $ t
berghofe@5094
   102
  end;
berghofe@5094
   103
wenzelm@6424
   104
wenzelm@6424
   105
wenzelm@6424
   106
(** well-formedness checks **)
berghofe@5094
   107
berghofe@5094
   108
fun err_in_rule sign t msg = error ("Ill-formed introduction rule\n" ^
berghofe@5094
   109
  (Sign.string_of_term sign t) ^ "\n" ^ msg);
berghofe@5094
   110
berghofe@5094
   111
fun err_in_prem sign t p msg = error ("Ill-formed premise\n" ^
berghofe@5094
   112
  (Sign.string_of_term sign p) ^ "\nin introduction rule\n" ^
berghofe@5094
   113
  (Sign.string_of_term sign t) ^ "\n" ^ msg);
berghofe@5094
   114
berghofe@5094
   115
val msg1 = "Conclusion of introduction rule must have form\
berghofe@5094
   116
          \ ' t : S_i '";
berghofe@5094
   117
val msg2 = "Premises mentioning recursive sets must have form\
berghofe@5094
   118
          \ ' t : M S_i '";
berghofe@5094
   119
val msg3 = "Recursion term on left of member symbol";
berghofe@5094
   120
berghofe@5094
   121
fun check_rule sign cs r =
berghofe@5094
   122
  let
berghofe@5094
   123
    fun check_prem prem = if exists (Logic.occs o (rpair prem)) cs then
berghofe@5094
   124
         (case prem of
berghofe@5094
   125
           (Const ("op :", _) $ t $ u) =>
berghofe@5094
   126
             if exists (Logic.occs o (rpair t)) cs then
berghofe@5094
   127
               err_in_prem sign r prem msg3 else ()
berghofe@5094
   128
         | _ => err_in_prem sign r prem msg2)
berghofe@5094
   129
        else ()
berghofe@5094
   130
berghofe@5094
   131
  in (case (HOLogic.dest_Trueprop o Logic.strip_imp_concl) r of
berghofe@5094
   132
        (Const ("op :", _) $ _ $ u) =>
wenzelm@6424
   133
          if u mem cs then seq (check_prem o HOLogic.dest_Trueprop)
berghofe@5094
   134
            (Logic.strip_imp_prems r)
berghofe@5094
   135
          else err_in_rule sign r msg1
berghofe@5094
   136
      | _ => err_in_rule sign r msg1)
berghofe@5094
   137
  end;
berghofe@5094
   138
berghofe@5094
   139
fun try' f msg sign t = (f t) handle _ => error (msg ^ Sign.string_of_term sign t);
berghofe@5094
   140
wenzelm@6424
   141
berghofe@5094
   142
wenzelm@6424
   143
(*** properties of (co)inductive sets ***)
wenzelm@6424
   144
wenzelm@6424
   145
(** elimination rules **)
berghofe@5094
   146
berghofe@5094
   147
fun mk_elims cs cTs params intr_ts =
berghofe@5094
   148
  let
berghofe@5094
   149
    val used = foldr add_term_names (intr_ts, []);
berghofe@5094
   150
    val [aname, pname] = variantlist (["a", "P"], used);
berghofe@5094
   151
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@5094
   152
berghofe@5094
   153
    fun dest_intr r =
berghofe@5094
   154
      let val Const ("op :", _) $ t $ u =
berghofe@5094
   155
        HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   156
      in (u, t, Logic.strip_imp_prems r) end;
berghofe@5094
   157
berghofe@5094
   158
    val intrs = map dest_intr intr_ts;
berghofe@5094
   159
berghofe@5094
   160
    fun mk_elim (c, T) =
berghofe@5094
   161
      let
berghofe@5094
   162
        val a = Free (aname, T);
berghofe@5094
   163
berghofe@5094
   164
        fun mk_elim_prem (_, t, ts) =
berghofe@5094
   165
          list_all_free (map dest_Free ((foldr add_term_frees (t::ts, [])) \\ params),
berghofe@5094
   166
            Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (a, t)) :: ts, P));
berghofe@5094
   167
      in
berghofe@5094
   168
        Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (a, c)) ::
berghofe@5094
   169
          map mk_elim_prem (filter (equal c o #1) intrs), P)
berghofe@5094
   170
      end
berghofe@5094
   171
  in
berghofe@5094
   172
    map mk_elim (cs ~~ cTs)
berghofe@5094
   173
  end;
berghofe@5094
   174
        
wenzelm@6424
   175
wenzelm@6424
   176
wenzelm@6424
   177
(** premises and conclusions of induction rules **)
berghofe@5094
   178
berghofe@5094
   179
fun mk_indrule cs cTs params intr_ts =
berghofe@5094
   180
  let
berghofe@5094
   181
    val used = foldr add_term_names (intr_ts, []);
berghofe@5094
   182
berghofe@5094
   183
    (* predicates for induction rule *)
berghofe@5094
   184
berghofe@5094
   185
    val preds = map Free (variantlist (if length cs < 2 then ["P"] else
berghofe@5094
   186
      map (fn i => "P" ^ string_of_int i) (1 upto length cs), used) ~~
berghofe@5094
   187
        map (fn T => T --> HOLogic.boolT) cTs);
berghofe@5094
   188
berghofe@5094
   189
    (* transform an introduction rule into a premise for induction rule *)
berghofe@5094
   190
berghofe@5094
   191
    fun mk_ind_prem r =
berghofe@5094
   192
      let
berghofe@5094
   193
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5094
   194
berghofe@5094
   195
        fun subst (prem as (Const ("op :", T) $ t $ u), prems) =
berghofe@5094
   196
              let val n = find_index_eq u cs in
berghofe@5094
   197
                if n >= 0 then prem :: (nth_elem (n, preds)) $ t :: prems else
berghofe@5094
   198
                  (subst_free (map (fn (c, P) => (c, HOLogic.mk_binop "op Int"
berghofe@5094
   199
                    (c, HOLogic.Collect_const (HOLogic.dest_setT
berghofe@5094
   200
                      (fastype_of c)) $ P))) (cs ~~ preds)) prem)::prems
berghofe@5094
   201
              end
berghofe@5094
   202
          | subst (prem, prems) = prem::prems;
berghofe@5094
   203
berghofe@5094
   204
        val Const ("op :", _) $ t $ u =
berghofe@5094
   205
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   206
berghofe@5094
   207
      in list_all_free (frees,
berghofe@5094
   208
           Logic.list_implies (map HOLogic.mk_Trueprop (foldr subst
berghofe@5094
   209
             (map HOLogic.dest_Trueprop (Logic.strip_imp_prems r), [])),
berghofe@5094
   210
               HOLogic.mk_Trueprop (nth_elem (find_index_eq u cs, preds) $ t)))
berghofe@5094
   211
      end;
berghofe@5094
   212
berghofe@5094
   213
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@5094
   214
berghofe@5094
   215
    (* make conclusions for induction rules *)
berghofe@5094
   216
berghofe@5094
   217
    fun mk_ind_concl ((c, P), (ts, x)) =
berghofe@5094
   218
      let val T = HOLogic.dest_setT (fastype_of c);
berghofe@5094
   219
          val Ts = HOLogic.prodT_factors T;
berghofe@5094
   220
          val (frees, x') = foldr (fn (T', (fs, s)) =>
berghofe@5094
   221
            ((Free (s, T'))::fs, bump_string s)) (Ts, ([], x));
berghofe@5094
   222
          val tuple = HOLogic.mk_tuple T frees;
berghofe@5094
   223
      in ((HOLogic.mk_binop "op -->"
berghofe@5094
   224
        (HOLogic.mk_mem (tuple, c), P $ tuple))::ts, x')
berghofe@5094
   225
      end;
berghofe@5094
   226
berghofe@5094
   227
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 (app HOLogic.conj)
berghofe@5094
   228
        (fst (foldr mk_ind_concl (cs ~~ preds, ([], "xa")))))
berghofe@5094
   229
berghofe@5094
   230
  in (preds, ind_prems, mutual_ind_concl)
berghofe@5094
   231
  end;
berghofe@5094
   232
wenzelm@6424
   233
berghofe@5094
   234
wenzelm@6424
   235
(*** proofs for (co)inductive sets ***)
wenzelm@6424
   236
wenzelm@6424
   237
(** prove monotonicity **)
berghofe@5094
   238
berghofe@5094
   239
fun prove_mono setT fp_fun monos thy =
berghofe@5094
   240
  let
wenzelm@6427
   241
    val _ = message "  Proving monotonicity ...";
berghofe@5094
   242
wenzelm@6394
   243
    val mono = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy) (HOLogic.mk_Trueprop
berghofe@5094
   244
      (Const (mono_name, (setT --> setT) --> HOLogic.boolT) $ fp_fun)))
berghofe@5094
   245
        (fn _ => [rtac monoI 1, REPEAT (ares_tac (basic_monos @ monos) 1)])
berghofe@5094
   246
berghofe@5094
   247
  in mono end;
berghofe@5094
   248
wenzelm@6424
   249
wenzelm@6424
   250
wenzelm@6424
   251
(** prove introduction rules **)
berghofe@5094
   252
berghofe@5094
   253
fun prove_intrs coind mono fp_def intr_ts con_defs rec_sets_defs thy =
berghofe@5094
   254
  let
wenzelm@6427
   255
    val _ = message "  Proving the introduction rules ...";
berghofe@5094
   256
berghofe@5094
   257
    val unfold = standard (mono RS (fp_def RS
berghofe@5094
   258
      (if coind then def_gfp_Tarski else def_lfp_Tarski)));
berghofe@5094
   259
berghofe@5094
   260
    fun select_disj 1 1 = []
berghofe@5094
   261
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   262
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   263
berghofe@5094
   264
    val intrs = map (fn (i, intr) => prove_goalw_cterm rec_sets_defs
wenzelm@6394
   265
      (cterm_of (Theory.sign_of thy) intr) (fn prems =>
berghofe@5094
   266
       [(*insert prems and underlying sets*)
berghofe@5094
   267
       cut_facts_tac prems 1,
berghofe@5094
   268
       stac unfold 1,
berghofe@5094
   269
       REPEAT (resolve_tac [vimageI2, CollectI] 1),
berghofe@5094
   270
       (*Now 1-2 subgoals: the disjunction, perhaps equality.*)
berghofe@5094
   271
       EVERY1 (select_disj (length intr_ts) i),
berghofe@5094
   272
       (*Not ares_tac, since refl must be tried before any equality assumptions;
berghofe@5094
   273
         backtracking may occur if the premises have extra variables!*)
berghofe@5094
   274
       DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 1 APPEND assume_tac 1),
berghofe@5094
   275
       (*Now solve the equations like Inl 0 = Inl ?b2*)
berghofe@5094
   276
       rewrite_goals_tac con_defs,
berghofe@5094
   277
       REPEAT (rtac refl 1)])) (1 upto (length intr_ts) ~~ intr_ts)
berghofe@5094
   278
berghofe@5094
   279
  in (intrs, unfold) end;
berghofe@5094
   280
wenzelm@6424
   281
wenzelm@6424
   282
wenzelm@6424
   283
(** prove elimination rules **)
berghofe@5094
   284
berghofe@5094
   285
fun prove_elims cs cTs params intr_ts unfold rec_sets_defs thy =
berghofe@5094
   286
  let
wenzelm@6427
   287
    val _ = message "  Proving the elimination rules ...";
berghofe@5094
   288
berghofe@5094
   289
    val rules1 = [CollectE, disjE, make_elim vimageD];
berghofe@5094
   290
    val rules2 = [exE, conjE, Inl_neq_Inr, Inr_neq_Inl] @
berghofe@5094
   291
      map make_elim [Inl_inject, Inr_inject];
berghofe@5094
   292
berghofe@5094
   293
    val elims = map (fn t => prove_goalw_cterm rec_sets_defs
wenzelm@6394
   294
      (cterm_of (Theory.sign_of thy) t) (fn prems =>
berghofe@5094
   295
        [cut_facts_tac [hd prems] 1,
berghofe@5094
   296
         dtac (unfold RS subst) 1,
berghofe@5094
   297
         REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@5094
   298
         REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@5094
   299
         EVERY (map (fn prem =>
berghofe@5149
   300
           DEPTH_SOLVE_1 (ares_tac [prem, conjI] 1)) (tl prems))]))
berghofe@5094
   301
      (mk_elims cs cTs params intr_ts)
berghofe@5094
   302
berghofe@5094
   303
  in elims end;
berghofe@5094
   304
wenzelm@6424
   305
berghofe@5094
   306
(** derivation of simplified elimination rules **)
berghofe@5094
   307
berghofe@5094
   308
(*Applies freeness of the given constructors, which *must* be unfolded by
berghofe@5094
   309
  the given defs.  Cannot simply use the local con_defs because con_defs=[] 
berghofe@5094
   310
  for inference systems.
berghofe@5094
   311
 *)
paulson@6141
   312
fun con_elim_tac ss =
berghofe@5094
   313
  let val elim_tac = REPEAT o (eresolve_tac elim_rls)
berghofe@5094
   314
  in ALLGOALS(EVERY'[elim_tac,
paulson@6141
   315
		     asm_full_simp_tac ss,
paulson@6141
   316
		     elim_tac,
paulson@6141
   317
		     REPEAT o bound_hyp_subst_tac])
berghofe@5094
   318
     THEN prune_params_tac
berghofe@5094
   319
  end;
berghofe@5094
   320
berghofe@5094
   321
(*String s should have the form t:Si where Si is an inductive set*)
paulson@6141
   322
fun mk_cases elims s =
wenzelm@6394
   323
  let val prem = assume (read_cterm (Thm.sign_of_thm (hd elims)) (s, propT))
paulson@6141
   324
      fun mk_elim rl = rule_by_tactic (con_elim_tac (simpset())) (prem RS rl) 
paulson@6141
   325
	               |> standard
paulson@6141
   326
  in case find_first is_some (map (try mk_elim) elims) of
berghofe@5094
   327
       Some (Some r) => r
berghofe@5094
   328
     | None => error ("mk_cases: string '" ^ s ^ "' not of form 't : S_i'")
berghofe@5094
   329
  end;
berghofe@5094
   330
wenzelm@6424
   331
wenzelm@6424
   332
wenzelm@6424
   333
(** prove induction rule **)
berghofe@5094
   334
berghofe@5094
   335
fun prove_indrule cs cTs sumT rec_const params intr_ts mono
berghofe@5094
   336
    fp_def rec_sets_defs thy =
berghofe@5094
   337
  let
wenzelm@6427
   338
    val _ = message "  Proving the induction rule ...";
berghofe@5094
   339
wenzelm@6394
   340
    val sign = Theory.sign_of thy;
berghofe@5094
   341
berghofe@5094
   342
    val (preds, ind_prems, mutual_ind_concl) = mk_indrule cs cTs params intr_ts;
berghofe@5094
   343
berghofe@5094
   344
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   345
berghofe@5094
   346
    fun mk_ind_pred _ [P] = P
berghofe@5094
   347
      | mk_ind_pred T Ps =
berghofe@5094
   348
         let val n = (length Ps) div 2;
berghofe@5094
   349
             val Type (_, [T1, T2]) = T
berghofe@5094
   350
         in Const ("sum_case",
berghofe@5094
   351
           [T1 --> HOLogic.boolT, T2 --> HOLogic.boolT, T] ---> HOLogic.boolT) $
berghofe@5094
   352
             mk_ind_pred T1 (take (n, Ps)) $ mk_ind_pred T2 (drop (n, Ps))
berghofe@5094
   353
         end;
berghofe@5094
   354
berghofe@5094
   355
    val ind_pred = mk_ind_pred sumT preds;
berghofe@5094
   356
berghofe@5094
   357
    val ind_concl = HOLogic.mk_Trueprop
berghofe@5094
   358
      (HOLogic.all_const sumT $ Abs ("x", sumT, HOLogic.mk_binop "op -->"
berghofe@5094
   359
        (HOLogic.mk_mem (Bound 0, rec_const), ind_pred $ Bound 0)));
berghofe@5094
   360
berghofe@5094
   361
    (* simplification rules for vimage and Collect *)
berghofe@5094
   362
berghofe@5094
   363
    val vimage_simps = if length cs < 2 then [] else
berghofe@5094
   364
      map (fn c => prove_goalw_cterm [] (cterm_of sign
berghofe@5094
   365
        (HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5094
   366
          (mk_vimage cs sumT (HOLogic.Collect_const sumT $ ind_pred) c,
berghofe@5094
   367
           HOLogic.Collect_const (HOLogic.dest_setT (fastype_of c)) $
berghofe@5094
   368
             nth_elem (find_index_eq c cs, preds)))))
berghofe@5094
   369
        (fn _ => [rtac vimage_Collect 1, rewrite_goals_tac
oheimb@5553
   370
           (map mk_meta_eq [sum_case_Inl, sum_case_Inr]),
berghofe@5094
   371
          rtac refl 1])) cs;
berghofe@5094
   372
berghofe@5094
   373
    val induct = prove_goalw_cterm [] (cterm_of sign
berghofe@5094
   374
      (Logic.list_implies (ind_prems, ind_concl))) (fn prems =>
berghofe@5094
   375
        [rtac (impI RS allI) 1,
berghofe@5094
   376
         DETERM (etac (mono RS (fp_def RS def_induct)) 1),
oheimb@5553
   377
         rewrite_goals_tac (map mk_meta_eq (vimage_Int::vimage_simps)),
berghofe@5094
   378
         fold_goals_tac rec_sets_defs,
berghofe@5094
   379
         (*This CollectE and disjE separates out the introduction rules*)
berghofe@5094
   380
         REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE])),
berghofe@5094
   381
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   382
           some premise involves disjunction.*)
berghofe@5094
   383
         REPEAT (FIRSTGOAL (eresolve_tac [IntE, CollectE, exE, conjE] 
berghofe@5094
   384
                     ORELSE' hyp_subst_tac)),
oheimb@5553
   385
         rewrite_goals_tac (map mk_meta_eq [sum_case_Inl, sum_case_Inr]),
berghofe@5094
   386
         EVERY (map (fn prem =>
berghofe@5149
   387
           DEPTH_SOLVE_1 (ares_tac [prem, conjI, refl] 1)) prems)]);
berghofe@5094
   388
berghofe@5094
   389
    val lemma = prove_goalw_cterm rec_sets_defs (cterm_of sign
berghofe@5094
   390
      (Logic.mk_implies (ind_concl, mutual_ind_concl))) (fn prems =>
berghofe@5094
   391
        [cut_facts_tac prems 1,
berghofe@5094
   392
         REPEAT (EVERY
berghofe@5094
   393
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@5094
   394
            TRY (dtac vimageD 1), etac allE 1, dtac mp 1, atac 1,
oheimb@5553
   395
            rewrite_goals_tac (map mk_meta_eq [sum_case_Inl, sum_case_Inr]),
berghofe@5094
   396
            atac 1])])
berghofe@5094
   397
berghofe@5094
   398
  in standard (split_rule (induct RS lemma))
berghofe@5094
   399
  end;
berghofe@5094
   400
wenzelm@6424
   401
wenzelm@6424
   402
wenzelm@6424
   403
(*** specification of (co)inductive sets ****)
wenzelm@6424
   404
wenzelm@6424
   405
(** definitional introduction of (co)inductive sets **)
berghofe@5094
   406
berghofe@5094
   407
fun add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs
wenzelm@6424
   408
    intros monos con_defs thy params paramTs cTs cnames =
berghofe@5094
   409
  let
wenzelm@6424
   410
    val _ = if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive set(s) " ^
wenzelm@6424
   411
      commas_quote cnames) else ();
berghofe@5094
   412
berghofe@5094
   413
    val sumT = fold_bal (fn (T, U) => Type ("+", [T, U])) cTs;
berghofe@5094
   414
    val setT = HOLogic.mk_setT sumT;
berghofe@5094
   415
wenzelm@6394
   416
    val fp_name = if coind then Sign.intern_const (Theory.sign_of Gfp.thy) "gfp"
wenzelm@6394
   417
      else Sign.intern_const (Theory.sign_of Lfp.thy) "lfp";
berghofe@5094
   418
wenzelm@6424
   419
    val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros);
wenzelm@6424
   420
berghofe@5149
   421
    val used = foldr add_term_names (intr_ts, []);
berghofe@5149
   422
    val [sname, xname] = variantlist (["S", "x"], used);
berghofe@5149
   423
berghofe@5094
   424
    (* transform an introduction rule into a conjunction  *)
berghofe@5094
   425
    (*   [| t : ... S_i ... ; ... |] ==> u : S_j          *)
berghofe@5094
   426
    (* is transformed into                                *)
berghofe@5094
   427
    (*   x = Inj_j u & t : ... Inj_i -`` S ... & ...      *)
berghofe@5094
   428
berghofe@5094
   429
    fun transform_rule r =
berghofe@5094
   430
      let
berghofe@5094
   431
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5149
   432
        val subst = subst_free
berghofe@5149
   433
          (cs ~~ (map (mk_vimage cs sumT (Free (sname, setT))) cs));
berghofe@5094
   434
        val Const ("op :", _) $ t $ u =
berghofe@5094
   435
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   436
berghofe@5094
   437
      in foldr (fn ((x, T), P) => HOLogic.mk_exists (x, T, P))
berghofe@5094
   438
        (frees, foldr1 (app HOLogic.conj)
berghofe@5149
   439
          (((HOLogic.eq_const sumT) $ Free (xname, sumT) $ (mk_inj cs sumT u t))::
berghofe@5094
   440
            (map (subst o HOLogic.dest_Trueprop)
berghofe@5094
   441
              (Logic.strip_imp_prems r))))
berghofe@5094
   442
      end
berghofe@5094
   443
berghofe@5094
   444
    (* make a disjunction of all introduction rules *)
berghofe@5094
   445
berghofe@5149
   446
    val fp_fun = absfree (sname, setT, (HOLogic.Collect_const sumT) $
berghofe@5149
   447
      absfree (xname, sumT, foldr1 (app HOLogic.disj) (map transform_rule intr_ts)));
berghofe@5094
   448
berghofe@5094
   449
    (* add definiton of recursive sets to theory *)
berghofe@5094
   450
berghofe@5094
   451
    val rec_name = if alt_name = "" then space_implode "_" cnames else alt_name;
wenzelm@6394
   452
    val full_rec_name = Sign.full_name (Theory.sign_of thy) rec_name;
berghofe@5094
   453
berghofe@5094
   454
    val rec_const = list_comb
berghofe@5094
   455
      (Const (full_rec_name, paramTs ---> setT), params);
berghofe@5094
   456
berghofe@5094
   457
    val fp_def_term = Logic.mk_equals (rec_const,
berghofe@5094
   458
      Const (fp_name, (setT --> setT) --> setT) $ fp_fun)
berghofe@5094
   459
berghofe@5094
   460
    val def_terms = fp_def_term :: (if length cs < 2 then [] else
berghofe@5094
   461
      map (fn c => Logic.mk_equals (c, mk_vimage cs sumT rec_const c)) cs);
berghofe@5094
   462
berghofe@5094
   463
    val thy' = thy |>
berghofe@5094
   464
      (if declare_consts then
berghofe@5094
   465
        Theory.add_consts_i (map (fn (c, n) =>
berghofe@5094
   466
          (n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
berghofe@5094
   467
       else I) |>
berghofe@5094
   468
      (if length cs < 2 then I else
berghofe@5094
   469
       Theory.add_consts_i [(rec_name, paramTs ---> setT, NoSyn)]) |>
berghofe@5094
   470
      Theory.add_path rec_name |>
berghofe@5094
   471
      PureThy.add_defss_i [(("defs", def_terms), [])];
berghofe@5094
   472
berghofe@5094
   473
    (* get definitions from theory *)
berghofe@5094
   474
wenzelm@6424
   475
    val fp_def::rec_sets_defs = PureThy.get_thms thy' "defs";
berghofe@5094
   476
berghofe@5094
   477
    (* prove and store theorems *)
berghofe@5094
   478
berghofe@5094
   479
    val mono = prove_mono setT fp_fun monos thy';
berghofe@5094
   480
    val (intrs, unfold) = prove_intrs coind mono fp_def intr_ts con_defs
berghofe@5094
   481
      rec_sets_defs thy';
berghofe@5094
   482
    val elims = if no_elim then [] else
berghofe@5094
   483
      prove_elims cs cTs params intr_ts unfold rec_sets_defs thy';
berghofe@5094
   484
    val raw_induct = if no_ind then TrueI else
berghofe@5094
   485
      if coind then standard (rule_by_tactic
oheimb@5553
   486
        (rewrite_tac [mk_meta_eq vimage_Un] THEN
berghofe@5094
   487
          fold_tac rec_sets_defs) (mono RS (fp_def RS def_Collect_coinduct)))
berghofe@5094
   488
      else
berghofe@5094
   489
        prove_indrule cs cTs sumT rec_const params intr_ts mono fp_def
berghofe@5094
   490
          rec_sets_defs thy';
berghofe@5108
   491
    val induct = if coind orelse no_ind orelse length cs > 1 then raw_induct
berghofe@5094
   492
      else standard (raw_induct RSN (2, rev_mp));
berghofe@5094
   493
wenzelm@6424
   494
    val thy'' = thy'
wenzelm@6424
   495
      |> PureThy.add_thmss [(("intrs", intrs), [])]
wenzelm@6424
   496
      |> PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts)
wenzelm@6424
   497
      |> (if no_elim then I else PureThy.add_thmss [(("elims", elims), [])])
wenzelm@6424
   498
      |> (if no_ind then I else PureThy.add_thms
wenzelm@6424
   499
        [((coind_prefix coind ^ "induct", induct), [])])
wenzelm@6424
   500
      |> Theory.parent_path;
berghofe@5094
   501
berghofe@5094
   502
  in (thy'',
berghofe@5094
   503
    {defs = fp_def::rec_sets_defs,
berghofe@5094
   504
     mono = mono,
berghofe@5094
   505
     unfold = unfold,
berghofe@5094
   506
     intrs = intrs,
berghofe@5094
   507
     elims = elims,
berghofe@5094
   508
     mk_cases = mk_cases elims,
berghofe@5094
   509
     raw_induct = raw_induct,
berghofe@5094
   510
     induct = induct})
berghofe@5094
   511
  end;
berghofe@5094
   512
wenzelm@6424
   513
wenzelm@6424
   514
wenzelm@6424
   515
(** axiomatic introduction of (co)inductive sets **)
berghofe@5094
   516
berghofe@5094
   517
fun add_ind_axm verbose declare_consts alt_name coind no_elim no_ind cs
wenzelm@6424
   518
    intros monos con_defs thy params paramTs cTs cnames =
berghofe@5094
   519
  let
wenzelm@6424
   520
    val _ = if verbose then message ("Adding axioms for " ^ coind_prefix coind ^
wenzelm@6424
   521
      "inductive set(s) " ^ commas_quote cnames) else ();
berghofe@5094
   522
berghofe@5094
   523
    val rec_name = if alt_name = "" then space_implode "_" cnames else alt_name;
berghofe@5094
   524
wenzelm@6424
   525
    val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros);
berghofe@5094
   526
    val elim_ts = mk_elims cs cTs params intr_ts;
berghofe@5094
   527
berghofe@5094
   528
    val (_, ind_prems, mutual_ind_concl) = mk_indrule cs cTs params intr_ts;
berghofe@5094
   529
    val ind_t = Logic.list_implies (ind_prems, mutual_ind_concl);
berghofe@5094
   530
    
wenzelm@6424
   531
    val thy' = thy
wenzelm@6424
   532
      |> (if declare_consts then
wenzelm@6424
   533
            Theory.add_consts_i
wenzelm@6424
   534
              (map (fn (c, n) => (n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
wenzelm@6424
   535
         else I)
wenzelm@6424
   536
      |> Theory.add_path rec_name
wenzelm@6424
   537
      |> PureThy.add_axiomss_i [(("intrs", intr_ts), []), (("elims", elim_ts), [])]
wenzelm@6424
   538
      |> (if coind then I else PureThy.add_axioms_i [(("internal_induct", ind_t), [])]);
berghofe@5094
   539
wenzelm@6424
   540
    val intrs = PureThy.get_thms thy' "intrs";
wenzelm@6424
   541
    val elims = PureThy.get_thms thy' "elims";
berghofe@5094
   542
    val raw_induct = if coind then TrueI else
wenzelm@6424
   543
      standard (split_rule (PureThy.get_thm thy' "internal_induct"));
berghofe@5094
   544
    val induct = if coind orelse length cs > 1 then raw_induct
berghofe@5094
   545
      else standard (raw_induct RSN (2, rev_mp));
berghofe@5094
   546
wenzelm@6424
   547
    val thy'' =
wenzelm@6424
   548
      thy'
wenzelm@6424
   549
      |> (if coind then I else PureThy.add_thms [(("induct", induct), [])])
wenzelm@6424
   550
      |> PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts)
wenzelm@6424
   551
      |> Theory.parent_path;
berghofe@5094
   552
  in (thy'',
berghofe@5094
   553
    {defs = [],
berghofe@5094
   554
     mono = TrueI,
berghofe@5094
   555
     unfold = TrueI,
berghofe@5094
   556
     intrs = intrs,
berghofe@5094
   557
     elims = elims,
berghofe@5094
   558
     mk_cases = mk_cases elims,
berghofe@5094
   559
     raw_induct = raw_induct,
berghofe@5094
   560
     induct = induct})
berghofe@5094
   561
  end;
berghofe@5094
   562
wenzelm@6424
   563
wenzelm@6424
   564
wenzelm@6424
   565
(** introduction of (co)inductive sets **)
berghofe@5094
   566
berghofe@5094
   567
fun add_inductive_i verbose declare_consts alt_name coind no_elim no_ind cs
wenzelm@6424
   568
    intros monos con_defs thy =
berghofe@5094
   569
  let
wenzelm@6424
   570
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
wenzelm@6394
   571
    val sign = Theory.sign_of thy;
berghofe@5094
   572
berghofe@5094
   573
    (*parameters should agree for all mutually recursive components*)
berghofe@5094
   574
    val (_, params) = strip_comb (hd cs);
berghofe@5094
   575
    val paramTs = map (try' (snd o dest_Free) "Parameter in recursive\
berghofe@5094
   576
      \ component is not a free variable: " sign) params;
berghofe@5094
   577
berghofe@5094
   578
    val cTs = map (try' (HOLogic.dest_setT o fastype_of)
berghofe@5094
   579
      "Recursive component not of type set: " sign) cs;
berghofe@5094
   580
berghofe@5094
   581
    val cnames = map (try' (Sign.base_name o fst o dest_Const o head_of)
berghofe@5094
   582
      "Recursive set not previously declared as constant: " sign) cs;
berghofe@5094
   583
wenzelm@6424
   584
    val _ = assert_all Syntax.is_identifier cnames	(* FIXME why? *)
berghofe@5094
   585
       (fn a => "Base name of recursive set not an identifier: " ^ a);
wenzelm@6424
   586
    val _ = seq (check_rule sign cs o snd o fst) intros;
berghofe@5094
   587
  in
wenzelm@6424
   588
    (if ! quick_and_dirty then add_ind_axm else add_ind_def)
wenzelm@6424
   589
      verbose declare_consts alt_name coind no_elim no_ind cs intros monos
wenzelm@6424
   590
      con_defs thy params paramTs cTs cnames
berghofe@5094
   591
  end;
berghofe@5094
   592
wenzelm@6424
   593
berghofe@5094
   594
wenzelm@6424
   595
(** external interface **)
wenzelm@6424
   596
wenzelm@6424
   597
fun add_inductive verbose coind c_strings intro_srcs raw_monos raw_con_defs thy =
berghofe@5094
   598
  let
wenzelm@6394
   599
    val sign = Theory.sign_of thy;
wenzelm@6394
   600
    val cs = map (readtm (Theory.sign_of thy) HOLogic.termTVar) c_strings;
wenzelm@6424
   601
wenzelm@6424
   602
    val intr_names = map (fst o fst) intro_srcs;
wenzelm@6424
   603
    val intr_ts = map (readtm (Theory.sign_of thy) propT o snd o fst) intro_srcs;
wenzelm@6424
   604
    val intr_atts = map (map (Attrib.global_attribute thy) o snd) intro_srcs;
berghofe@5094
   605
berghofe@5094
   606
    (* the following code ensures that each recursive set *)
berghofe@5094
   607
    (* always has the same type in all introduction rules *)
berghofe@5094
   608
berghofe@5094
   609
    val {tsig, ...} = Sign.rep_sg sign;
berghofe@5094
   610
    val add_term_consts_2 =
berghofe@5094
   611
      foldl_aterms (fn (cs, Const c) => c ins cs | (cs, _) => cs);
berghofe@5094
   612
    fun varify (t, (i, ts)) =
berghofe@5094
   613
      let val t' = map_term_types (incr_tvar (i + 1)) (Type.varify (t, []))
berghofe@5094
   614
      in (maxidx_of_term t', t'::ts) end;
berghofe@5094
   615
    val (i, cs') = foldr varify (cs, (~1, []));
berghofe@5094
   616
    val (i', intr_ts') = foldr varify (intr_ts, (i, []));
berghofe@5094
   617
    val rec_consts = foldl add_term_consts_2 ([], cs');
berghofe@5094
   618
    val intr_consts = foldl add_term_consts_2 ([], intr_ts');
berghofe@5094
   619
    fun unify (env, (cname, cT)) =
berghofe@5094
   620
      let val consts = map snd (filter (fn c => fst c = cname) intr_consts)
berghofe@5094
   621
      in (foldl (fn ((env', j'), Tp) => Type.unify tsig j' env' Tp)
berghofe@5094
   622
        (env, (replicate (length consts) cT) ~~ consts)) handle _ =>
berghofe@5094
   623
          error ("Occurrences of constant '" ^ cname ^
berghofe@5094
   624
            "' have incompatible types")
berghofe@5094
   625
      end;
berghofe@5094
   626
    val (env, _) = foldl unify (([], i'), rec_consts);
berghofe@5094
   627
    fun typ_subst_TVars_2 env T = let val T' = typ_subst_TVars env T
berghofe@5094
   628
      in if T = T' then T else typ_subst_TVars_2 env T' end;
berghofe@5094
   629
    val subst = fst o Type.freeze_thaw o
berghofe@5094
   630
      (map_term_types (typ_subst_TVars_2 env));
berghofe@5094
   631
    val cs'' = map subst cs';
berghofe@5094
   632
    val intr_ts'' = map subst intr_ts';
berghofe@5094
   633
wenzelm@6424
   634
    val ((thy', con_defs), monos) = thy
wenzelm@6424
   635
      |> IsarThy.apply_theorems raw_monos
wenzelm@6424
   636
      |> apfst (IsarThy.apply_theorems raw_con_defs);
wenzelm@6424
   637
  in
wenzelm@6424
   638
    add_inductive_i verbose false "" coind false false cs''
wenzelm@6424
   639
      ((intr_names ~~ intr_ts'') ~~ intr_atts) monos con_defs thy'
berghofe@5094
   640
  end;
berghofe@5094
   641
wenzelm@6424
   642
wenzelm@6424
   643
wenzelm@6424
   644
(** outer syntax **)
wenzelm@6424
   645
wenzelm@6424
   646
local open OuterParse in
wenzelm@6424
   647
wenzelm@6424
   648
fun mk_ind coind (((sets, intrs), monos), con_defs) =
wenzelm@6424
   649
  #1 o add_inductive true coind sets (map (fn ((x, y), z) => ((x, z), y)) intrs) monos con_defs;
wenzelm@6424
   650
wenzelm@6424
   651
fun ind_decl coind =
wenzelm@6424
   652
  Scan.repeat1 term --
wenzelm@6424
   653
  ($$$ "intrs" |-- !!! (Scan.repeat1 (opt_thm_name ":" -- term))) --
wenzelm@6424
   654
  Scan.optional ($$$ "monos" |-- !!! xthms1) [] --
wenzelm@6424
   655
  Scan.optional ($$$ "con_defs" |-- !!! xthms1) []
wenzelm@6424
   656
  >> (Toplevel.theory o mk_ind coind);
wenzelm@6424
   657
wenzelm@6424
   658
val inductiveP = OuterSyntax.command "inductive" "define inductive sets" (ind_decl false);
wenzelm@6424
   659
val coinductiveP = OuterSyntax.command "coinductive" "define coinductive sets" (ind_decl true);
wenzelm@6424
   660
wenzelm@6424
   661
val _ = OuterSyntax.add_keywords ["intrs", "monos", "con_defs"];
wenzelm@6424
   662
val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP];
wenzelm@6424
   663
berghofe@5094
   664
end;
wenzelm@6424
   665
wenzelm@6424
   666
wenzelm@6424
   667
end;