src/HOL/Tools/inductive_package.ML
author wenzelm
Mon Feb 25 16:31:15 2008 +0100 (2008-02-25)
changeset 26128 fe2d24c26e0c
parent 25978 8ba1eba8d058
child 26336 a0e2b706ce73
permissions -rw-r--r--
inductive package: simplified group handling;
berghofe@5094
     1
(*  Title:      HOL/Tools/inductive_package.ML
berghofe@5094
     2
    ID:         $Id$
berghofe@5094
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@21367
     4
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
berghofe@5094
     5
wenzelm@6424
     6
(Co)Inductive Definition module for HOL.
berghofe@5094
     7
berghofe@5094
     8
Features:
wenzelm@6424
     9
  * least or greatest fixedpoints
wenzelm@6424
    10
  * mutually recursive definitions
wenzelm@6424
    11
  * definitions involving arbitrary monotone operators
wenzelm@6424
    12
  * automatically proves introduction and elimination rules
berghofe@5094
    13
berghofe@5094
    14
  Introduction rules have the form
berghofe@21024
    15
  [| M Pj ti, ..., Q x, ... |] ==> Pk t
berghofe@5094
    16
  where M is some monotone operator (usually the identity)
berghofe@21024
    17
  Q x is any side condition on the free variables
berghofe@5094
    18
  ti, t are any terms
berghofe@21024
    19
  Pj, Pk are two of the predicates being defined in mutual recursion
berghofe@5094
    20
*)
berghofe@5094
    21
berghofe@23762
    22
signature BASIC_INDUCTIVE_PACKAGE =
berghofe@5094
    23
sig
wenzelm@6424
    24
  val quiet_mode: bool ref
berghofe@21024
    25
  type inductive_result
wenzelm@21526
    26
  val morph_result: morphism -> inductive_result -> inductive_result
berghofe@21024
    27
  type inductive_info
wenzelm@21526
    28
  val the_inductive: Proof.context -> string -> inductive_info
wenzelm@21367
    29
  val print_inductives: Proof.context -> unit
wenzelm@18728
    30
  val mono_add: attribute
wenzelm@18728
    31
  val mono_del: attribute
wenzelm@21367
    32
  val get_monos: Proof.context -> thm list
wenzelm@21367
    33
  val mk_cases: Proof.context -> term -> thm
wenzelm@10910
    34
  val inductive_forall_name: string
wenzelm@10910
    35
  val inductive_forall_def: thm
wenzelm@10910
    36
  val rulify: thm -> thm
wenzelm@21367
    37
  val inductive_cases: ((bstring * Attrib.src list) * string list) list ->
wenzelm@21367
    38
    Proof.context -> thm list list * local_theory
wenzelm@21367
    39
  val inductive_cases_i: ((bstring * Attrib.src list) * term list) list ->
wenzelm@21367
    40
    Proof.context -> thm list list * local_theory
wenzelm@24815
    41
  val add_inductive_i:
wenzelm@26128
    42
    {verbose: bool, kind: string, alt_name: bstring, coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@24744
    43
    ((string * typ) * mixfix) list ->
berghofe@24744
    44
    (string * typ) list -> ((bstring * Attrib.src list) * term) list -> thm list ->
wenzelm@21367
    45
      local_theory -> inductive_result * local_theory
berghofe@21024
    46
  val add_inductive: bool -> bool -> (string * string option * mixfix) list ->
berghofe@21024
    47
    (string * string option * mixfix) list ->
berghofe@21024
    48
    ((bstring * Attrib.src list) * string) list -> (thmref * Attrib.src list) list ->
wenzelm@21367
    49
    local_theory -> inductive_result * local_theory
wenzelm@26128
    50
  val add_inductive_global: string ->
wenzelm@26128
    51
    {verbose: bool, kind: string, alt_name: bstring, coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@24744
    52
    ((string * typ) * mixfix) list -> (string * typ) list ->
wenzelm@21526
    53
    ((bstring * Attrib.src list) * term) list -> thm list -> theory -> inductive_result * theory
berghofe@22789
    54
  val arities_of: thm -> (string * int) list
berghofe@22789
    55
  val params_of: thm -> term list
berghofe@22789
    56
  val partition_rules: thm -> thm list -> (string * thm list) list
berghofe@25822
    57
  val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
berghofe@22789
    58
  val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
berghofe@22789
    59
  val infer_intro_vars: thm -> int -> thm list -> term list list
wenzelm@18708
    60
  val setup: theory -> theory
berghofe@5094
    61
end;
berghofe@5094
    62
berghofe@23762
    63
signature INDUCTIVE_PACKAGE =
berghofe@23762
    64
sig
berghofe@23762
    65
  include BASIC_INDUCTIVE_PACKAGE
berghofe@23762
    66
  type add_ind_def
wenzelm@26128
    67
  val declare_rules: string -> bstring -> bool -> bool -> string list ->
berghofe@23762
    68
    thm list -> bstring list -> Attrib.src list list -> (thm * string list) list ->
berghofe@23762
    69
    thm -> local_theory -> thm list * thm list * thm * local_theory
berghofe@23762
    70
  val add_ind_def: add_ind_def
berghofe@23762
    71
  val gen_add_inductive_i: add_ind_def ->
wenzelm@26128
    72
    {verbose: bool, kind: string, alt_name: bstring, coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@24744
    73
    ((string * typ) * mixfix) list ->
berghofe@24744
    74
    (string * typ) list -> ((bstring * Attrib.src list) * term) list -> thm list ->
berghofe@23762
    75
      local_theory -> inductive_result * local_theory
berghofe@23762
    76
  val gen_add_inductive: add_ind_def ->
berghofe@23762
    77
    bool -> bool -> (string * string option * mixfix) list ->
berghofe@23762
    78
    (string * string option * mixfix) list ->
berghofe@23762
    79
    ((bstring * Attrib.src list) * string) list -> (thmref * Attrib.src list) list ->
berghofe@23762
    80
    local_theory -> inductive_result * local_theory
berghofe@23762
    81
  val gen_ind_decl: add_ind_def ->
berghofe@23762
    82
    bool -> OuterParse.token list ->
berghofe@23762
    83
    (Toplevel.transition -> Toplevel.transition) * OuterParse.token list
berghofe@23762
    84
end;
berghofe@23762
    85
wenzelm@6424
    86
structure InductivePackage: INDUCTIVE_PACKAGE =
berghofe@5094
    87
struct
berghofe@5094
    88
wenzelm@9598
    89
wenzelm@10729
    90
(** theory context references **)
wenzelm@10729
    91
wenzelm@11991
    92
val inductive_forall_name = "HOL.induct_forall";
wenzelm@11991
    93
val inductive_forall_def = thm "induct_forall_def";
wenzelm@11991
    94
val inductive_conj_name = "HOL.induct_conj";
wenzelm@11991
    95
val inductive_conj_def = thm "induct_conj_def";
wenzelm@11991
    96
val inductive_conj = thms "induct_conj";
wenzelm@11991
    97
val inductive_atomize = thms "induct_atomize";
wenzelm@18463
    98
val inductive_rulify = thms "induct_rulify";
wenzelm@18463
    99
val inductive_rulify_fallback = thms "induct_rulify_fallback";
wenzelm@10729
   100
berghofe@21024
   101
val notTrueE = TrueI RSN (2, notE);
berghofe@21024
   102
val notFalseI = Seq.hd (atac 1 notI);
berghofe@21024
   103
val simp_thms' = map (fn s => mk_meta_eq (the (find_first
wenzelm@22675
   104
  (equal (Sign.read_prop HOL.thy s) o prop_of) simp_thms)))
berghofe@21024
   105
  ["(~True) = False", "(~False) = True",
berghofe@21024
   106
   "(True --> ?P) = ?P", "(False --> ?P) = True",
berghofe@21024
   107
   "(?P & True) = ?P", "(True & ?P) = ?P"];
berghofe@21024
   108
wenzelm@10729
   109
wenzelm@10729
   110
wenzelm@22846
   111
(** context data **)
berghofe@7710
   112
berghofe@21024
   113
type inductive_result =
berghofe@23762
   114
  {preds: term list, elims: thm list, raw_induct: thm,
berghofe@23762
   115
   induct: thm, intrs: thm list};
berghofe@7710
   116
berghofe@23762
   117
fun morph_result phi {preds, elims, raw_induct: thm, induct, intrs} =
wenzelm@21526
   118
  let
wenzelm@21526
   119
    val term = Morphism.term phi;
wenzelm@21526
   120
    val thm = Morphism.thm phi;
wenzelm@21526
   121
    val fact = Morphism.fact phi;
wenzelm@21526
   122
  in
berghofe@23762
   123
   {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
berghofe@23762
   124
    induct = thm induct, intrs = fact intrs}
wenzelm@21526
   125
  end;
wenzelm@21526
   126
berghofe@21024
   127
type inductive_info =
berghofe@21024
   128
  {names: string list, coind: bool} * inductive_result;
berghofe@21024
   129
berghofe@21024
   130
structure InductiveData = GenericDataFun
wenzelm@22846
   131
(
berghofe@7710
   132
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
   133
  val empty = (Symtab.empty, []);
wenzelm@16432
   134
  val extend = I;
wenzelm@16432
   135
  fun merge _ ((tab1, monos1), (tab2, monos2)) =
wenzelm@24039
   136
    (Symtab.merge (K true) (tab1, tab2), Thm.merge_thms (monos1, monos2));
wenzelm@22846
   137
);
berghofe@7710
   138
wenzelm@21526
   139
val get_inductives = InductiveData.get o Context.Proof;
wenzelm@22846
   140
wenzelm@22846
   141
fun print_inductives ctxt =
wenzelm@22846
   142
  let
wenzelm@22846
   143
    val (tab, monos) = get_inductives ctxt;
wenzelm@22846
   144
    val space = Consts.space_of (ProofContext.consts_of ctxt);
wenzelm@22846
   145
  in
wenzelm@22846
   146
    [Pretty.strs ("(co)inductives:" :: map #1 (NameSpace.extern_table (space, tab))),
wenzelm@22846
   147
     Pretty.big_list "monotonicity rules:" (map (ProofContext.pretty_thm ctxt) monos)]
wenzelm@22846
   148
    |> Pretty.chunks |> Pretty.writeln
wenzelm@22846
   149
  end;
berghofe@7710
   150
berghofe@7710
   151
berghofe@7710
   152
(* get and put data *)
berghofe@7710
   153
wenzelm@21367
   154
fun the_inductive ctxt name =
wenzelm@21526
   155
  (case Symtab.lookup (#1 (get_inductives ctxt)) name of
berghofe@21024
   156
    NONE => error ("Unknown (co)inductive predicate " ^ quote name)
skalberg@15531
   157
  | SOME info => info);
wenzelm@9598
   158
wenzelm@25380
   159
fun put_inductives names info = InductiveData.map
wenzelm@25380
   160
  (apfst (fold (fn name => Symtab.update (name, info)) names));
berghofe@7710
   161
wenzelm@8277
   162
berghofe@7710
   163
berghofe@7710
   164
(** monotonicity rules **)
berghofe@7710
   165
wenzelm@21526
   166
val get_monos = #2 o get_inductives;
wenzelm@21367
   167
val map_monos = InductiveData.map o apsnd;
wenzelm@8277
   168
berghofe@7710
   169
fun mk_mono thm =
berghofe@7710
   170
  let
berghofe@22275
   171
    val concl = concl_of thm;
berghofe@22275
   172
    fun eq2mono thm' = [thm' RS (thm' RS eq_to_mono)] @
berghofe@22275
   173
      (case concl of
berghofe@7710
   174
          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
berghofe@22275
   175
        | _ => [thm' RS (thm' RS eq_to_mono2)]);
berghofe@22275
   176
    fun dest_less_concl thm = dest_less_concl (thm RS le_funD)
wenzelm@22846
   177
      handle THM _ => thm RS le_boolD
berghofe@7710
   178
  in
berghofe@22275
   179
    case concl of
berghofe@22275
   180
      Const ("==", _) $ _ $ _ => eq2mono (thm RS meta_eq_to_obj_eq)
berghofe@22275
   181
    | _ $ (Const ("op =", _) $ _ $ _) => eq2mono thm
haftmann@23881
   182
    | _ $ (Const ("HOL.ord_class.less_eq", _) $ _ $ _) =>
berghofe@22275
   183
      [dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
berghofe@22275
   184
         (resolve_tac [le_funI, le_boolI'])) thm))]
berghofe@22275
   185
    | _ => [thm]
berghofe@23762
   186
  end handle THM _ => error ("Bad monotonicity theorem:\n" ^ string_of_thm thm);
berghofe@7710
   187
wenzelm@24039
   188
val mono_add = Thm.declaration_attribute (map_monos o fold Thm.add_thm o mk_mono);
wenzelm@24039
   189
val mono_del = Thm.declaration_attribute (map_monos o fold Thm.del_thm o mk_mono);
berghofe@7710
   190
berghofe@7710
   191
wenzelm@7107
   192
wenzelm@10735
   193
(** misc utilities **)
wenzelm@6424
   194
berghofe@5662
   195
val quiet_mode = ref false;
wenzelm@10735
   196
fun message s = if ! quiet_mode then () else writeln s;
wenzelm@10735
   197
fun clean_message s = if ! quick_and_dirty then () else message s;
berghofe@5662
   198
wenzelm@6424
   199
fun coind_prefix true = "co"
wenzelm@6424
   200
  | coind_prefix false = "";
wenzelm@6424
   201
wenzelm@24133
   202
fun log (b:int) m n = if m >= n then 0 else 1 + log b (b * m) n;
wenzelm@6424
   203
berghofe@21024
   204
fun make_bool_args f g [] i = []
berghofe@21024
   205
  | make_bool_args f g (x :: xs) i =
berghofe@21024
   206
      (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
berghofe@21024
   207
berghofe@21024
   208
fun make_bool_args' xs =
berghofe@21024
   209
  make_bool_args (K HOLogic.false_const) (K HOLogic.true_const) xs;
berghofe@21024
   210
berghofe@21024
   211
fun find_arg T x [] = sys_error "find_arg"
berghofe@21024
   212
  | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
berghofe@21024
   213
      apsnd (cons p) (find_arg T x ps)
berghofe@21024
   214
  | find_arg T x ((p as (U, (NONE, y))) :: ps) =
wenzelm@23577
   215
      if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
berghofe@21024
   216
      else apsnd (cons p) (find_arg T x ps);
berghofe@7020
   217
berghofe@21024
   218
fun make_args Ts xs =
berghofe@21024
   219
  map (fn (T, (NONE, ())) => Const ("arbitrary", T) | (_, (SOME t, ())) => t)
berghofe@21024
   220
    (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
berghofe@7020
   221
berghofe@21024
   222
fun make_args' Ts xs Us =
berghofe@21024
   223
  fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
berghofe@7020
   224
berghofe@21024
   225
fun dest_predicate cs params t =
berghofe@5094
   226
  let
berghofe@21024
   227
    val k = length params;
berghofe@21024
   228
    val (c, ts) = strip_comb t;
berghofe@21024
   229
    val (xs, ys) = chop k ts;
berghofe@21024
   230
    val i = find_index_eq c cs;
berghofe@21024
   231
  in
berghofe@21024
   232
    if xs = params andalso i >= 0 then
berghofe@21024
   233
      SOME (c, i, ys, chop (length ys)
berghofe@21024
   234
        (List.drop (binder_types (fastype_of c), k)))
berghofe@21024
   235
    else NONE
berghofe@5094
   236
  end;
berghofe@5094
   237
berghofe@21024
   238
fun mk_names a 0 = []
berghofe@21024
   239
  | mk_names a 1 = [a]
berghofe@21024
   240
  | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
berghofe@10988
   241
wenzelm@6424
   242
wenzelm@6424
   243
wenzelm@10729
   244
(** process rules **)
wenzelm@10729
   245
wenzelm@10729
   246
local
berghofe@5094
   247
berghofe@23762
   248
fun err_in_rule ctxt name t msg =
wenzelm@16432
   249
  error (cat_lines ["Ill-formed introduction rule " ^ quote name,
wenzelm@24920
   250
    Syntax.string_of_term ctxt t, msg]);
wenzelm@10729
   251
berghofe@23762
   252
fun err_in_prem ctxt name t p msg =
wenzelm@24920
   253
  error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
wenzelm@24920
   254
    "in introduction rule " ^ quote name, Syntax.string_of_term ctxt t, msg]);
berghofe@5094
   255
berghofe@21024
   256
val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
wenzelm@10729
   257
berghofe@21024
   258
val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
berghofe@21024
   259
berghofe@21024
   260
val bad_app = "Inductive predicate must be applied to parameter(s) ";
paulson@11358
   261
wenzelm@16432
   262
fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
wenzelm@10729
   263
wenzelm@10729
   264
in
berghofe@5094
   265
berghofe@23762
   266
fun check_rule ctxt cs params ((name, att), rule) =
wenzelm@10729
   267
  let
berghofe@21024
   268
    val params' = Term.variant_frees rule (Logic.strip_params rule);
berghofe@21024
   269
    val frees = rev (map Free params');
berghofe@21024
   270
    val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
berghofe@21024
   271
    val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
berghofe@23762
   272
    val rule' = Logic.list_implies (prems, concl);
berghofe@23762
   273
    val aprems = map (atomize_term (ProofContext.theory_of ctxt)) prems;
berghofe@21024
   274
    val arule = list_all_free (params', Logic.list_implies (aprems, concl));
berghofe@21024
   275
berghofe@21024
   276
    fun check_ind err t = case dest_predicate cs params t of
berghofe@21024
   277
        NONE => err (bad_app ^
wenzelm@24920
   278
          commas (map (Syntax.string_of_term ctxt) params))
berghofe@21024
   279
      | SOME (_, _, ys, _) =>
berghofe@21024
   280
          if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
berghofe@21024
   281
          then err bad_ind_occ else ();
berghofe@21024
   282
berghofe@21024
   283
    fun check_prem' prem t =
berghofe@21024
   284
      if head_of t mem cs then
berghofe@23762
   285
        check_ind (err_in_prem ctxt name rule prem) t
berghofe@21024
   286
      else (case t of
berghofe@21024
   287
          Abs (_, _, t) => check_prem' prem t
berghofe@21024
   288
        | t $ u => (check_prem' prem t; check_prem' prem u)
berghofe@21024
   289
        | _ => ());
berghofe@5094
   290
wenzelm@10729
   291
    fun check_prem (prem, aprem) =
berghofe@21024
   292
      if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
berghofe@23762
   293
      else err_in_prem ctxt name rule prem "Non-atomic premise";
wenzelm@10729
   294
  in
paulson@11358
   295
    (case concl of
wenzelm@21367
   296
       Const ("Trueprop", _) $ t =>
berghofe@21024
   297
         if head_of t mem cs then
berghofe@23762
   298
           (check_ind (err_in_rule ctxt name rule') t;
berghofe@21024
   299
            List.app check_prem (prems ~~ aprems))
berghofe@23762
   300
         else err_in_rule ctxt name rule' bad_concl
berghofe@23762
   301
     | _ => err_in_rule ctxt name rule' bad_concl);
berghofe@21024
   302
    ((name, att), arule)
wenzelm@10729
   303
  end;
berghofe@5094
   304
berghofe@24744
   305
val rulify =
wenzelm@18222
   306
  hol_simplify inductive_conj
wenzelm@18463
   307
  #> hol_simplify inductive_rulify
wenzelm@18463
   308
  #> hol_simplify inductive_rulify_fallback
berghofe@24744
   309
  #> MetaSimplifier.norm_hhf;
wenzelm@10729
   310
wenzelm@10729
   311
end;
wenzelm@10729
   312
berghofe@5094
   313
wenzelm@6424
   314
berghofe@21024
   315
(** proofs for (co)inductive predicates **)
wenzelm@6424
   316
wenzelm@10735
   317
(* prove monotonicity -- NOT subject to quick_and_dirty! *)
berghofe@5094
   318
berghofe@21024
   319
fun prove_mono predT fp_fun monos ctxt =
wenzelm@10735
   320
 (message "  Proving monotonicity ...";
berghofe@21024
   321
  Goal.prove ctxt [] []   (*NO quick_and_dirty here!*)
wenzelm@17985
   322
    (HOLogic.mk_Trueprop
wenzelm@24815
   323
      (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
wenzelm@25380
   324
    (fn _ => EVERY [rtac @{thm monoI} 1,
berghofe@21024
   325
      REPEAT (resolve_tac [le_funI, le_boolI'] 1),
berghofe@21024
   326
      REPEAT (FIRST
berghofe@21024
   327
        [atac 1,
wenzelm@21367
   328
         resolve_tac (List.concat (map mk_mono monos) @ get_monos ctxt) 1,
berghofe@21024
   329
         etac le_funE 1, dtac le_boolD 1])]));
berghofe@5094
   330
wenzelm@6424
   331
wenzelm@10735
   332
(* prove introduction rules *)
berghofe@5094
   333
berghofe@22605
   334
fun prove_intrs coind mono fp_def k params intr_ts rec_preds_defs ctxt =
berghofe@5094
   335
  let
wenzelm@10735
   336
    val _ = clean_message "  Proving the introduction rules ...";
berghofe@5094
   337
berghofe@21024
   338
    val unfold = funpow k (fn th => th RS fun_cong)
berghofe@21024
   339
      (mono RS (fp_def RS
berghofe@21024
   340
        (if coind then def_gfp_unfold else def_lfp_unfold)));
berghofe@5094
   341
berghofe@5094
   342
    fun select_disj 1 1 = []
berghofe@5094
   343
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   344
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   345
berghofe@21024
   346
    val rules = [refl, TrueI, notFalseI, exI, conjI];
berghofe@21024
   347
berghofe@22605
   348
    val intrs = map_index (fn (i, intr) => rulify
berghofe@22605
   349
      (SkipProof.prove ctxt (map (fst o dest_Free) params) [] intr (fn _ => EVERY
berghofe@21024
   350
       [rewrite_goals_tac rec_preds_defs,
berghofe@21024
   351
        rtac (unfold RS iffD2) 1,
berghofe@21024
   352
        EVERY1 (select_disj (length intr_ts) (i + 1)),
wenzelm@17985
   353
        (*Not ares_tac, since refl must be tried before any equality assumptions;
wenzelm@17985
   354
          backtracking may occur if the premises have extra variables!*)
berghofe@21024
   355
        DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]))) intr_ts
berghofe@5094
   356
berghofe@5094
   357
  in (intrs, unfold) end;
berghofe@5094
   358
wenzelm@6424
   359
wenzelm@10735
   360
(* prove elimination rules *)
berghofe@5094
   361
berghofe@21024
   362
fun prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt =
berghofe@5094
   363
  let
wenzelm@10735
   364
    val _ = clean_message "  Proving the elimination rules ...";
berghofe@5094
   365
berghofe@22605
   366
    val ([pname], ctxt') = ctxt |>
berghofe@22605
   367
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   368
      Variable.variant_fixes ["P"];
berghofe@21024
   369
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@21024
   370
berghofe@21024
   371
    fun dest_intr r =
berghofe@21024
   372
      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
berghofe@21024
   373
       Logic.strip_assums_hyp r, Logic.strip_params r);
berghofe@21024
   374
berghofe@21024
   375
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@21024
   376
berghofe@21024
   377
    val rules1 = [disjE, exE, FalseE];
berghofe@21024
   378
    val rules2 = [conjE, FalseE, notTrueE];
berghofe@21024
   379
berghofe@21024
   380
    fun prove_elim c =
berghofe@21024
   381
      let
berghofe@21024
   382
        val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   383
        val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
berghofe@21024
   384
        val frees = map Free (anames ~~ Ts);
berghofe@21024
   385
berghofe@21024
   386
        fun mk_elim_prem ((_, _, us, _), ts, params') =
berghofe@21024
   387
          list_all (params',
berghofe@21024
   388
            Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
berghofe@21024
   389
              (frees ~~ us) @ ts, P));
berghofe@21024
   390
        val c_intrs = (List.filter (equal c o #1 o #1 o #1) intrs);
berghofe@21024
   391
        val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
berghofe@21024
   392
           map mk_elim_prem (map #1 c_intrs)
berghofe@21024
   393
      in
berghofe@21048
   394
        (SkipProof.prove ctxt'' [] prems P
berghofe@21024
   395
          (fn {prems, ...} => EVERY
berghofe@21024
   396
            [cut_facts_tac [hd prems] 1,
berghofe@21024
   397
             rewrite_goals_tac rec_preds_defs,
berghofe@21024
   398
             dtac (unfold RS iffD1) 1,
berghofe@21024
   399
             REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@21024
   400
             REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@21024
   401
             EVERY (map (fn prem =>
berghofe@21024
   402
               DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
berghofe@21024
   403
          |> rulify
berghofe@21048
   404
          |> singleton (ProofContext.export ctxt'' ctxt),
berghofe@21048
   405
         map #2 c_intrs)
berghofe@21024
   406
      end
berghofe@21024
   407
berghofe@21024
   408
   in map prove_elim cs end;
berghofe@5094
   409
wenzelm@6424
   410
wenzelm@10735
   411
(* derivation of simplified elimination rules *)
berghofe@5094
   412
wenzelm@11682
   413
local
wenzelm@11682
   414
wenzelm@11682
   415
(*delete needless equality assumptions*)
wenzelm@25365
   416
val refl_thin = Goal.prove_global HOL.thy [] [] @{prop "!!P. a = a ==> P ==> P"}
haftmann@22838
   417
  (fn _ => assume_tac 1);
berghofe@21024
   418
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
wenzelm@11682
   419
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   420
berghofe@23762
   421
fun simp_case_tac ss i =
berghofe@23762
   422
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i;
wenzelm@21367
   423
wenzelm@11682
   424
in
wenzelm@9598
   425
wenzelm@21367
   426
fun mk_cases ctxt prop =
wenzelm@7107
   427
  let
wenzelm@21367
   428
    val thy = ProofContext.theory_of ctxt;
wenzelm@21367
   429
    val ss = Simplifier.local_simpset_of ctxt;
wenzelm@21367
   430
wenzelm@21526
   431
    fun err msg =
wenzelm@21526
   432
      error (Pretty.string_of (Pretty.block
wenzelm@24920
   433
        [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
wenzelm@21526
   434
wenzelm@24861
   435
    val elims = Induct.find_casesP ctxt prop;
wenzelm@21367
   436
wenzelm@21367
   437
    val cprop = Thm.cterm_of thy prop;
berghofe@23762
   438
    val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac;
wenzelm@21367
   439
    fun mk_elim rl =
wenzelm@21367
   440
      Thm.implies_intr cprop (Tactic.rule_by_tactic tac (Thm.assume cprop RS rl))
wenzelm@21367
   441
      |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
wenzelm@7107
   442
  in
wenzelm@7107
   443
    (case get_first (try mk_elim) elims of
skalberg@15531
   444
      SOME r => r
wenzelm@21526
   445
    | NONE => err "Proposition not an inductive predicate:")
wenzelm@7107
   446
  end;
wenzelm@7107
   447
wenzelm@11682
   448
end;
wenzelm@11682
   449
wenzelm@7107
   450
wenzelm@21367
   451
(* inductive_cases *)
wenzelm@7107
   452
wenzelm@21367
   453
fun gen_inductive_cases prep_att prep_prop args lthy =
wenzelm@9598
   454
  let
wenzelm@21367
   455
    val thy = ProofContext.theory_of lthy;
wenzelm@12876
   456
    val facts = args |> map (fn ((a, atts), props) =>
wenzelm@21367
   457
      ((a, map (prep_att thy) atts),
wenzelm@21367
   458
        map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
wenzelm@24815
   459
  in lthy |> LocalTheory.notes Thm.theoremK facts |>> map snd end;
berghofe@5094
   460
wenzelm@24509
   461
val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
wenzelm@24509
   462
val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
wenzelm@7107
   463
wenzelm@6424
   464
berghofe@22275
   465
fun ind_cases src = Method.syntax (Scan.lift (Scan.repeat1 Args.name --
berghofe@22275
   466
    Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.name) [])) src
berghofe@22275
   467
  #> (fn ((raw_props, fixes), ctxt) =>
berghofe@22275
   468
    let
berghofe@22275
   469
      val (_, ctxt') = Variable.add_fixes fixes ctxt;
wenzelm@24509
   470
      val props = Syntax.read_props ctxt' raw_props;
berghofe@22275
   471
      val ctxt'' = fold Variable.declare_term props ctxt';
berghofe@22275
   472
      val rules = ProofContext.export ctxt'' ctxt (map (mk_cases ctxt'') props)
berghofe@22275
   473
    in Method.erule 0 rules end);
wenzelm@9598
   474
wenzelm@9598
   475
wenzelm@9598
   476
wenzelm@10735
   477
(* prove induction rule *)
berghofe@5094
   478
berghofe@21024
   479
fun prove_indrule cs argTs bs xs rec_const params intr_ts mono
berghofe@21024
   480
    fp_def rec_preds_defs ctxt =
berghofe@5094
   481
  let
wenzelm@10735
   482
    val _ = clean_message "  Proving the induction rule ...";
wenzelm@20047
   483
    val thy = ProofContext.theory_of ctxt;
berghofe@5094
   484
berghofe@21024
   485
    (* predicates for induction rule *)
berghofe@21024
   486
berghofe@22605
   487
    val (pnames, ctxt') = ctxt |>
berghofe@22605
   488
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   489
      Variable.variant_fixes (mk_names "P" (length cs));
berghofe@21024
   490
    val preds = map Free (pnames ~~
berghofe@21024
   491
      map (fn c => List.drop (binder_types (fastype_of c), length params) --->
berghofe@21024
   492
        HOLogic.boolT) cs);
berghofe@21024
   493
berghofe@21024
   494
    (* transform an introduction rule into a premise for induction rule *)
berghofe@21024
   495
berghofe@21024
   496
    fun mk_ind_prem r =
berghofe@21024
   497
      let
berghofe@21024
   498
        fun subst s = (case dest_predicate cs params s of
berghofe@21024
   499
            SOME (_, i, ys, (_, Ts)) =>
berghofe@21024
   500
              let
berghofe@21024
   501
                val k = length Ts;
berghofe@21024
   502
                val bs = map Bound (k - 1 downto 0);
berghofe@23762
   503
                val P = list_comb (List.nth (preds, i),
berghofe@23762
   504
                  map (incr_boundvars k) ys @ bs);
berghofe@21024
   505
                val Q = list_abs (mk_names "x" k ~~ Ts,
berghofe@23762
   506
                  HOLogic.mk_binop inductive_conj_name
berghofe@23762
   507
                    (list_comb (incr_boundvars k s, bs), P))
berghofe@21024
   508
              in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
berghofe@21024
   509
          | NONE => (case s of
berghofe@21024
   510
              (t $ u) => (fst (subst t) $ fst (subst u), NONE)
berghofe@21024
   511
            | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
berghofe@21024
   512
            | _ => (s, NONE)));
berghofe@7293
   513
berghofe@21024
   514
        fun mk_prem (s, prems) = (case subst s of
berghofe@21024
   515
              (_, SOME (t, u)) => t :: u :: prems
berghofe@21024
   516
            | (t, _) => t :: prems);
berghofe@21024
   517
berghofe@21024
   518
        val SOME (_, i, ys, _) = dest_predicate cs params
berghofe@21024
   519
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))
berghofe@21024
   520
berghofe@21024
   521
      in list_all_free (Logic.strip_params r,
berghofe@21024
   522
        Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
berghofe@21024
   523
          [] (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r))),
berghofe@21024
   524
            HOLogic.mk_Trueprop (list_comb (List.nth (preds, i), ys))))
berghofe@21024
   525
      end;
berghofe@21024
   526
berghofe@21024
   527
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@21024
   528
wenzelm@21526
   529
berghofe@21024
   530
    (* make conclusions for induction rules *)
berghofe@21024
   531
berghofe@21024
   532
    val Tss = map (binder_types o fastype_of) preds;
berghofe@21024
   533
    val (xnames, ctxt'') =
berghofe@21024
   534
      Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
berghofe@21024
   535
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@21024
   536
        (map (fn (((xnames, Ts), c), P) =>
berghofe@21024
   537
           let val frees = map Free (xnames ~~ Ts)
berghofe@21024
   538
           in HOLogic.mk_imp
berghofe@21024
   539
             (list_comb (c, params @ frees), list_comb (P, frees))
berghofe@21024
   540
           end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
berghofe@5094
   541
paulson@13626
   542
berghofe@5094
   543
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   544
berghofe@21024
   545
    val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
berghofe@21024
   546
      (map_index (fn (i, P) => foldr HOLogic.mk_imp
berghofe@21024
   547
         (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))
berghofe@21024
   548
         (make_bool_args HOLogic.mk_not I bs i)) preds));
berghofe@5094
   549
berghofe@5094
   550
    val ind_concl = HOLogic.mk_Trueprop
haftmann@23881
   551
      (HOLogic.mk_binrel "HOL.ord_class.less_eq" (rec_const, ind_pred));
berghofe@5094
   552
paulson@13626
   553
    val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct));
paulson@13626
   554
berghofe@21024
   555
    val induct = SkipProof.prove ctxt'' [] ind_prems ind_concl
wenzelm@20248
   556
      (fn {prems, ...} => EVERY
wenzelm@17985
   557
        [rewrite_goals_tac [inductive_conj_def],
berghofe@21024
   558
         DETERM (rtac raw_fp_induct 1),
berghofe@21024
   559
         REPEAT (resolve_tac [le_funI, le_boolI] 1),
haftmann@22460
   560
         rewrite_goals_tac (inf_fun_eq :: inf_bool_eq :: simp_thms'),
berghofe@21024
   561
         (*This disjE separates out the introduction rules*)
berghofe@21024
   562
         REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
berghofe@5094
   563
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   564
           some premise involves disjunction.*)
paulson@13747
   565
         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
berghofe@21024
   566
         REPEAT (FIRSTGOAL
berghofe@21024
   567
           (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
berghofe@21024
   568
         EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
berghofe@22980
   569
             (inductive_conj_def :: rec_preds_defs @ simp_thms') prem,
berghofe@22980
   570
           conjI, refl] 1)) prems)]);
berghofe@5094
   571
berghofe@21024
   572
    val lemma = SkipProof.prove ctxt'' [] []
wenzelm@17985
   573
      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
berghofe@21024
   574
        [rewrite_goals_tac rec_preds_defs,
berghofe@5094
   575
         REPEAT (EVERY
berghofe@5094
   576
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@21024
   577
            REPEAT (eresolve_tac [le_funE, le_boolE] 1),
berghofe@21024
   578
            atac 1,
berghofe@21024
   579
            rewrite_goals_tac simp_thms',
berghofe@21024
   580
            atac 1])])
berghofe@5094
   581
berghofe@21024
   582
  in singleton (ProofContext.export ctxt'' ctxt) (induct RS lemma) end;
berghofe@5094
   583
wenzelm@6424
   584
wenzelm@6424
   585
berghofe@21024
   586
(** specification of (co)inductive predicates **)
wenzelm@10729
   587
wenzelm@26128
   588
fun mk_ind_def alt_name coind cs intr_ts monos params cnames_syn ctxt =
berghofe@5094
   589
  let
haftmann@24915
   590
    val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
berghofe@5094
   591
berghofe@21024
   592
    val argTs = fold (fn c => fn Ts => Ts @
berghofe@21024
   593
      (List.drop (binder_types (fastype_of c), length params) \\ Ts)) cs [];
berghofe@21024
   594
    val k = log 2 1 (length cs);
berghofe@21024
   595
    val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
berghofe@21024
   596
    val p :: xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   597
      (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
berghofe@21024
   598
    val bs = map Free (Variable.variant_frees ctxt (p :: xs @ intr_ts)
berghofe@21024
   599
      (map (rpair HOLogic.boolT) (mk_names "b" k)));
berghofe@21024
   600
berghofe@21024
   601
    fun subst t = (case dest_predicate cs params t of
berghofe@21024
   602
        SOME (_, i, ts, (Ts, Us)) =>
berghofe@23762
   603
          let
berghofe@23762
   604
            val l = length Us;
berghofe@23762
   605
            val zs = map Bound (l - 1 downto 0)
berghofe@21024
   606
          in
berghofe@21024
   607
            list_abs (map (pair "z") Us, list_comb (p,
berghofe@23762
   608
              make_bool_args' bs i @ make_args argTs
berghofe@23762
   609
                ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
berghofe@21024
   610
          end
berghofe@21024
   611
      | NONE => (case t of
berghofe@21024
   612
          t1 $ t2 => subst t1 $ subst t2
berghofe@21024
   613
        | Abs (x, T, u) => Abs (x, T, subst u)
berghofe@21024
   614
        | _ => t));
berghofe@5149
   615
berghofe@5094
   616
    (* transform an introduction rule into a conjunction  *)
berghofe@21024
   617
    (*   [| p_i t; ... |] ==> p_j u                       *)
berghofe@5094
   618
    (* is transformed into                                *)
berghofe@21024
   619
    (*   b_j & x_j = u & p b_j t & ...                    *)
berghofe@5094
   620
berghofe@5094
   621
    fun transform_rule r =
berghofe@5094
   622
      let
berghofe@21024
   623
        val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params
berghofe@21048
   624
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
berghofe@21048
   625
        val ps = make_bool_args HOLogic.mk_not I bs i @
berghofe@21048
   626
          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
berghofe@21048
   627
          map (subst o HOLogic.dest_Trueprop)
berghofe@21048
   628
            (Logic.strip_assums_hyp r)
berghofe@21024
   629
      in foldr (fn ((x, T), P) => HOLogic.exists_const T $ (Abs (x, T, P)))
berghofe@21048
   630
        (if null ps then HOLogic.true_const else foldr1 HOLogic.mk_conj ps)
berghofe@21048
   631
        (Logic.strip_params r)
berghofe@5094
   632
      end
berghofe@5094
   633
berghofe@5094
   634
    (* make a disjunction of all introduction rules *)
berghofe@5094
   635
berghofe@21024
   636
    val fp_fun = fold_rev lambda (p :: bs @ xs)
berghofe@21024
   637
      (if null intr_ts then HOLogic.false_const
berghofe@21024
   638
       else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
berghofe@5094
   639
berghofe@21024
   640
    (* add definiton of recursive predicates to theory *)
berghofe@5094
   641
berghofe@14235
   642
    val rec_name = if alt_name = "" then
berghofe@21024
   643
      space_implode "_" (map fst cnames_syn) else alt_name;
berghofe@5094
   644
berghofe@21024
   645
    val ((rec_const, (_, fp_def)), ctxt') = ctxt |>
wenzelm@26128
   646
      LocalTheory.define Thm.internalK
berghofe@21024
   647
        ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
berghofe@21024
   648
         (("", []), fold_rev lambda params
berghofe@21024
   649
           (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)));
berghofe@21024
   650
    val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
berghofe@21024
   651
      (cterm_of (ProofContext.theory_of ctxt') (list_comb (rec_const, params)));
berghofe@21024
   652
    val specs = if length cs < 2 then [] else
berghofe@21024
   653
      map_index (fn (i, (name_mx, c)) =>
berghofe@21024
   654
        let
berghofe@21024
   655
          val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   656
          val xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   657
            (mk_names "x" (length Ts) ~~ Ts))
berghofe@21024
   658
        in
berghofe@21024
   659
          (name_mx, (("", []), fold_rev lambda (params @ xs)
berghofe@21024
   660
            (list_comb (rec_const, params @ make_bool_args' bs i @
berghofe@21024
   661
              make_args argTs (xs ~~ Ts)))))
berghofe@21024
   662
        end) (cnames_syn ~~ cs);
wenzelm@26128
   663
    val (consts_defs, ctxt'') = fold_map (LocalTheory.define Thm.internalK) specs ctxt';
berghofe@21024
   664
    val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
berghofe@5094
   665
berghofe@21024
   666
    val mono = prove_mono predT fp_fun monos ctxt''
berghofe@5094
   667
berghofe@21024
   668
  in (ctxt'', rec_name, mono, fp_def', map (#2 o #2) consts_defs,
berghofe@21024
   669
    list_comb (rec_const, params), preds, argTs, bs, xs)
berghofe@21024
   670
  end;
berghofe@5094
   671
wenzelm@26128
   672
fun declare_rules kind rec_name coind no_ind cnames intrs intr_names intr_atts
berghofe@23762
   673
      elims raw_induct ctxt =
berghofe@23762
   674
  let
berghofe@23762
   675
    val ind_case_names = RuleCases.case_names intr_names;
berghofe@23762
   676
    val induct =
berghofe@23762
   677
      if coind then
berghofe@23762
   678
        (raw_induct, [RuleCases.case_names [rec_name],
berghofe@23762
   679
          RuleCases.case_conclusion (rec_name, intr_names),
wenzelm@24861
   680
          RuleCases.consumes 1, Induct.coinduct_pred (hd cnames)])
berghofe@23762
   681
      else if no_ind orelse length cnames > 1 then
berghofe@23762
   682
        (raw_induct, [ind_case_names, RuleCases.consumes 0])
berghofe@23762
   683
      else (raw_induct RSN (2, rev_mp), [ind_case_names, RuleCases.consumes 1]);
berghofe@23762
   684
berghofe@23762
   685
    val (intrs', ctxt1) =
berghofe@23762
   686
      ctxt |>
wenzelm@26128
   687
      LocalTheory.notes kind
berghofe@23762
   688
        (map (NameSpace.qualified rec_name) intr_names ~~
berghofe@23762
   689
         intr_atts ~~ map (fn th => [([th],
berghofe@23762
   690
           [Attrib.internal (K (ContextRules.intro_query NONE))])]) intrs) |>>
berghofe@24744
   691
      map (hd o snd);
berghofe@23762
   692
    val (((_, elims'), (_, [induct'])), ctxt2) =
berghofe@23762
   693
      ctxt1 |>
wenzelm@26128
   694
      LocalTheory.note kind ((NameSpace.qualified rec_name "intros", []), intrs') ||>>
berghofe@23762
   695
      fold_map (fn (name, (elim, cases)) =>
wenzelm@26128
   696
        LocalTheory.note kind ((NameSpace.qualified (Sign.base_name name) "cases",
berghofe@23762
   697
          [Attrib.internal (K (RuleCases.case_names cases)),
berghofe@23762
   698
           Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@24861
   699
           Attrib.internal (K (Induct.cases_pred name)),
berghofe@23762
   700
           Attrib.internal (K (ContextRules.elim_query NONE))]), [elim]) #>
berghofe@23762
   701
        apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
wenzelm@26128
   702
      LocalTheory.note kind ((NameSpace.qualified rec_name (coind_prefix coind ^ "induct"),
berghofe@23762
   703
        map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
berghofe@23762
   704
berghofe@23762
   705
    val ctxt3 = if no_ind orelse coind then ctxt2 else
berghofe@23762
   706
      let val inducts = cnames ~~ ProjectRule.projects ctxt2 (1 upto length cnames) induct'
berghofe@23762
   707
      in
berghofe@23762
   708
        ctxt2 |>
wenzelm@26128
   709
        LocalTheory.notes kind [((NameSpace.qualified rec_name "inducts", []),
berghofe@23762
   710
          inducts |> map (fn (name, th) => ([th],
berghofe@23762
   711
            [Attrib.internal (K ind_case_names),
berghofe@23762
   712
             Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@24861
   713
             Attrib.internal (K (Induct.induct_pred name))])))] |> snd
berghofe@23762
   714
      end
berghofe@23762
   715
  in (intrs', elims', induct', ctxt3) end;
berghofe@23762
   716
wenzelm@24815
   717
type add_ind_def =
wenzelm@26128
   718
  {verbose: bool, kind: string, alt_name: bstring, coind: bool, no_elim: bool, no_ind: bool} ->
berghofe@23762
   719
  term list -> ((string * Attrib.src list) * term) list -> thm list ->
berghofe@23762
   720
  term list -> (string * mixfix) list ->
berghofe@23762
   721
  local_theory -> inductive_result * local_theory
berghofe@23762
   722
wenzelm@26128
   723
fun add_ind_def {verbose, kind, alt_name, coind, no_elim, no_ind}
wenzelm@24815
   724
    cs intros monos params cnames_syn ctxt =
berghofe@9072
   725
  let
wenzelm@25288
   726
    val _ = null cnames_syn andalso error "No inductive predicates given";
wenzelm@10735
   727
    val _ =
berghofe@21024
   728
      if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^
berghofe@21024
   729
        commas_quote (map fst cnames_syn)) else ();
berghofe@9072
   730
wenzelm@21526
   731
    val cnames = map (Sign.full_name (ProofContext.theory_of ctxt) o #1) cnames_syn;  (* FIXME *)
berghofe@23762
   732
    val ((intr_names, intr_atts), intr_ts) =
berghofe@23762
   733
      apfst split_list (split_list (map (check_rule ctxt cs params) intros));
berghofe@21024
   734
berghofe@21024
   735
    val (ctxt1, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
wenzelm@26128
   736
      argTs, bs, xs) = mk_ind_def alt_name coind cs intr_ts monos params cnames_syn ctxt;
berghofe@9072
   737
berghofe@21024
   738
    val (intrs, unfold) = prove_intrs coind mono fp_def (length bs + length xs)
berghofe@22605
   739
      params intr_ts rec_preds_defs ctxt1;
berghofe@21048
   740
    val elims = if no_elim then [] else
berghofe@23762
   741
      prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt1;
berghofe@22605
   742
    val raw_induct = zero_var_indexes
berghofe@21024
   743
      (if no_ind then Drule.asm_rl else
berghofe@23762
   744
       if coind then
berghofe@23762
   745
         singleton (ProofContext.export
berghofe@23762
   746
           (snd (Variable.add_fixes (map (fst o dest_Free) params) ctxt1)) ctxt1)
berghofe@23762
   747
           (rotate_prems ~1 (ObjectLogic.rulify (rule_by_tactic
haftmann@25510
   748
             (rewrite_tac [le_fun_def, le_bool_def, sup_fun_eq, sup_bool_eq] THEN
berghofe@23762
   749
               fold_tac rec_preds_defs) (mono RS (fp_def RS def_coinduct)))))
berghofe@21024
   750
       else
berghofe@21024
   751
         prove_indrule cs argTs bs xs rec_const params intr_ts mono fp_def
berghofe@22605
   752
           rec_preds_defs ctxt1);
berghofe@5094
   753
wenzelm@26128
   754
    val (intrs', elims', induct, ctxt2) = declare_rules kind rec_name coind no_ind
berghofe@23762
   755
      cnames intrs intr_names intr_atts elims raw_induct ctxt1;
berghofe@21048
   756
wenzelm@21526
   757
    val names = map #1 cnames_syn;
berghofe@21048
   758
    val result =
berghofe@21048
   759
      {preds = preds,
berghofe@21048
   760
       intrs = intrs',
berghofe@21048
   761
       elims = elims',
berghofe@21048
   762
       raw_induct = rulify raw_induct,
berghofe@23762
   763
       induct = induct};
wenzelm@21367
   764
berghofe@23762
   765
    val ctxt3 = ctxt2
wenzelm@21526
   766
      |> LocalTheory.declaration (fn phi =>
wenzelm@25380
   767
        let val result' = morph_result phi result;
wenzelm@25380
   768
        in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
berghofe@23762
   769
  in (result, ctxt3) end;
berghofe@5094
   770
wenzelm@6424
   771
wenzelm@10735
   772
(* external interfaces *)
berghofe@5094
   773
wenzelm@26128
   774
fun gen_add_inductive_i mk_def (flags as {verbose, kind, alt_name, coind, no_elim, no_ind})
wenzelm@25029
   775
    cnames_syn pnames spec monos lthy =
berghofe@5094
   776
  let
wenzelm@25029
   777
    val thy = ProofContext.theory_of lthy;
wenzelm@6424
   778
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
berghofe@5094
   779
berghofe@21766
   780
wenzelm@25029
   781
    (* abbrevs *)
wenzelm@25029
   782
wenzelm@25029
   783
    val (_, ctxt1) = Variable.add_fixes (map (fst o fst) cnames_syn) lthy;
berghofe@21766
   784
wenzelm@25029
   785
    fun get_abbrev ((name, atts), t) =
wenzelm@25029
   786
      if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
wenzelm@25029
   787
        let
wenzelm@25029
   788
          val _ = name = "" andalso null atts orelse
wenzelm@25029
   789
            error "Abbreviations may not have names or attributes";
wenzelm@25029
   790
          val ((x, T), rhs) = LocalDefs.abs_def (snd (LocalDefs.cert_def ctxt1 t));
wenzelm@25029
   791
          val mx =
wenzelm@25029
   792
            (case find_first (fn ((c, _), _) => c = x) cnames_syn of
wenzelm@25029
   793
              NONE => error ("Undeclared head of abbreviation " ^ quote x)
wenzelm@25029
   794
            | SOME ((_, T'), mx) =>
wenzelm@25029
   795
                if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
wenzelm@25029
   796
                else mx);
wenzelm@25029
   797
        in SOME ((x, mx), rhs) end
wenzelm@25029
   798
      else NONE;
berghofe@21766
   799
wenzelm@25029
   800
    val abbrevs = map_filter get_abbrev spec;
wenzelm@25029
   801
    val bs = map (fst o fst) abbrevs;
wenzelm@25029
   802
berghofe@21766
   803
wenzelm@25029
   804
    (* predicates *)
berghofe@21766
   805
wenzelm@25029
   806
    val pre_intros = filter_out (is_some o get_abbrev) spec;
wenzelm@25029
   807
    val cnames_syn' = filter_out (member (op =) bs o fst o fst) cnames_syn;
berghofe@24744
   808
    val cs = map (Free o fst) cnames_syn';
wenzelm@25029
   809
    val ps = map Free pnames;
berghofe@5094
   810
wenzelm@25143
   811
    val (_, ctxt2) = lthy |> Variable.add_fixes (map (fst o fst) cnames_syn');
wenzelm@25143
   812
    val _ = map (fn abbr => LocalDefs.fixed_abbrev abbr ctxt2) abbrevs;
wenzelm@25143
   813
    val ctxt3 = ctxt2 |> fold (snd oo LocalDefs.fixed_abbrev) abbrevs;
wenzelm@25143
   814
    val expand = Assumption.export_term ctxt3 lthy #> ProofContext.cert_term lthy;
wenzelm@25029
   815
wenzelm@25029
   816
    fun close_rule r = list_all_free (rev (fold_aterms
berghofe@21024
   817
      (fn t as Free (v as (s, _)) =>
wenzelm@25029
   818
          if Variable.is_fixed ctxt1 s orelse
wenzelm@25029
   819
            member (op =) ps t then I else insert (op =) v
wenzelm@25029
   820
        | _ => I) r []), r);
berghofe@5094
   821
wenzelm@25029
   822
    val intros = map (apsnd (close_rule #> expand)) pre_intros;
wenzelm@25029
   823
    val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
berghofe@21048
   824
  in
wenzelm@25029
   825
    lthy
wenzelm@25029
   826
    |> mk_def flags cs intros monos ps preds
wenzelm@25029
   827
    ||> fold (snd oo LocalTheory.abbrev Syntax.mode_default) abbrevs
berghofe@21048
   828
  end;
berghofe@5094
   829
wenzelm@24721
   830
fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos lthy =
berghofe@5094
   831
  let
wenzelm@25114
   832
    val ((vars, specs), _) = lthy |> ProofContext.set_mode ProofContext.mode_abbrev
wenzelm@25114
   833
      |> Specification.read_specification
wenzelm@25114
   834
          (cnames_syn @ pnames_syn) (map (fn (a, s) => [(a, [s])]) intro_srcs);
wenzelm@24721
   835
    val (cs, ps) = chop (length cnames_syn) vars;
wenzelm@24721
   836
    val intrs = map (apsnd the_single) specs;
wenzelm@24721
   837
    val monos = Attrib.eval_thms lthy raw_monos;
wenzelm@26128
   838
    val flags = {verbose = verbose, kind = Thm.theoremK, alt_name = "",
wenzelm@24815
   839
      coind = coind, no_elim = false, no_ind = false};
wenzelm@26128
   840
  in
wenzelm@26128
   841
    lthy
wenzelm@26128
   842
    |> LocalTheory.set_group (serial_string ())
wenzelm@26128
   843
    |> gen_add_inductive_i mk_def flags cs (map fst ps) intrs monos
wenzelm@26128
   844
  end;
berghofe@5094
   845
berghofe@23762
   846
val add_inductive_i = gen_add_inductive_i add_ind_def;
berghofe@23762
   847
val add_inductive = gen_add_inductive add_ind_def;
berghofe@23762
   848
wenzelm@26128
   849
fun add_inductive_global group flags cnames_syn pnames pre_intros monos thy =
wenzelm@25380
   850
  let
wenzelm@25380
   851
    val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
wenzelm@25380
   852
    val ctxt' = thy
wenzelm@25380
   853
      |> TheoryTarget.init NONE
wenzelm@26128
   854
      |> LocalTheory.set_group group
wenzelm@25380
   855
      |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
wenzelm@25380
   856
      |> LocalTheory.exit;
wenzelm@25380
   857
    val info = #2 (the_inductive ctxt' name);
wenzelm@25380
   858
  in (info, ProofContext.theory_of ctxt') end;
wenzelm@6424
   859
wenzelm@6424
   860
berghofe@22789
   861
(* read off arities of inductive predicates from raw induction rule *)
berghofe@22789
   862
fun arities_of induct =
berghofe@22789
   863
  map (fn (_ $ t $ u) =>
berghofe@22789
   864
      (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
berghofe@22789
   865
    (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
berghofe@22789
   866
berghofe@22789
   867
(* read off parameters of inductive predicate from raw induction rule *)
berghofe@22789
   868
fun params_of induct =
berghofe@22789
   869
  let
berghofe@22789
   870
    val (_ $ t $ u :: _) =
berghofe@22789
   871
      HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct));
berghofe@22789
   872
    val (_, ts) = strip_comb t;
berghofe@22789
   873
    val (_, us) = strip_comb u
berghofe@22789
   874
  in
berghofe@22789
   875
    List.take (ts, length ts - length us)
berghofe@22789
   876
  end;
berghofe@22789
   877
berghofe@22789
   878
val pname_of_intr =
berghofe@22789
   879
  concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
berghofe@22789
   880
berghofe@22789
   881
(* partition introduction rules according to predicate name *)
berghofe@25822
   882
fun gen_partition_rules f induct intros =
berghofe@25822
   883
  fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
berghofe@22789
   884
    (map (rpair [] o fst) (arities_of induct));
berghofe@22789
   885
berghofe@25822
   886
val partition_rules = gen_partition_rules I;
berghofe@25822
   887
fun partition_rules' induct = gen_partition_rules fst induct;
berghofe@25822
   888
berghofe@22789
   889
fun unpartition_rules intros xs =
berghofe@22789
   890
  fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
berghofe@22789
   891
    (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
berghofe@22789
   892
berghofe@22789
   893
(* infer order of variables in intro rules from order of quantifiers in elim rule *)
berghofe@22789
   894
fun infer_intro_vars elim arity intros =
berghofe@22789
   895
  let
berghofe@22789
   896
    val thy = theory_of_thm elim;
berghofe@22789
   897
    val _ :: cases = prems_of elim;
berghofe@22789
   898
    val used = map (fst o fst) (Term.add_vars (prop_of elim) []);
berghofe@22789
   899
    fun mtch (t, u) =
berghofe@22789
   900
      let
berghofe@22789
   901
        val params = Logic.strip_params t;
berghofe@22789
   902
        val vars = map (Var o apfst (rpair 0))
berghofe@22789
   903
          (Name.variant_list used (map fst params) ~~ map snd params);
berghofe@22789
   904
        val ts = map (curry subst_bounds (rev vars))
berghofe@22789
   905
          (List.drop (Logic.strip_assums_hyp t, arity));
berghofe@22789
   906
        val us = Logic.strip_imp_prems u;
berghofe@22789
   907
        val tab = fold (Pattern.first_order_match thy) (ts ~~ us)
berghofe@22789
   908
          (Vartab.empty, Vartab.empty);
berghofe@22789
   909
      in
berghofe@22789
   910
        map (Envir.subst_vars tab) vars
berghofe@22789
   911
      end
berghofe@22789
   912
  in
berghofe@22789
   913
    map (mtch o apsnd prop_of) (cases ~~ intros)
berghofe@22789
   914
  end;
berghofe@22789
   915
berghofe@22789
   916
wenzelm@25978
   917
wenzelm@6437
   918
(** package setup **)
wenzelm@6437
   919
wenzelm@6437
   920
(* setup theory *)
wenzelm@6437
   921
wenzelm@8634
   922
val setup =
berghofe@23762
   923
  Method.add_methods [("ind_cases", ind_cases,
berghofe@21024
   924
    "dynamic case analysis on predicates")] #>
berghofe@23762
   925
  Attrib.add_attributes [("mono", Attrib.add_del_args mono_add mono_del,
wenzelm@18728
   926
    "declaration of monotonicity rule")];
wenzelm@6437
   927
wenzelm@6437
   928
wenzelm@6437
   929
(* outer syntax *)
wenzelm@6424
   930
wenzelm@17057
   931
local structure P = OuterParse and K = OuterKeyword in
wenzelm@6424
   932
wenzelm@24867
   933
val _ = OuterSyntax.keywords ["monos"];
wenzelm@24867
   934
wenzelm@21367
   935
fun flatten_specification specs = specs |> maps
wenzelm@21367
   936
  (fn (a, (concl, [])) => concl |> map
wenzelm@21367
   937
        (fn ((b, atts), [B]) =>
wenzelm@21367
   938
              if a = "" then ((b, atts), B)
wenzelm@21367
   939
              else if b = "" then ((a, atts), B)
wenzelm@21367
   940
              else error ("Illegal nested case names " ^ quote (NameSpace.append a b))
wenzelm@21367
   941
          | ((b, _), _) => error ("Illegal simultaneous specification " ^ quote b))
wenzelm@21367
   942
    | (a, _) => error ("Illegal local specification parameters for " ^ quote a));
wenzelm@6424
   943
berghofe@23762
   944
fun gen_ind_decl mk_def coind =
wenzelm@22102
   945
  P.opt_target --
wenzelm@21367
   946
  P.fixes -- P.for_fixes --
wenzelm@22102
   947
  Scan.optional (P.$$$ "where" |-- P.!!! SpecParse.specification) [] --
wenzelm@22102
   948
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) []
wenzelm@21367
   949
  >> (fn ((((loc, preds), params), specs), monos) =>
wenzelm@21367
   950
    Toplevel.local_theory loc
berghofe@23762
   951
      (fn lthy => lthy |> gen_add_inductive mk_def true coind preds params
berghofe@23762
   952
         (flatten_specification specs) monos |> snd));
berghofe@23762
   953
berghofe@23762
   954
val ind_decl = gen_ind_decl add_ind_def;
wenzelm@6424
   955
wenzelm@24867
   956
val _ = OuterSyntax.command "inductive" "define inductive predicates" K.thy_decl (ind_decl false);
wenzelm@24867
   957
val _ = OuterSyntax.command "coinductive" "define coinductive predicates" K.thy_decl (ind_decl true);
wenzelm@6723
   958
wenzelm@24867
   959
val _ =
berghofe@23762
   960
  OuterSyntax.command "inductive_cases"
wenzelm@21367
   961
    "create simplified instances of elimination rules (improper)" K.thy_script
wenzelm@22102
   962
    (P.opt_target -- P.and_list1 SpecParse.spec
wenzelm@21367
   963
      >> (fn (loc, specs) => Toplevel.local_theory loc (snd o inductive_cases specs)));
wenzelm@7107
   964
berghofe@5094
   965
end;
wenzelm@6424
   966
wenzelm@6424
   967
end;