src/HOL/Codatatype/Basic_BNFs.thy
author blanchet
Thu Sep 20 02:42:48 2012 +0200 (2012-09-20)
changeset 49453 ff0e540d8758
parent 49451 7a28d22c33c6
child 49455 3cd2622d4466
permissions -rw-r--r--
add rel as first-class citizen of BNF
blanchet@48975
     1
(*  Title:      HOL/Codatatype/Basic_BNFs.thy
blanchet@48975
     2
    Author:     Dmitriy Traytel, TU Muenchen
blanchet@48975
     3
    Author:     Andrei Popescu, TU Muenchen
blanchet@48975
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@48975
     5
    Copyright   2012
blanchet@48975
     6
blanchet@49309
     7
Registration of basic types as bounded natural functors.
blanchet@48975
     8
*)
blanchet@48975
     9
blanchet@49309
    10
header {* Registration of Basic Types as Bounded Natural Functors *}
blanchet@48975
    11
blanchet@48975
    12
theory Basic_BNFs
blanchet@49310
    13
imports BNF_Def
blanchet@48975
    14
begin
blanchet@48975
    15
blanchet@49312
    16
lemma wpull_id: "wpull UNIV B1 B2 id id id id"
blanchet@49312
    17
unfolding wpull_def by simp
blanchet@49312
    18
blanchet@48975
    19
lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
blanchet@48975
    20
blanchet@48975
    21
lemma ctwo_card_order: "card_order ctwo"
blanchet@48975
    22
using Card_order_ctwo by (unfold ctwo_def Field_card_of)
blanchet@48975
    23
blanchet@48975
    24
lemma natLeq_cinfinite: "cinfinite natLeq"
blanchet@48975
    25
unfolding cinfinite_def Field_natLeq by (rule nat_infinite)
blanchet@48975
    26
traytel@49434
    27
bnf_def ID: "id :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" ["\<lambda>x. {x}"] "\<lambda>_:: 'a. natLeq" ["id :: 'a \<Rightarrow> 'a"]
blanchet@49453
    28
  "\<lambda>x :: ('a \<times> 'b) set. x"
blanchet@48975
    29
apply auto
blanchet@48975
    30
apply (rule natLeq_card_order)
blanchet@48975
    31
apply (rule natLeq_cinfinite)
blanchet@48975
    32
apply (rule ordLess_imp_ordLeq[OF finite_ordLess_infinite[OF _ natLeq_Well_order]])
blanchet@49453
    33
apply (auto simp add: Field_card_of Field_natLeq card_of_well_order_on)[3]
blanchet@48975
    34
apply (rule ordLeq_transitive)
blanchet@48975
    35
apply (rule ordLeq_cexp1[of natLeq])
blanchet@48975
    36
apply (rule Cinfinite_Cnotzero)
blanchet@48975
    37
apply (rule conjI)
blanchet@48975
    38
apply (rule natLeq_cinfinite)
blanchet@48975
    39
apply (rule natLeq_Card_order)
blanchet@48975
    40
apply (rule card_of_Card_order)
blanchet@48975
    41
apply (rule cexp_mono1)
blanchet@48975
    42
apply (rule ordLeq_csum1)
blanchet@48975
    43
apply (rule card_of_Card_order)
blanchet@48975
    44
apply (rule disjI2)
blanchet@48975
    45
apply (rule cone_ordLeq_cexp)
blanchet@48975
    46
apply (rule ordLeq_transitive)
blanchet@48975
    47
apply (rule cone_ordLeq_ctwo)
blanchet@48975
    48
apply (rule ordLeq_csum2)
blanchet@48975
    49
apply (rule Card_order_ctwo)
blanchet@48975
    50
apply (rule natLeq_Card_order)
blanchet@49453
    51
apply (auto simp: Gr_def fun_eq_iff)
blanchet@48975
    52
done
blanchet@48975
    53
blanchet@49453
    54
bnf_def DEADID: "id :: 'a \<Rightarrow> 'a" [] "\<lambda>_:: 'a. natLeq +c |UNIV :: 'a set|" ["SOME x :: 'a. True"] Id
blanchet@48975
    55
apply (auto simp add: wpull_id)
blanchet@48975
    56
apply (rule card_order_csum)
blanchet@48975
    57
apply (rule natLeq_card_order)
blanchet@48975
    58
apply (rule card_of_card_order_on)
blanchet@48975
    59
apply (rule cinfinite_csum)
blanchet@48975
    60
apply (rule disjI1)
blanchet@48975
    61
apply (rule natLeq_cinfinite)
blanchet@48975
    62
apply (rule ordLess_imp_ordLeq)
blanchet@48975
    63
apply (rule ordLess_ordLeq_trans)
blanchet@48975
    64
apply (rule ordLess_ctwo_cexp)
blanchet@48975
    65
apply (rule card_of_Card_order)
blanchet@48975
    66
apply (rule cexp_mono2'')
blanchet@48975
    67
apply (rule ordLeq_csum2)
blanchet@48975
    68
apply (rule card_of_Card_order)
blanchet@48975
    69
apply (rule ctwo_Cnotzero)
blanchet@49453
    70
apply (rule card_of_Card_order)
blanchet@49453
    71
apply (auto simp: Id_def Gr_def fun_eq_iff)
blanchet@49453
    72
done
blanchet@48975
    73
blanchet@49451
    74
definition setl :: "'a + 'b \<Rightarrow> 'a set" where
blanchet@49451
    75
"setl x = (case x of Inl z => {z} | _ => {})"
blanchet@48975
    76
blanchet@49451
    77
definition setr :: "'a + 'b \<Rightarrow> 'b set" where
blanchet@49451
    78
"setr x = (case x of Inr z => {z} | _ => {})"
blanchet@48975
    79
blanchet@49451
    80
lemmas sum_set_defs = setl_def[abs_def] setr_def[abs_def]
blanchet@48975
    81
blanchet@49453
    82
(*### RENAME TODO *)
blanchet@49453
    83
definition sum_rel0 :: "('a \<times> 'b) set \<Rightarrow> ('c \<times> 'd) set \<Rightarrow> (('a + 'c) \<times> ('b + 'd)) set" where
blanchet@49453
    84
"sum_rel0 R S =
blanchet@49453
    85
   {x. case x of (Inl a, Inl c) \<Rightarrow> (a, c) \<in> R
blanchet@49453
    86
       | (Inr b, Inr d) \<Rightarrow> (b, d) \<in> S
blanchet@49453
    87
       | _ \<Rightarrow> False}"
blanchet@49453
    88
blanchet@49453
    89
bnf_def sum_map [setl, setr] "\<lambda>_::'a + 'b. natLeq" [Inl, Inr] sum_rel0
blanchet@48975
    90
proof -
blanchet@48975
    91
  show "sum_map id id = id" by (rule sum_map.id)
blanchet@48975
    92
next
blanchet@48975
    93
  fix f1 f2 g1 g2
blanchet@48975
    94
  show "sum_map (g1 o f1) (g2 o f2) = sum_map g1 g2 o sum_map f1 f2"
blanchet@48975
    95
    by (rule sum_map.comp[symmetric])
blanchet@48975
    96
next
blanchet@48975
    97
  fix x f1 f2 g1 g2
blanchet@49451
    98
  assume a1: "\<And>z. z \<in> setl x \<Longrightarrow> f1 z = g1 z" and
blanchet@49451
    99
         a2: "\<And>z. z \<in> setr x \<Longrightarrow> f2 z = g2 z"
blanchet@48975
   100
  thus "sum_map f1 f2 x = sum_map g1 g2 x"
blanchet@48975
   101
  proof (cases x)
blanchet@49451
   102
    case Inl thus ?thesis using a1 by (clarsimp simp: setl_def)
blanchet@48975
   103
  next
blanchet@49451
   104
    case Inr thus ?thesis using a2 by (clarsimp simp: setr_def)
blanchet@48975
   105
  qed
blanchet@48975
   106
next
blanchet@48975
   107
  fix f1 f2
blanchet@49451
   108
  show "setl o sum_map f1 f2 = image f1 o setl"
blanchet@49451
   109
    by (rule ext, unfold o_apply) (simp add: setl_def split: sum.split)
blanchet@48975
   110
next
blanchet@48975
   111
  fix f1 f2
blanchet@49451
   112
  show "setr o sum_map f1 f2 = image f2 o setr"
blanchet@49451
   113
    by (rule ext, unfold o_apply) (simp add: setr_def split: sum.split)
blanchet@48975
   114
next
blanchet@48975
   115
  show "card_order natLeq" by (rule natLeq_card_order)
blanchet@48975
   116
next
blanchet@48975
   117
  show "cinfinite natLeq" by (rule natLeq_cinfinite)
blanchet@48975
   118
next
blanchet@48975
   119
  fix x
blanchet@49451
   120
  show "|setl x| \<le>o natLeq"
blanchet@48975
   121
    apply (rule ordLess_imp_ordLeq)
blanchet@48975
   122
    apply (rule finite_iff_ordLess_natLeq[THEN iffD1])
blanchet@49451
   123
    by (simp add: setl_def split: sum.split)
blanchet@48975
   124
next
blanchet@48975
   125
  fix x
blanchet@49451
   126
  show "|setr x| \<le>o natLeq"
blanchet@48975
   127
    apply (rule ordLess_imp_ordLeq)
blanchet@48975
   128
    apply (rule finite_iff_ordLess_natLeq[THEN iffD1])
blanchet@49451
   129
    by (simp add: setr_def split: sum.split)
blanchet@48975
   130
next
blanchet@48975
   131
  fix A1 :: "'a set" and A2 :: "'b set"
blanchet@48975
   132
  have in_alt: "{x. (case x of Inl z => {z} | _ => {}) \<subseteq> A1 \<and>
blanchet@48975
   133
    (case x of Inr z => {z} | _ => {}) \<subseteq> A2} = A1 <+> A2" (is "?L = ?R")
blanchet@48975
   134
  proof safe
blanchet@48975
   135
    fix x :: "'a + 'b"
blanchet@48975
   136
    assume "(case x of Inl z \<Rightarrow> {z} | _ \<Rightarrow> {}) \<subseteq> A1" "(case x of Inr z \<Rightarrow> {z} | _ \<Rightarrow> {}) \<subseteq> A2"
blanchet@48975
   137
    hence "x \<in> Inl ` A1 \<or> x \<in> Inr ` A2" by (cases x) simp+
blanchet@48975
   138
    thus "x \<in> A1 <+> A2" by blast
blanchet@48975
   139
  qed (auto split: sum.split)
blanchet@49451
   140
  show "|{x. setl x \<subseteq> A1 \<and> setr x \<subseteq> A2}| \<le>o
blanchet@48975
   141
    (( |A1| +c |A2| ) +c ctwo) ^c natLeq"
blanchet@48975
   142
    apply (rule ordIso_ordLeq_trans)
blanchet@48975
   143
    apply (rule card_of_ordIso_subst)
blanchet@48975
   144
    apply (unfold sum_set_defs)
blanchet@48975
   145
    apply (rule in_alt)
blanchet@48975
   146
    apply (rule ordIso_ordLeq_trans)
blanchet@48975
   147
    apply (rule Plus_csum)
blanchet@48975
   148
    apply (rule ordLeq_transitive)
blanchet@48975
   149
    apply (rule ordLeq_csum1)
blanchet@48975
   150
    apply (rule Card_order_csum)
blanchet@48975
   151
    apply (rule ordLeq_cexp1)
blanchet@48975
   152
    apply (rule conjI)
blanchet@48975
   153
    using Field_natLeq UNIV_not_empty czeroE apply fast
blanchet@48975
   154
    apply (rule natLeq_Card_order)
blanchet@48975
   155
    by (rule Card_order_csum)
blanchet@48975
   156
next
blanchet@48975
   157
  fix A1 A2 B11 B12 B21 B22 f11 f12 f21 f22 p11 p12 p21 p22
blanchet@48975
   158
  assume "wpull A1 B11 B21 f11 f21 p11 p21" "wpull A2 B12 B22 f12 f22 p12 p22"
blanchet@48975
   159
  hence
blanchet@48975
   160
    pull1: "\<And>b1 b2. \<lbrakk>b1 \<in> B11; b2 \<in> B21; f11 b1 = f21 b2\<rbrakk> \<Longrightarrow> \<exists>a \<in> A1. p11 a = b1 \<and> p21 a = b2"
blanchet@48975
   161
    and pull2: "\<And>b1 b2. \<lbrakk>b1 \<in> B12; b2 \<in> B22; f12 b1 = f22 b2\<rbrakk> \<Longrightarrow> \<exists>a \<in> A2. p12 a = b1 \<and> p22 a = b2"
blanchet@48975
   162
    unfolding wpull_def by blast+
blanchet@49451
   163
  show "wpull {x. setl x \<subseteq> A1 \<and> setr x \<subseteq> A2}
blanchet@49451
   164
  {x. setl x \<subseteq> B11 \<and> setr x \<subseteq> B12} {x. setl x \<subseteq> B21 \<and> setr x \<subseteq> B22}
blanchet@48975
   165
  (sum_map f11 f12) (sum_map f21 f22) (sum_map p11 p12) (sum_map p21 p22)"
blanchet@48975
   166
    (is "wpull ?in ?in1 ?in2 ?mapf1 ?mapf2 ?mapp1 ?mapp2")
blanchet@48975
   167
  proof (unfold wpull_def)
blanchet@48975
   168
    { fix B1 B2
blanchet@48975
   169
      assume *: "B1 \<in> ?in1" "B2 \<in> ?in2" "?mapf1 B1 = ?mapf2 B2"
blanchet@48975
   170
      have "\<exists>A \<in> ?in. ?mapp1 A = B1 \<and> ?mapp2 A = B2"
blanchet@48975
   171
      proof (cases B1)
blanchet@48975
   172
        case (Inl b1)
blanchet@48975
   173
        { fix b2 assume "B2 = Inr b2"
blanchet@48975
   174
          with Inl *(3) have False by simp
blanchet@48975
   175
        } then obtain b2 where Inl': "B2 = Inl b2" by (cases B2) (simp, blast)
blanchet@48975
   176
        with Inl * have "b1 \<in> B11" "b2 \<in> B21" "f11 b1 = f21 b2"
blanchet@49451
   177
        by (simp add: setl_def)+
blanchet@48975
   178
        with pull1 obtain a where "a \<in> A1" "p11 a = b1" "p21 a = b2" by blast+
blanchet@48975
   179
        with Inl Inl' have "Inl a \<in> ?in" "?mapp1 (Inl a) = B1 \<and> ?mapp2 (Inl a) = B2"
blanchet@48975
   180
        by (simp add: sum_set_defs)+
blanchet@48975
   181
        thus ?thesis by blast
blanchet@48975
   182
      next
blanchet@48975
   183
        case (Inr b1)
blanchet@48975
   184
        { fix b2 assume "B2 = Inl b2"
blanchet@48975
   185
          with Inr *(3) have False by simp
blanchet@48975
   186
        } then obtain b2 where Inr': "B2 = Inr b2" by (cases B2) (simp, blast)
blanchet@48975
   187
        with Inr * have "b1 \<in> B12" "b2 \<in> B22" "f12 b1 = f22 b2"
blanchet@48975
   188
        by (simp add: sum_set_defs)+
blanchet@48975
   189
        with pull2 obtain a where "a \<in> A2" "p12 a = b1" "p22 a = b2" by blast+
blanchet@48975
   190
        with Inr Inr' have "Inr a \<in> ?in" "?mapp1 (Inr a) = B1 \<and> ?mapp2 (Inr a) = B2"
blanchet@48975
   191
        by (simp add: sum_set_defs)+
blanchet@48975
   192
        thus ?thesis by blast
blanchet@48975
   193
      qed
blanchet@48975
   194
    }
blanchet@48975
   195
    thus "\<forall>B1 B2. B1 \<in> ?in1 \<and> B2 \<in> ?in2 \<and> ?mapf1 B1 = ?mapf2 B2 \<longrightarrow>
blanchet@48975
   196
      (\<exists>A \<in> ?in. ?mapp1 A = B1 \<and> ?mapp2 A = B2)" by fastforce
blanchet@48975
   197
  qed
blanchet@49453
   198
next
blanchet@49453
   199
  fix R S
blanchet@49453
   200
  show "sum_rel0 R S =
blanchet@49453
   201
          (Gr {x. setl x \<subseteq> R \<and> setr x \<subseteq> S} (sum_map fst fst))\<inverse> O
blanchet@49453
   202
          Gr {x. setl x \<subseteq> R \<and> setr x \<subseteq> S} (sum_map snd snd)"
blanchet@49453
   203
  unfolding setl_def setr_def sum_rel0_def Gr_def relcomp_unfold converse_unfold
blanchet@49453
   204
  by (fastforce split: sum.splits)
blanchet@48975
   205
qed (auto simp: sum_set_defs)
blanchet@48975
   206
blanchet@48975
   207
lemma singleton_ordLeq_ctwo_natLeq: "|{x}| \<le>o ctwo *c natLeq"
blanchet@48975
   208
  apply (rule ordLeq_transitive)
blanchet@48975
   209
  apply (rule ordLeq_cprod2)
blanchet@48975
   210
  apply (rule ctwo_Cnotzero)
blanchet@48975
   211
  apply (auto simp: Field_card_of intro: card_of_card_order_on)
blanchet@48975
   212
  apply (rule cprod_mono2)
blanchet@48975
   213
  apply (rule ordLess_imp_ordLeq)
blanchet@48975
   214
  apply (unfold finite_iff_ordLess_natLeq[symmetric])
blanchet@48975
   215
  by simp
blanchet@48975
   216
blanchet@48975
   217
definition fsts :: "'a \<times> 'b \<Rightarrow> 'a set" where
blanchet@48975
   218
"fsts x = {fst x}"
blanchet@48975
   219
blanchet@48975
   220
definition snds :: "'a \<times> 'b \<Rightarrow> 'b set" where
blanchet@48975
   221
"snds x = {snd x}"
blanchet@48975
   222
blanchet@48975
   223
lemmas prod_set_defs = fsts_def[abs_def] snds_def[abs_def]
blanchet@48975
   224
blanchet@49453
   225
definition prod_rel0 :: "('a \<times> 'b) set \<Rightarrow> ('c \<times> 'd) set \<Rightarrow> (('a \<times> 'c) \<times> 'b \<times> 'd) set" where
blanchet@49453
   226
"prod_rel0 R S = {((a, c), b, d) | a b c d. (a, b) \<in> R \<and> (c, d) \<in> S}"
blanchet@49453
   227
blanchet@49453
   228
bnf_def map_pair [fsts, snds] "\<lambda>_::'a \<times> 'b. ctwo *c natLeq" [Pair] prod_rel0
blanchet@48975
   229
proof (unfold prod_set_defs)
blanchet@48975
   230
  show "map_pair id id = id" by (rule map_pair.id)
blanchet@48975
   231
next
blanchet@48975
   232
  fix f1 f2 g1 g2
blanchet@48975
   233
  show "map_pair (g1 o f1) (g2 o f2) = map_pair g1 g2 o map_pair f1 f2"
blanchet@48975
   234
    by (rule map_pair.comp[symmetric])
blanchet@48975
   235
next
blanchet@48975
   236
  fix x f1 f2 g1 g2
blanchet@48975
   237
  assume "\<And>z. z \<in> {fst x} \<Longrightarrow> f1 z = g1 z" "\<And>z. z \<in> {snd x} \<Longrightarrow> f2 z = g2 z"
blanchet@48975
   238
  thus "map_pair f1 f2 x = map_pair g1 g2 x" by (cases x) simp
blanchet@48975
   239
next
blanchet@48975
   240
  fix f1 f2
blanchet@48975
   241
  show "(\<lambda>x. {fst x}) o map_pair f1 f2 = image f1 o (\<lambda>x. {fst x})"
blanchet@48975
   242
    by (rule ext, unfold o_apply) simp
blanchet@48975
   243
next
blanchet@48975
   244
  fix f1 f2
blanchet@48975
   245
  show "(\<lambda>x. {snd x}) o map_pair f1 f2 = image f2 o (\<lambda>x. {snd x})"
blanchet@48975
   246
    by (rule ext, unfold o_apply) simp
blanchet@48975
   247
next
blanchet@48975
   248
  show "card_order (ctwo *c natLeq)"
blanchet@48975
   249
    apply (rule card_order_cprod)
blanchet@48975
   250
    apply (rule ctwo_card_order)
blanchet@48975
   251
    by (rule natLeq_card_order)
blanchet@48975
   252
next
blanchet@48975
   253
  show "cinfinite (ctwo *c natLeq)"
blanchet@48975
   254
    apply (rule cinfinite_cprod2)
blanchet@48975
   255
    apply (rule ctwo_Cnotzero)
blanchet@48975
   256
    apply (rule conjI[OF _ natLeq_Card_order])
blanchet@48975
   257
    by (rule natLeq_cinfinite)
blanchet@48975
   258
next
blanchet@48975
   259
  fix x
blanchet@48975
   260
  show "|{fst x}| \<le>o ctwo *c natLeq"
blanchet@48975
   261
    by (rule singleton_ordLeq_ctwo_natLeq)
blanchet@48975
   262
next
blanchet@48975
   263
  fix x
blanchet@48975
   264
  show "|{snd x}| \<le>o ctwo *c natLeq"
blanchet@48975
   265
    by (rule singleton_ordLeq_ctwo_natLeq)
blanchet@48975
   266
next
blanchet@48975
   267
  fix A1 :: "'a set" and A2 :: "'b set"
blanchet@48975
   268
  have in_alt: "{x. {fst x} \<subseteq> A1 \<and> {snd x} \<subseteq> A2} = A1 \<times> A2" by auto
blanchet@48975
   269
  show "|{x. {fst x} \<subseteq> A1 \<and> {snd x} \<subseteq> A2}| \<le>o
blanchet@48975
   270
    ( ( |A1| +c |A2| ) +c ctwo) ^c (ctwo *c natLeq)"
blanchet@48975
   271
    apply (rule ordIso_ordLeq_trans)
blanchet@48975
   272
    apply (rule card_of_ordIso_subst)
blanchet@48975
   273
    apply (rule in_alt)
blanchet@48975
   274
    apply (rule ordIso_ordLeq_trans)
blanchet@48975
   275
    apply (rule Times_cprod)
blanchet@48975
   276
    apply (rule ordLeq_transitive)
blanchet@48975
   277
    apply (rule cprod_csum_cexp)
blanchet@48975
   278
    apply (rule cexp_mono)
blanchet@48975
   279
    apply (rule ordLeq_csum1)
blanchet@48975
   280
    apply (rule Card_order_csum)
blanchet@48975
   281
    apply (rule ordLeq_cprod1)
blanchet@48975
   282
    apply (rule Card_order_ctwo)
blanchet@48975
   283
    apply (rule Cinfinite_Cnotzero)
blanchet@48975
   284
    apply (rule conjI[OF _ natLeq_Card_order])
blanchet@48975
   285
    apply (rule natLeq_cinfinite)
blanchet@48975
   286
    apply (rule disjI2)
blanchet@48975
   287
    apply (rule cone_ordLeq_cexp)
blanchet@48975
   288
    apply (rule ordLeq_transitive)
blanchet@48975
   289
    apply (rule cone_ordLeq_ctwo)
blanchet@48975
   290
    apply (rule ordLeq_csum2)
blanchet@48975
   291
    apply (rule Card_order_ctwo)
blanchet@48975
   292
    apply (rule notE)
blanchet@48975
   293
    apply (rule ctwo_not_czero)
blanchet@48975
   294
    apply assumption
blanchet@48975
   295
    by (rule Card_order_ctwo)
blanchet@48975
   296
next
blanchet@48975
   297
  fix A1 A2 B11 B12 B21 B22 f11 f12 f21 f22 p11 p12 p21 p22
blanchet@48975
   298
  assume "wpull A1 B11 B21 f11 f21 p11 p21" "wpull A2 B12 B22 f12 f22 p12 p22"
blanchet@48975
   299
  thus "wpull {x. {fst x} \<subseteq> A1 \<and> {snd x} \<subseteq> A2}
blanchet@48975
   300
    {x. {fst x} \<subseteq> B11 \<and> {snd x} \<subseteq> B12} {x. {fst x} \<subseteq> B21 \<and> {snd x} \<subseteq> B22}
blanchet@48975
   301
   (map_pair f11 f12) (map_pair f21 f22) (map_pair p11 p12) (map_pair p21 p22)"
blanchet@48975
   302
    unfolding wpull_def by simp fast
blanchet@49453
   303
next
blanchet@49453
   304
  fix R S
blanchet@49453
   305
  show "prod_rel0 R S =
blanchet@49453
   306
          (Gr {x. {fst x} \<subseteq> R \<and> {snd x} \<subseteq> S} (map_pair fst fst))\<inverse> O
blanchet@49453
   307
          Gr {x. {fst x} \<subseteq> R \<and> {snd x} \<subseteq> S} (map_pair snd snd)"
blanchet@49453
   308
  unfolding prod_set_defs prod_rel0_def Gr_def relcomp_unfold converse_unfold
blanchet@49453
   309
  by auto
blanchet@48975
   310
qed simp+
blanchet@48975
   311
blanchet@48975
   312
(* Categorical version of pullback: *)
blanchet@48975
   313
lemma wpull_cat:
blanchet@48975
   314
assumes p: "wpull A B1 B2 f1 f2 p1 p2"
blanchet@48975
   315
and c: "f1 o q1 = f2 o q2"
blanchet@48975
   316
and r: "range q1 \<subseteq> B1" "range q2 \<subseteq> B2"
blanchet@48975
   317
obtains h where "range h \<subseteq> A \<and> q1 = p1 o h \<and> q2 = p2 o h"
blanchet@48975
   318
proof-
blanchet@48975
   319
  have *: "\<forall>d. \<exists>a \<in> A. p1 a = q1 d & p2 a = q2 d"
blanchet@48975
   320
  proof safe
blanchet@48975
   321
    fix d
blanchet@48975
   322
    have "f1 (q1 d) = f2 (q2 d)" using c unfolding comp_def[abs_def] by (rule fun_cong)
blanchet@48975
   323
    moreover
blanchet@48975
   324
    have "q1 d : B1" "q2 d : B2" using r unfolding image_def by auto
blanchet@48975
   325
    ultimately show "\<exists>a \<in> A. p1 a = q1 d \<and> p2 a = q2 d"
blanchet@48975
   326
      using p unfolding wpull_def by auto
blanchet@48975
   327
  qed
blanchet@48975
   328
  then obtain h where "!! d. h d \<in> A & p1 (h d) = q1 d & p2 (h d) = q2 d" by metis
blanchet@48975
   329
  thus ?thesis using that by fastforce
blanchet@48975
   330
qed
blanchet@48975
   331
blanchet@48975
   332
lemma card_of_bounded_range:
blanchet@48975
   333
  "|{f :: 'd \<Rightarrow> 'a. range f \<subseteq> B}| \<le>o |Func (UNIV :: 'd set) B|" (is "|?LHS| \<le>o |?RHS|")
blanchet@48975
   334
proof -
blanchet@48975
   335
  let ?f = "\<lambda>f. %x. if f x \<in> B then Some (f x) else None"
blanchet@48975
   336
  have "inj_on ?f ?LHS" unfolding inj_on_def
blanchet@48975
   337
  proof (unfold fun_eq_iff, safe)
blanchet@48975
   338
    fix g :: "'d \<Rightarrow> 'a" and f :: "'d \<Rightarrow> 'a" and x
blanchet@48975
   339
    assume "range f \<subseteq> B" "range g \<subseteq> B" and eq: "\<forall>x. ?f f x = ?f g x"
blanchet@48975
   340
    hence "f x \<in> B" "g x \<in> B" by auto
blanchet@48975
   341
    with eq have "Some (f x) = Some (g x)" by metis
blanchet@48975
   342
    thus "f x = g x" by simp
blanchet@48975
   343
  qed
blanchet@48975
   344
  moreover have "?f ` ?LHS \<subseteq> ?RHS" unfolding Func_def by fastforce
blanchet@48975
   345
  ultimately show ?thesis using card_of_ordLeq by fast
blanchet@48975
   346
qed
blanchet@48975
   347
blanchet@49453
   348
definition fun_rel0 :: "('a \<times> 'b) set \<Rightarrow> (('c \<Rightarrow> 'a) \<times> ('c \<Rightarrow> 'b)) set" where
blanchet@49453
   349
"fun_rel0 R = {(f, g) | f g. \<forall>x. (f x, g x) \<in> R}"
blanchet@49453
   350
blanchet@49453
   351
bnf_def "op \<circ>" [range] "\<lambda>_:: 'a \<Rightarrow> 'b. natLeq +c |UNIV :: 'a set|" ["%c x::'b::type. c::'a::type"]
blanchet@49453
   352
  fun_rel0
blanchet@48975
   353
proof
blanchet@48975
   354
  fix f show "id \<circ> f = id f" by simp
blanchet@48975
   355
next
blanchet@48975
   356
  fix f g show "op \<circ> (g \<circ> f) = op \<circ> g \<circ> op \<circ> f"
blanchet@48975
   357
  unfolding comp_def[abs_def] ..
blanchet@48975
   358
next
blanchet@48975
   359
  fix x f g
blanchet@48975
   360
  assume "\<And>z. z \<in> range x \<Longrightarrow> f z = g z"
blanchet@48975
   361
  thus "f \<circ> x = g \<circ> x" by auto
blanchet@48975
   362
next
blanchet@48975
   363
  fix f show "range \<circ> op \<circ> f = op ` f \<circ> range"
blanchet@48975
   364
  unfolding image_def comp_def[abs_def] by auto
blanchet@48975
   365
next
blanchet@48975
   366
  show "card_order (natLeq +c |UNIV| )" (is "_ (_ +c ?U)")
blanchet@48975
   367
  apply (rule card_order_csum)
blanchet@48975
   368
  apply (rule natLeq_card_order)
blanchet@48975
   369
  by (rule card_of_card_order_on)
blanchet@48975
   370
(*  *)
blanchet@48975
   371
  show "cinfinite (natLeq +c ?U)"
blanchet@48975
   372
    apply (rule cinfinite_csum)
blanchet@48975
   373
    apply (rule disjI1)
blanchet@48975
   374
    by (rule natLeq_cinfinite)
blanchet@48975
   375
next
blanchet@48975
   376
  fix f :: "'d => 'a"
blanchet@48975
   377
  have "|range f| \<le>o | (UNIV::'d set) |" (is "_ \<le>o ?U") by (rule card_of_image)
blanchet@48975
   378
  also have "?U \<le>o natLeq +c ?U"  by (rule ordLeq_csum2) (rule card_of_Card_order)
blanchet@48975
   379
  finally show "|range f| \<le>o natLeq +c ?U" .
blanchet@48975
   380
next
blanchet@48975
   381
  fix B :: "'a set"
blanchet@48975
   382
  have "|{f::'d => 'a. range f \<subseteq> B}| \<le>o |Func (UNIV :: 'd set) B|" by (rule card_of_bounded_range)
blanchet@48975
   383
  also have "|Func (UNIV :: 'd set) B| =o |B| ^c |UNIV :: 'd set|"
blanchet@48975
   384
    unfolding cexp_def Field_card_of by (rule card_of_refl)
blanchet@48975
   385
  also have "|B| ^c |UNIV :: 'd set| \<le>o
blanchet@48975
   386
             ( |B| +c ctwo) ^c (natLeq +c |UNIV :: 'd set| )"
blanchet@48975
   387
    apply (rule cexp_mono)
blanchet@48975
   388
     apply (rule ordLeq_csum1) apply (rule card_of_Card_order)
blanchet@48975
   389
     apply (rule ordLeq_csum2) apply (rule card_of_Card_order)
blanchet@48975
   390
     apply (rule disjI2) apply (rule cone_ordLeq_cexp)
blanchet@48975
   391
      apply (rule ordLeq_transitive) apply (rule cone_ordLeq_ctwo) apply (rule ordLeq_csum2)
blanchet@48975
   392
      apply (rule Card_order_ctwo)
blanchet@48975
   393
     apply (rule notE) apply (rule conjunct1) apply (rule Cnotzero_UNIV) apply blast
blanchet@48975
   394
     apply (rule card_of_Card_order)
blanchet@48975
   395
  done
blanchet@48975
   396
  finally
blanchet@48975
   397
  show "|{f::'d => 'a. range f \<subseteq> B}| \<le>o
blanchet@48975
   398
        ( |B| +c ctwo) ^c (natLeq +c |UNIV :: 'd set| )" .
blanchet@48975
   399
next
blanchet@48975
   400
  fix A B1 B2 f1 f2 p1 p2 assume p: "wpull A B1 B2 f1 f2 p1 p2"
blanchet@48975
   401
  show "wpull {h. range h \<subseteq> A} {g1. range g1 \<subseteq> B1} {g2. range g2 \<subseteq> B2}
blanchet@48975
   402
    (op \<circ> f1) (op \<circ> f2) (op \<circ> p1) (op \<circ> p2)"
blanchet@48975
   403
  unfolding wpull_def
blanchet@48975
   404
  proof safe
blanchet@48975
   405
    fix g1 g2 assume r: "range g1 \<subseteq> B1" "range g2 \<subseteq> B2"
blanchet@48975
   406
    and c: "f1 \<circ> g1 = f2 \<circ> g2"
blanchet@48975
   407
    show "\<exists>h \<in> {h. range h \<subseteq> A}. p1 \<circ> h = g1 \<and> p2 \<circ> h = g2"
blanchet@48975
   408
    using wpull_cat[OF p c r] by simp metis
blanchet@48975
   409
  qed
blanchet@49453
   410
next
blanchet@49453
   411
  fix R
blanchet@49453
   412
  show "fun_rel0 R = (Gr {x. range x \<subseteq> R} (op \<circ> fst))\<inverse> O Gr {x. range x \<subseteq> R} (op \<circ> snd)"
blanchet@49453
   413
  unfolding fun_rel0_def Gr_def relcomp_unfold converse_unfold
blanchet@49453
   414
  by (auto intro!: exI dest!: in_mono)
blanchet@48975
   415
qed auto
blanchet@48975
   416
blanchet@48975
   417
end