src/HOL/subset.ML
author clasohm
Fri Mar 03 12:02:25 1995 +0100 (1995-03-03)
changeset 923 ff1574a81019
child 1465 5d7a7e439cec
permissions -rw-r--r--
new version of HOL with curried function application
clasohm@923
     1
(*  Title: 	HOL/subset
clasohm@923
     2
    ID:         $Id$
clasohm@923
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Derived rules involving subsets
clasohm@923
     7
Union and Intersection as lattice operations
clasohm@923
     8
*)
clasohm@923
     9
clasohm@923
    10
(*** insert ***)
clasohm@923
    11
clasohm@923
    12
qed_goal "subset_insertI" Set.thy "B <= insert a B"
clasohm@923
    13
 (fn _=> [ (rtac subsetI 1), (etac insertI2 1) ]);
clasohm@923
    14
clasohm@923
    15
(*** Big Union -- least upper bound of a set  ***)
clasohm@923
    16
clasohm@923
    17
val prems = goal Set.thy
clasohm@923
    18
    "B:A ==> B <= Union(A)";
clasohm@923
    19
by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1));
clasohm@923
    20
qed "Union_upper";
clasohm@923
    21
clasohm@923
    22
val [prem] = goal Set.thy
clasohm@923
    23
    "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C";
clasohm@923
    24
br subsetI 1;
clasohm@923
    25
by (REPEAT (eresolve_tac [asm_rl, UnionE, prem RS subsetD] 1));
clasohm@923
    26
qed "Union_least";
clasohm@923
    27
clasohm@923
    28
(** General union **)
clasohm@923
    29
clasohm@923
    30
val prems = goal Set.thy
clasohm@923
    31
    "a:A ==> B(a) <= (UN x:A. B(x))";
clasohm@923
    32
by (REPEAT (ares_tac (prems@[UN_I RS subsetI]) 1));
clasohm@923
    33
qed "UN_upper";
clasohm@923
    34
clasohm@923
    35
val [prem] = goal Set.thy
clasohm@923
    36
    "[| !!x. x:A ==> B(x)<=C |] ==> (UN x:A. B(x)) <= C";
clasohm@923
    37
br subsetI 1;
clasohm@923
    38
by (REPEAT (eresolve_tac [asm_rl, UN_E, prem RS subsetD] 1));
clasohm@923
    39
qed "UN_least";
clasohm@923
    40
clasohm@923
    41
goal Set.thy "B(a) <= (UN x. B(x))";
clasohm@923
    42
by (REPEAT (ares_tac [UN1_I RS subsetI] 1));
clasohm@923
    43
qed "UN1_upper";
clasohm@923
    44
clasohm@923
    45
val [prem] = goal Set.thy "[| !!x. B(x)<=C |] ==> (UN x. B(x)) <= C";
clasohm@923
    46
br subsetI 1;
clasohm@923
    47
by (REPEAT (eresolve_tac [asm_rl, UN1_E, prem RS subsetD] 1));
clasohm@923
    48
qed "UN1_least";
clasohm@923
    49
clasohm@923
    50
clasohm@923
    51
(*** Big Intersection -- greatest lower bound of a set ***)
clasohm@923
    52
clasohm@923
    53
val prems = goal Set.thy "B:A ==> Inter(A) <= B";
clasohm@923
    54
br subsetI 1;
clasohm@923
    55
by (REPEAT (resolve_tac prems 1 ORELSE etac InterD 1));
clasohm@923
    56
qed "Inter_lower";
clasohm@923
    57
clasohm@923
    58
val [prem] = goal Set.thy
clasohm@923
    59
    "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)";
clasohm@923
    60
br (InterI RS subsetI) 1;
clasohm@923
    61
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
clasohm@923
    62
qed "Inter_greatest";
clasohm@923
    63
clasohm@923
    64
val prems = goal Set.thy "a:A ==> (INT x:A. B(x)) <= B(a)";
clasohm@923
    65
br subsetI 1;
clasohm@923
    66
by (REPEAT (resolve_tac prems 1 ORELSE etac INT_D 1));
clasohm@923
    67
qed "INT_lower";
clasohm@923
    68
clasohm@923
    69
val [prem] = goal Set.thy
clasohm@923
    70
    "[| !!x. x:A ==> C<=B(x) |] ==> C <= (INT x:A. B(x))";
clasohm@923
    71
br (INT_I RS subsetI) 1;
clasohm@923
    72
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
clasohm@923
    73
qed "INT_greatest";
clasohm@923
    74
clasohm@923
    75
goal Set.thy "(INT x. B(x)) <= B(a)";
clasohm@923
    76
br subsetI 1;
clasohm@923
    77
by (REPEAT (resolve_tac prems 1 ORELSE etac INT1_D 1));
clasohm@923
    78
qed "INT1_lower";
clasohm@923
    79
clasohm@923
    80
val [prem] = goal Set.thy
clasohm@923
    81
    "[| !!x. C<=B(x) |] ==> C <= (INT x. B(x))";
clasohm@923
    82
br (INT1_I RS subsetI) 1;
clasohm@923
    83
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
clasohm@923
    84
qed "INT1_greatest";
clasohm@923
    85
clasohm@923
    86
(*** Finite Union -- the least upper bound of 2 sets ***)
clasohm@923
    87
clasohm@923
    88
goal Set.thy "A <= A Un B";
clasohm@923
    89
by (REPEAT (ares_tac [subsetI,UnI1] 1));
clasohm@923
    90
qed "Un_upper1";
clasohm@923
    91
clasohm@923
    92
goal Set.thy "B <= A Un B";
clasohm@923
    93
by (REPEAT (ares_tac [subsetI,UnI2] 1));
clasohm@923
    94
qed "Un_upper2";
clasohm@923
    95
clasohm@923
    96
val prems = goal Set.thy "[| A<=C;  B<=C |] ==> A Un B <= C";
clasohm@923
    97
by (cut_facts_tac prems 1);
clasohm@923
    98
by (DEPTH_SOLVE (ares_tac [subsetI] 1 
clasohm@923
    99
          ORELSE eresolve_tac [UnE,subsetD] 1));
clasohm@923
   100
qed "Un_least";
clasohm@923
   101
clasohm@923
   102
(*** Finite Intersection -- the greatest lower bound of 2 sets *)
clasohm@923
   103
clasohm@923
   104
goal Set.thy "A Int B <= A";
clasohm@923
   105
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1));
clasohm@923
   106
qed "Int_lower1";
clasohm@923
   107
clasohm@923
   108
goal Set.thy "A Int B <= B";
clasohm@923
   109
by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1));
clasohm@923
   110
qed "Int_lower2";
clasohm@923
   111
clasohm@923
   112
val prems = goal Set.thy "[| C<=A;  C<=B |] ==> C <= A Int B";
clasohm@923
   113
by (cut_facts_tac prems 1);
clasohm@923
   114
by (REPEAT (ares_tac [subsetI,IntI] 1
clasohm@923
   115
     ORELSE etac subsetD 1));
clasohm@923
   116
qed "Int_greatest";
clasohm@923
   117
clasohm@923
   118
(*** Set difference ***)
clasohm@923
   119
clasohm@923
   120
qed_goal "Diff_subset" Set.thy "A-B <= (A::'a set)"
clasohm@923
   121
 (fn _ => [ (REPEAT (ares_tac [subsetI] 1 ORELSE etac DiffE 1)) ]);
clasohm@923
   122
clasohm@923
   123
(*** Monotonicity ***)
clasohm@923
   124
clasohm@923
   125
val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)";
clasohm@923
   126
by (rtac Un_least 1);
clasohm@923
   127
by (rtac (Un_upper1 RS (prem RS monoD)) 1);
clasohm@923
   128
by (rtac (Un_upper2 RS (prem RS monoD)) 1);
clasohm@923
   129
qed "mono_Un";
clasohm@923
   130
clasohm@923
   131
val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)";
clasohm@923
   132
by (rtac Int_greatest 1);
clasohm@923
   133
by (rtac (Int_lower1 RS (prem RS monoD)) 1);
clasohm@923
   134
by (rtac (Int_lower2 RS (prem RS monoD)) 1);
clasohm@923
   135
qed "mono_Int";