src/Sequents/T.thy
author haftmann
Fri Jun 19 21:08:07 2009 +0200 (2009-06-19)
changeset 31726 ffd2dc631d88
parent 30549 d2d7874648bd
child 35762 af3ff2ba4c54
permissions -rw-r--r--
merged
wenzelm@17481
     1
(*  Title:      Modal/T.thy
paulson@2073
     2
    ID:         $Id$
paulson@2073
     3
    Author:     Martin Coen
paulson@2073
     4
    Copyright   1991  University of Cambridge
paulson@2073
     5
*)
paulson@2073
     6
wenzelm@17481
     7
theory T
wenzelm@17481
     8
imports Modal0
wenzelm@17481
     9
begin
wenzelm@17481
    10
wenzelm@17481
    11
axioms
paulson@2073
    12
(* Definition of the star operation using a set of Horn clauses *)
paulson@2073
    13
(* For system T:  gamma * == {P | []P : gamma}                  *)
paulson@2073
    14
(*                delta * == {P | <>P : delta}                  *)
paulson@2073
    15
wenzelm@17481
    16
  lstar0:         "|L>"
wenzelm@17481
    17
  lstar1:         "$G |L> $H ==> []P, $G |L> P, $H"
wenzelm@17481
    18
  lstar2:         "$G |L> $H ==>   P, $G |L>    $H"
wenzelm@17481
    19
  rstar0:         "|R>"
wenzelm@17481
    20
  rstar1:         "$G |R> $H ==> <>P, $G |R> P, $H"
wenzelm@17481
    21
  rstar2:         "$G |R> $H ==>   P, $G |R>    $H"
paulson@2073
    22
paulson@2073
    23
(* Rules for [] and <> *)
paulson@2073
    24
wenzelm@17481
    25
  boxR:
wenzelm@17481
    26
   "[| $E |L> $E';  $F |R> $F';  $G |R> $G';
paulson@2073
    27
               $E'        |- $F', P, $G'|] ==> $E          |- $F, []P, $G"
wenzelm@17481
    28
  boxL:     "$E, P, $F  |-         $G    ==> $E, []P, $F |-          $G"
wenzelm@17481
    29
  diaR:     "$E         |- $F, P,  $G    ==> $E          |- $F, <>P, $G"
wenzelm@17481
    30
  diaL:
wenzelm@17481
    31
   "[| $E |L> $E';  $F |L> $F';  $G |R> $G';
paulson@2073
    32
               $E', P, $F'|-         $G'|] ==> $E, <>P, $F |-          $G"
wenzelm@17481
    33
wenzelm@21426
    34
ML {*
wenzelm@21426
    35
structure T_Prover = Modal_ProverFun
wenzelm@21426
    36
(
wenzelm@21426
    37
  val rewrite_rls = thms "rewrite_rls"
wenzelm@21426
    38
  val safe_rls = thms "safe_rls"
wenzelm@21426
    39
  val unsafe_rls = thms "unsafe_rls" @ [thm "boxR", thm "diaL"]
wenzelm@21426
    40
  val bound_rls = thms "bound_rls" @ [thm "boxL", thm "diaR"]
wenzelm@21426
    41
  val aside_rls = [thm "lstar0", thm "lstar1", thm "lstar2", thm "rstar0",
wenzelm@21426
    42
    thm "rstar1", thm "rstar2"]
wenzelm@21426
    43
)
wenzelm@21426
    44
*}
wenzelm@21426
    45
wenzelm@21426
    46
method_setup T_solve =
wenzelm@30549
    47
  {* Scan.succeed (K (SIMPLE_METHOD (T_Prover.solve_tac 2))) *} "T solver"
wenzelm@21426
    48
wenzelm@21426
    49
wenzelm@21426
    50
(* Theorems of system T from Hughes and Cresswell and Hailpern, LNCS 129 *)
wenzelm@21426
    51
wenzelm@21426
    52
lemma "|- []P --> P" by T_solve
wenzelm@21426
    53
lemma "|- [](P-->Q) --> ([]P-->[]Q)" by T_solve   (* normality*)
wenzelm@21426
    54
lemma "|- (P--<Q) --> []P --> []Q" by T_solve
wenzelm@21426
    55
lemma "|- P --> <>P" by T_solve
wenzelm@21426
    56
wenzelm@21426
    57
lemma "|-  [](P & Q) <-> []P & []Q" by T_solve
wenzelm@21426
    58
lemma "|-  <>(P | Q) <-> <>P | <>Q" by T_solve
wenzelm@21426
    59
lemma "|-  [](P<->Q) <-> (P>-<Q)" by T_solve
wenzelm@21426
    60
lemma "|-  <>(P-->Q) <-> ([]P--><>Q)" by T_solve
wenzelm@21426
    61
lemma "|-        []P <-> ~<>(~P)" by T_solve
wenzelm@21426
    62
lemma "|-     [](~P) <-> ~<>P" by T_solve
wenzelm@21426
    63
lemma "|-       ~[]P <-> <>(~P)" by T_solve
wenzelm@21426
    64
lemma "|-      [][]P <-> ~<><>(~P)" by T_solve
wenzelm@21426
    65
lemma "|- ~<>(P | Q) <-> ~<>P & ~<>Q" by T_solve
wenzelm@21426
    66
wenzelm@21426
    67
lemma "|- []P | []Q --> [](P | Q)" by T_solve
wenzelm@21426
    68
lemma "|- <>(P & Q) --> <>P & <>Q" by T_solve
wenzelm@21426
    69
lemma "|- [](P | Q) --> []P | <>Q" by T_solve
wenzelm@21426
    70
lemma "|- <>P & []Q --> <>(P & Q)" by T_solve
wenzelm@21426
    71
lemma "|- [](P | Q) --> <>P | []Q" by T_solve
wenzelm@21426
    72
lemma "|- <>(P-->(Q & R)) --> ([]P --> <>Q) & ([]P--><>R)" by T_solve
wenzelm@21426
    73
lemma "|- (P--<Q) & (Q--<R) --> (P--<R)" by T_solve
wenzelm@21426
    74
lemma "|- []P --> <>Q --> <>(P & Q)" by T_solve
wenzelm@17481
    75
paulson@2073
    76
end