src/Sequents/prover.ML
author haftmann
Fri Jun 19 21:08:07 2009 +0200 (2009-06-19)
changeset 31726 ffd2dc631d88
parent 29269 5c25a2012975
child 32091 30e2ffbba718
permissions -rw-r--r--
merged
wenzelm@29269
     1
(*  Title:      Sequents/prover.ML
paulson@2073
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@2073
     3
    Copyright   1992  University of Cambridge
paulson@7097
     4
wenzelm@29269
     5
Simple classical reasoner for the sequent calculus, based on "theorem packs".
paulson@2073
     6
*)
paulson@2073
     7
paulson@2073
     8
paulson@7097
     9
(*Higher precedence than := facilitates use of references*)
paulson@7097
    10
infix 4 add_safes add_unsafes;
paulson@2073
    11
paulson@7122
    12
structure Cla =
paulson@7122
    13
paulson@7122
    14
struct
paulson@7122
    15
paulson@2073
    16
datatype pack = Pack of thm list * thm list;
paulson@2073
    17
paulson@7122
    18
val trace = ref false;
paulson@7122
    19
paulson@2073
    20
(*A theorem pack has the form  (safe rules, unsafe rules)
paulson@2073
    21
  An unsafe rule is incomplete or introduces variables in subgoals,
paulson@2073
    22
  and is tried only when the safe rules are not applicable.  *)
paulson@2073
    23
paulson@2073
    24
fun less (rl1,rl2) = (nprems_of rl1) < (nprems_of rl2);
paulson@2073
    25
paulson@2073
    26
val empty_pack = Pack([],[]);
paulson@2073
    27
paulson@7097
    28
fun warn_duplicates [] = []
paulson@7097
    29
  | warn_duplicates dups =
wenzelm@26928
    30
      (warning (cat_lines ("Ignoring duplicate theorems:" :: map Display.string_of_thm dups));
paulson@7097
    31
       dups);
paulson@2073
    32
paulson@2073
    33
fun (Pack(safes,unsafes)) add_safes ths   = 
wenzelm@22360
    34
    let val dups = warn_duplicates (gen_inter Thm.eq_thm_prop (ths,safes))
wenzelm@22360
    35
	val ths' = subtract Thm.eq_thm_prop dups ths
paulson@7097
    36
    in
paulson@7097
    37
        Pack(sort (make_ord less) (ths'@safes), unsafes)
paulson@7097
    38
    end;
paulson@2073
    39
paulson@2073
    40
fun (Pack(safes,unsafes)) add_unsafes ths = 
wenzelm@22360
    41
    let val dups = warn_duplicates (gen_inter Thm.eq_thm_prop (ths,unsafes))
wenzelm@22360
    42
	val ths' = subtract Thm.eq_thm_prop dups ths
paulson@7097
    43
    in
paulson@7097
    44
	Pack(safes, sort (make_ord less) (ths'@unsafes))
paulson@7097
    45
    end;
paulson@7097
    46
paulson@7097
    47
fun merge_pack (Pack(safes,unsafes), Pack(safes',unsafes')) =
paulson@7097
    48
        Pack(sort (make_ord less) (safes@safes'), 
paulson@7097
    49
	     sort (make_ord less) (unsafes@unsafes'));
paulson@2073
    50
paulson@2073
    51
paulson@7097
    52
fun print_pack (Pack(safes,unsafes)) =
wenzelm@26928
    53
    (writeln "Safe rules:";  Display.print_thms safes;
wenzelm@26928
    54
     writeln "Unsafe rules:"; Display.print_thms unsafes);
paulson@7097
    55
paulson@2073
    56
(*Returns the list of all formulas in the sequent*)
paulson@7097
    57
fun forms_of_seq (Const("SeqO'",_) $ P $ u) = P :: forms_of_seq u
paulson@2073
    58
  | forms_of_seq (H $ u) = forms_of_seq u
paulson@2073
    59
  | forms_of_seq _ = [];
paulson@2073
    60
paulson@2073
    61
(*Tests whether two sequences (left or right sides) could be resolved.
paulson@2073
    62
  seqp is a premise (subgoal), seqc is a conclusion of an object-rule.
paulson@2073
    63
  Assumes each formula in seqc is surrounded by sequence variables
paulson@2073
    64
  -- checks that each concl formula looks like some subgoal formula.
paulson@2073
    65
  It SHOULD check order as well, using recursion rather than forall/exists*)
paulson@2073
    66
fun could_res (seqp,seqc) =
wenzelm@29269
    67
      forall (fn Qc => exists (fn Qp => Term.could_unify (Qp,Qc)) 
paulson@2073
    68
                              (forms_of_seq seqp))
paulson@2073
    69
             (forms_of_seq seqc);
paulson@2073
    70
paulson@2073
    71
paulson@2073
    72
(*Tests whether two sequents or pairs of sequents could be resolved*)
paulson@2073
    73
fun could_resolve_seq (prem,conc) =
paulson@2073
    74
  case (prem,conc) of
paulson@2073
    75
      (_ $ Abs(_,_,leftp) $ Abs(_,_,rightp),
paulson@2073
    76
       _ $ Abs(_,_,leftc) $ Abs(_,_,rightc)) =>
paulson@2073
    77
	  could_res (leftp,leftc) andalso could_res (rightp,rightc)
paulson@2073
    78
    | (_ $ Abs(_,_,leftp) $ rightp,
paulson@2073
    79
       _ $ Abs(_,_,leftc) $ rightc) =>
wenzelm@29269
    80
	  could_res (leftp,leftc)  andalso  Term.could_unify (rightp,rightc)
paulson@2073
    81
    | _ => false;
paulson@2073
    82
paulson@2073
    83
paulson@2073
    84
(*Like filt_resolve_tac, using could_resolve_seq
paulson@2073
    85
  Much faster than resolve_tac when there are many rules.
paulson@2073
    86
  Resolve subgoal i using the rules, unless more than maxr are compatible. *)
paulson@2073
    87
fun filseq_resolve_tac rules maxr = SUBGOAL(fn (prem,i) =>
paulson@2073
    88
  let val rls = filter_thms could_resolve_seq (maxr+1, prem, rules)
paulson@2073
    89
  in  if length rls > maxr  then  no_tac
paulson@2073
    90
	  else (*((rtac derelict 1 THEN rtac impl 1
paulson@2073
    91
		 THEN (rtac identity 2 ORELSE rtac ll_mp 2)
paulson@2073
    92
		 THEN rtac context1 1)
paulson@2073
    93
		 ORELSE *) resolve_tac rls i
paulson@2073
    94
  end);
paulson@2073
    95
paulson@2073
    96
paulson@2073
    97
(*Predicate: does the rule have n premises? *)
paulson@2073
    98
fun has_prems n rule =  (nprems_of rule = n);
paulson@2073
    99
paulson@2073
   100
(*Continuation-style tactical for resolution.
paulson@2073
   101
  The list of rules is partitioned into 0, 1, 2 premises.
paulson@2073
   102
  The resulting tactic, gtac, tries to resolve with rules.
paulson@2073
   103
  If successful, it recursively applies nextac to the new subgoals only.
paulson@2073
   104
  Else fails.  (Treatment of goals due to Ph. de Groote) 
paulson@2073
   105
  Bind (RESOLVE_THEN rules) to a variable: it preprocesses the rules. *)
paulson@2073
   106
paulson@2073
   107
(*Takes rule lists separated in to 0, 1, 2, >2 premises.
paulson@2073
   108
  The abstraction over state prevents needless divergence in recursion.
paulson@2073
   109
  The 9999 should be a parameter, to delay treatment of flexible goals. *)
paulson@2073
   110
paulson@2073
   111
fun RESOLVE_THEN rules =
paulson@2073
   112
  let val [rls0,rls1,rls2] = partition_list has_prems 0 2 rules;
paulson@3538
   113
      fun tac nextac i state = state |>
paulson@3538
   114
	     (filseq_resolve_tac rls0 9999 i 
paulson@3538
   115
	      ORELSE
paulson@3538
   116
	      (DETERM(filseq_resolve_tac rls1 9999 i) THEN  TRY(nextac i))
paulson@3538
   117
	      ORELSE
paulson@3538
   118
	      (DETERM(filseq_resolve_tac rls2 9999 i) THEN  TRY(nextac(i+1))
paulson@3538
   119
					    THEN  TRY(nextac i)))
paulson@2073
   120
  in  tac  end;
paulson@2073
   121
paulson@2073
   122
paulson@2073
   123
paulson@2073
   124
(*repeated resolution applied to the designated goal*)
paulson@2073
   125
fun reresolve_tac rules = 
paulson@2073
   126
  let val restac = RESOLVE_THEN rules;  (*preprocessing done now*)
paulson@2073
   127
      fun gtac i = restac gtac i
paulson@2073
   128
  in  gtac  end; 
paulson@2073
   129
paulson@2073
   130
(*tries the safe rules repeatedly before the unsafe rules. *)
paulson@2073
   131
fun repeat_goal_tac (Pack(safes,unsafes)) = 
paulson@2073
   132
  let val restac  =    RESOLVE_THEN safes
paulson@2073
   133
      and lastrestac = RESOLVE_THEN unsafes;
paulson@6054
   134
      fun gtac i = restac gtac i  
paulson@7122
   135
	           ORELSE  (if !trace then
paulson@7122
   136
				(print_tac "" THEN lastrestac gtac i)
paulson@7122
   137
			    else lastrestac gtac i)
paulson@2073
   138
  in  gtac  end; 
paulson@2073
   139
paulson@2073
   140
paulson@2073
   141
(*Tries safe rules only*)
paulson@7097
   142
fun safe_tac (Pack(safes,unsafes)) = reresolve_tac safes;
paulson@7097
   143
paulson@7097
   144
val safe_goal_tac = safe_tac;   (*backwards compatibility*)
paulson@2073
   145
paulson@2073
   146
(*Tries a safe rule or else a unsafe rule.  Single-step for tracing. *)
paulson@7122
   147
fun step_tac (pack as Pack(safes,unsafes)) =
paulson@7122
   148
    safe_tac pack  ORELSE'
paulson@2073
   149
    filseq_resolve_tac unsafes 9999;
paulson@2073
   150
paulson@2073
   151
paulson@2073
   152
(* Tactic for reducing a goal, using Predicate Calculus rules.
paulson@2073
   153
   A decision procedure for Propositional Calculus, it is incomplete
paulson@2073
   154
   for Predicate-Calculus because of allL_thin and exR_thin.  
paulson@2073
   155
   Fails if it can do nothing.      *)
paulson@7122
   156
fun pc_tac pack = SELECT_GOAL (DEPTH_SOLVE (repeat_goal_tac pack 1));
paulson@2073
   157
paulson@2073
   158
paulson@2073
   159
(*The following two tactics are analogous to those provided by 
paulson@2073
   160
  Provers/classical.  In fact, pc_tac is usually FASTER than fast_tac!*)
paulson@7122
   161
fun fast_tac pack =
paulson@7122
   162
  SELECT_GOAL (DEPTH_SOLVE (step_tac pack 1));
paulson@2073
   163
paulson@7122
   164
fun best_tac pack  = 
paulson@2073
   165
  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) 
paulson@7122
   166
	       (step_tac pack 1));
paulson@2073
   167
paulson@7122
   168
end;
paulson@7122
   169
paulson@7122
   170
paulson@7122
   171
open Cla;