equal
deleted
inserted
replaced
775 |
775 |
776 lemma apfst_conv [simp, code]: |
776 lemma apfst_conv [simp, code]: |
777 "apfst f (x, y) = (f x, y)" |
777 "apfst f (x, y) = (f x, y)" |
778 by (simp add: apfst_def) |
778 by (simp add: apfst_def) |
779 |
779 |
780 lemma upd_snd_conv [simp, code]: |
780 lemma apsnd_conv [simp, code]: |
781 "apsnd f (x, y) = (x, f y)" |
781 "apsnd f (x, y) = (x, f y)" |
782 by (simp add: apsnd_def) |
782 by (simp add: apsnd_def) |
783 |
783 |
784 lemma fst_apfst [simp]: |
784 lemma fst_apfst [simp]: |
785 "fst (apfst f x) = f (fst x)" |
785 "fst (apfst f x) = f (fst x)" |
827 |
827 |
828 lemma apsnd_eq_conv [simp]: |
828 lemma apsnd_eq_conv [simp]: |
829 "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)" |
829 "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)" |
830 by (cases x) simp |
830 by (cases x) simp |
831 |
831 |
|
832 lemma apsnd_apfst_commute: |
|
833 "apsnd f (apfst g p) = apfst g (apsnd f p)" |
|
834 by simp |
832 |
835 |
833 text {* |
836 text {* |
834 Disjoint union of a family of sets -- Sigma. |
837 Disjoint union of a family of sets -- Sigma. |
835 *} |
838 *} |
836 |
839 |