src/HOLCF/Tools/domain/domain_axioms.ML
changeset 31227 0aa6afd229d3
parent 31023 d027411c9a38
child 31232 689aa7da48cc
--- a/src/HOLCF/Tools/domain/domain_axioms.ML	Wed May 20 13:01:52 2009 -0700
+++ b/src/HOLCF/Tools/domain/domain_axioms.ML	Wed May 20 13:18:14 2009 -0700
@@ -6,124 +6,133 @@
 
 signature DOMAIN_AXIOMS =
 sig
-  val add_axioms : bstring -> Domain_Library.eq list -> theory -> theory
+    val calc_axioms :
+        string -> Domain_Library.eq list -> int -> Domain_Library.eq ->
+        string * (string * term) list * (string * term) list
+
+    val add_axioms :
+        bstring -> Domain_Library.eq list -> theory -> theory
 end;
 
 
 structure Domain_Axioms :> DOMAIN_AXIOMS =
 struct
 
-local
+open Domain_Library;
 
-open Domain_Library;
 infixr 0 ===>;infixr 0 ==>;infix 0 == ; 
 infix 1 ===; infix 1 ~= ; infix 1 <<; infix 1 ~<<;
 infix 9 `   ; infix 9 `% ; infix 9 `%%; infixr 9 oo;
 
-fun calc_axioms comp_dname (eqs : eq list) n (((dname,_),cons) : eq)=
-let
-
-(* ----- axioms and definitions concerning the isomorphism ------------------ *)
+fun calc_axioms
+        (comp_dname : string)
+        (eqs : eq list)
+        (n : int)
+        (((dname,_),cons) : eq)
+    : string * (string * term) list * (string * term) list =
+    let
 
-  val dc_abs = %%:(dname^"_abs");
-  val dc_rep = %%:(dname^"_rep");
-  val x_name'= "x";
-  val x_name = idx_name eqs x_name' (n+1);
-  val dnam = Long_Name.base_name dname;
+        (* ----- axioms and definitions concerning the isomorphism ------------------ *)
 
-  val abs_iso_ax = ("abs_iso", mk_trp(dc_rep`(dc_abs`%x_name') === %:x_name'));
-  val rep_iso_ax = ("rep_iso", mk_trp(dc_abs`(dc_rep`%x_name') === %:x_name'));
+        val dc_abs = %%:(dname^"_abs");
+        val dc_rep = %%:(dname^"_rep");
+        val x_name'= "x";
+        val x_name = idx_name eqs x_name' (n+1);
+        val dnam = Long_Name.base_name dname;
+
+        val abs_iso_ax = ("abs_iso", mk_trp(dc_rep`(dc_abs`%x_name') === %:x_name'));
+        val rep_iso_ax = ("rep_iso", mk_trp(dc_abs`(dc_rep`%x_name') === %:x_name'));
 
-  val when_def = ("when_def",%%:(dname^"_when") == 
-     List.foldr (uncurry /\ ) (/\x_name'((when_body cons (fn (x,y) =>
-				Bound(1+length cons+x-y)))`(dc_rep`Bound 0))) (when_funs cons));
-  
-  val copy_def = let
-    fun idxs z x arg = if is_rec arg
-			 then (cproj (Bound z) eqs (rec_of arg))`Bound(z-x)
-			 else Bound(z-x);
-    fun one_con (con,args) =
-        List.foldr /\# (list_ccomb (%%:con, mapn (idxs (length args)) 1 args)) args;
-  in ("copy_def", %%:(dname^"_copy") ==
-       /\ "f" (list_ccomb (%%:(dname^"_when"), map one_con cons))) end;
+        val when_def = ("when_def",%%:(dname^"_when") == 
+                                  List.foldr (uncurry /\ ) (/\x_name'((when_body cons (fn (x,y) =>
+				                                                          Bound(1+length cons+x-y)))`(dc_rep`Bound 0))) (when_funs cons));
+            
+        val copy_def = let
+            fun idxs z x arg = if is_rec arg
+                               then (cproj (Bound z) eqs (rec_of arg))`Bound(z-x)
+                               else Bound(z-x);
+            fun one_con (con,args) =
+                List.foldr /\# (list_ccomb (%%:con, mapn (idxs (length args)) 1 args)) args;
+        in ("copy_def", %%:(dname^"_copy") ==
+                        /\ "f" (list_ccomb (%%:(dname^"_when"), map one_con cons))) end;
 
-(* -- definitions concerning the constructors, discriminators and selectors - *)
+        (* -- definitions concerning the constructors, discriminators and selectors - *)
 
-  fun con_def m n (_,args) = let
-    fun idxs z x arg = (if is_lazy arg then mk_up else I) (Bound(z-x));
-    fun parms vs = mk_stuple (mapn (idxs(length vs)) 1 vs);
-    fun inj y 1 _ = y
-    |   inj y _ 0 = mk_sinl y
-    |   inj y i j = mk_sinr (inj y (i-1) (j-1));
-  in List.foldr /\# (dc_abs`(inj (parms args) m n)) args end;
-  
-  val con_defs = mapn (fn n => fn (con,args) =>
-    (extern_name con ^"_def", %%:con == con_def (length cons) n (con,args))) 0 cons;
-  
-  val dis_defs = let
-	fun ddef (con,_) = (dis_name con ^"_def",%%:(dis_name con) == 
-		 list_ccomb(%%:(dname^"_when"),map 
-			(fn (con',args) => (List.foldr /\#
+        fun con_def m n (_,args) = let
+            fun idxs z x arg = (if is_lazy arg then mk_up else I) (Bound(z-x));
+            fun parms vs = mk_stuple (mapn (idxs(length vs)) 1 vs);
+            fun inj y 1 _ = y
+              | inj y _ 0 = mk_sinl y
+              | inj y i j = mk_sinr (inj y (i-1) (j-1));
+        in List.foldr /\# (dc_abs`(inj (parms args) m n)) args end;
+            
+        val con_defs = mapn (fn n => fn (con,args) =>
+                                        (extern_name con ^"_def", %%:con == con_def (length cons) n (con,args))) 0 cons;
+            
+        val dis_defs = let
+	    fun ddef (con,_) = (dis_name con ^"_def",%%:(dis_name con) == 
+		                                    list_ccomb(%%:(dname^"_when"),map 
+			                                                              (fn (con',args) => (List.foldr /\#
 			   (if con'=con then TT else FF) args)) cons))
 	in map ddef cons end;
 
-  val mat_defs =
-    let
-      fun mdef (con,_) =
-        let
-          val k = Bound 0
-          val x = Bound 1
-          fun one_con (con', args') =
-	    if con'=con then k else List.foldr /\# mk_fail args'
-          val w = list_ccomb(%%:(dname^"_when"), map one_con cons)
-          val rhs = /\ "x" (/\ "k" (w ` x))
-        in (mat_name con ^"_def", %%:(mat_name con) == rhs) end
-    in map mdef cons end;
+        val mat_defs =
+            let
+                fun mdef (con,_) =
+                    let
+                        val k = Bound 0
+                        val x = Bound 1
+                        fun one_con (con', args') =
+	                    if con'=con then k else List.foldr /\# mk_fail args'
+                        val w = list_ccomb(%%:(dname^"_when"), map one_con cons)
+                        val rhs = /\ "x" (/\ "k" (w ` x))
+                    in (mat_name con ^"_def", %%:(mat_name con) == rhs) end
+            in map mdef cons end;
 
-  val pat_defs =
-    let
-      fun pdef (con,args) =
-        let
-          val ps = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
-          val xs = map (bound_arg args) args;
-          val r = Bound (length args);
-          val rhs = case args of [] => mk_return HOLogic.unit
-                                | _ => mk_ctuple_pat ps ` mk_ctuple xs;
-          fun one_con (con',args') = List.foldr /\# (if con'=con then rhs else mk_fail) args';
-        in (pat_name con ^"_def", list_comb (%%:(pat_name con), ps) == 
-               list_ccomb(%%:(dname^"_when"), map one_con cons))
-        end
-    in map pdef cons end;
+        val pat_defs =
+            let
+                fun pdef (con,args) =
+                    let
+                        val ps = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
+                        val xs = map (bound_arg args) args;
+                        val r = Bound (length args);
+                        val rhs = case args of [] => mk_return HOLogic.unit
+                                             | _ => mk_ctuple_pat ps ` mk_ctuple xs;
+                        fun one_con (con',args') = List.foldr /\# (if con'=con then rhs else mk_fail) args';
+                    in (pat_name con ^"_def", list_comb (%%:(pat_name con), ps) == 
+                                                        list_ccomb(%%:(dname^"_when"), map one_con cons))
+                    end
+            in map pdef cons end;
 
-  val sel_defs = let
-	fun sdef con n arg = Option.map (fn sel => (sel^"_def",%%:sel == 
-		 list_ccomb(%%:(dname^"_when"),map 
-			(fn (con',args) => if con'<>con then UU else
-			 List.foldr /\# (Bound (length args - n)) args) cons))) (sel_of arg);
+        val sel_defs = let
+	    fun sdef con n arg = Option.map (fn sel => (sel^"_def",%%:sel == 
+		                                                  list_ccomb(%%:(dname^"_when"),map 
+			                                                                            (fn (con',args) => if con'<>con then UU else
+			                                                                                               List.foldr /\# (Bound (length args - n)) args) cons))) (sel_of arg);
 	in List.mapPartial I (List.concat(map (fn (con,args) => mapn (sdef con) 1 args) cons)) end;
 
 
-(* ----- axiom and definitions concerning induction ------------------------- *)
+        (* ----- axiom and definitions concerning induction ------------------------- *)
 
-  val reach_ax = ("reach", mk_trp(cproj (mk_fix (%%:(comp_dname^"_copy"))) eqs n
-					`%x_name === %:x_name));
-  val take_def = ("take_def",%%:(dname^"_take") == mk_lam("n",cproj
-	     (mk_iterate (Bound 0, %%:(comp_dname^"_copy"), UU)) eqs n));
-  val finite_def = ("finite_def",%%:(dname^"_finite") == mk_lam(x_name,
-	mk_ex("n",(%%:(dname^"_take") $ Bound 0)`Bound 1 === Bound 1)));
+        val reach_ax = ("reach", mk_trp(cproj (mk_fix (%%:(comp_dname^"_copy"))) eqs n
+					      `%x_name === %:x_name));
+        val take_def = ("take_def",%%:(dname^"_take") == mk_lam("n",cproj
+	                                                                (mk_iterate (Bound 0, %%:(comp_dname^"_copy"), UU)) eqs n));
+        val finite_def = ("finite_def",%%:(dname^"_finite") == mk_lam(x_name,
+	                                                              mk_ex("n",(%%:(dname^"_take") $ Bound 0)`Bound 1 === Bound 1)));
 
-in (dnam,
-    [abs_iso_ax, rep_iso_ax, reach_ax],
-    [when_def, copy_def] @
-     con_defs @ dis_defs @ mat_defs @ pat_defs @ sel_defs @
-    [take_def, finite_def])
-end; (* let (calc_axioms) *)
+    in (dnam,
+        [abs_iso_ax, rep_iso_ax, reach_ax],
+        [when_def, copy_def] @
+        con_defs @ dis_defs @ mat_defs @ pat_defs @ sel_defs @
+        [take_def, finite_def])
+    end; (* let (calc_axioms) *)
 
 
 (* legacy type inference *)
 
 fun legacy_infer_term thy t =
-  singleton (Syntax.check_terms (ProofContext.init thy)) (Sign.intern_term thy t);
+    singleton (Syntax.check_terms (ProofContext.init thy)) (Sign.intern_term thy t);
 
 fun legacy_infer_prop thy t = legacy_infer_term thy (TypeInfer.constrain propT t);
 
@@ -137,62 +146,70 @@
 fun add_defs_infer defs thy = add_defs_i (infer_props thy defs) thy;
 
 fun add_matchers (((dname,_),cons) : eq) thy =
-  let
-    val con_names = map fst cons;
-    val mat_names = map mat_name con_names;
-    fun qualify n = Sign.full_name thy (Binding.name n);
-    val ms = map qualify con_names ~~ map qualify mat_names;
-  in FixrecPackage.add_matchers ms thy end;
-
-in (* local *)
+    let
+        val con_names = map fst cons;
+        val mat_names = map mat_name con_names;
+        fun qualify n = Sign.full_name thy (Binding.name n);
+        val ms = map qualify con_names ~~ map qualify mat_names;
+    in FixrecPackage.add_matchers ms thy end;
 
-fun add_axioms comp_dnam (eqs : eq list) thy' = let
-  val comp_dname = Sign.full_bname thy' comp_dnam;
-  val dnames = map (fst o fst) eqs;
-  val x_name = idx_name dnames "x"; 
-  fun copy_app dname = %%:(dname^"_copy")`Bound 0;
-  val copy_def = ("copy_def" , %%:(comp_dname^"_copy") ==
-				    /\ "f"(mk_ctuple (map copy_app dnames)));
-  val bisim_def = ("bisim_def",%%:(comp_dname^"_bisim")==mk_lam("R",
+fun add_axioms comp_dnam (eqs : eq list) thy' =
     let
-      fun one_con (con,args) = let
-	val nonrec_args = filter_out is_rec args;
-	val    rec_args = List.filter     is_rec args;
-	val    recs_cnt = length rec_args;
-	val allargs     = nonrec_args @ rec_args
-				      @ map (upd_vname (fn s=> s^"'")) rec_args;
-	val allvns      = map vname allargs;
-	fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
-	val vns1        = map (vname_arg "" ) args;
-	val vns2        = map (vname_arg "'") args;
-	val allargs_cnt = length nonrec_args + 2*recs_cnt;
-	val rec_idxs    = (recs_cnt-1) downto 0;
-	val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
-					 (allargs~~((allargs_cnt-1) downto 0)));
-	fun rel_app i ra = proj (Bound(allargs_cnt+2)) eqs (rec_of ra) $ 
-			   Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
-	val capps = List.foldr mk_conj (mk_conj(
-	   Bound(allargs_cnt+1)===list_ccomb(%%:con,map (bound_arg allvns) vns1),
-	   Bound(allargs_cnt+0)===list_ccomb(%%:con,map (bound_arg allvns) vns2)))
-           (mapn rel_app 1 rec_args);
-        in List.foldr mk_ex (Library.foldr mk_conj 
-			      (map (defined o Bound) nonlazy_idxs,capps)) allvns end;
-      fun one_comp n (_,cons) =mk_all(x_name(n+1),mk_all(x_name(n+1)^"'",mk_imp(
-	 		proj (Bound 2) eqs n $ Bound 1 $ Bound 0,
-         		foldr1 mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
-					::map one_con cons))));
-    in foldr1 mk_conj (mapn one_comp 0 eqs)end ));
-  fun add_one (thy,(dnam,axs,dfs)) = thy
-	|> Sign.add_path dnam
-	|> add_defs_infer dfs
-	|> add_axioms_infer axs
-	|> Sign.parent_path;
-  val thy = Library.foldl add_one (thy', mapn (calc_axioms comp_dname eqs) 0 eqs);
-in thy |> Sign.add_path comp_dnam  
-       |> add_defs_infer (bisim_def::(if length eqs>1 then [copy_def] else []))
-       |> Sign.parent_path
-       |> fold add_matchers eqs
-end; (* let (add_axioms) *)
+        val comp_dname = Sign.full_bname thy' comp_dnam;
+        val dnames = map (fst o fst) eqs;
+        val x_name = idx_name dnames "x"; 
+        fun copy_app dname = %%:(dname^"_copy")`Bound 0;
+        val copy_def = ("copy_def" , %%:(comp_dname^"_copy") ==
+                                     /\ "f"(mk_ctuple (map copy_app dnames)));
 
-end; (* local *)
+        fun one_con (con,args) = let
+            val nonrec_args = filter_out is_rec args;
+            val    rec_args = List.filter     is_rec args;
+            val    recs_cnt = length rec_args;
+            val allargs     = nonrec_args @ rec_args
+			      @ map (upd_vname (fn s=> s^"'")) rec_args;
+            val allvns      = map vname allargs;
+            fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
+            val vns1        = map (vname_arg "" ) args;
+            val vns2        = map (vname_arg "'") args;
+            val allargs_cnt = length nonrec_args + 2*recs_cnt;
+            val rec_idxs    = (recs_cnt-1) downto 0;
+            val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
+				                   (allargs~~((allargs_cnt-1) downto 0)));
+            fun rel_app i ra = proj (Bound(allargs_cnt+2)) eqs (rec_of ra) $ 
+		                    Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
+            val capps =
+                List.foldr mk_conj
+                           (mk_conj(
+                            Bound(allargs_cnt+1)===list_ccomb(%%:con,map (bound_arg allvns) vns1),
+                            Bound(allargs_cnt+0)===list_ccomb(%%:con,map (bound_arg allvns) vns2)))
+                           (mapn rel_app 1 rec_args);
+        in List.foldr mk_ex
+                      (Library.foldr mk_conj
+                                     (map (defined o Bound) nonlazy_idxs,capps)) allvns
+        end;
+        fun one_comp n (_,cons) =
+            mk_all(x_name(n+1),
+                   mk_all(x_name(n+1)^"'",
+                          mk_imp(proj (Bound 2) eqs n $ Bound 1 $ Bound 0,
+         		         foldr1 mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
+                                                 ::map one_con cons))));
+        val bisim_def =
+            ("bisim_def",
+             %%:(comp_dname^"_bisim")==mk_lam("R", foldr1 mk_conj (mapn one_comp 0 eqs)));
+            
+        fun add_one (thy,(dnam,axs,dfs)) =
+            thy |> Sign.add_path dnam
+                |> add_defs_infer dfs
+                |> add_axioms_infer axs
+                |> Sign.parent_path;
+
+        val thy = Library.foldl add_one (thy', mapn (calc_axioms comp_dname eqs) 0 eqs);
+
+    in thy |> Sign.add_path comp_dnam  
+           |> add_defs_infer (bisim_def::(if length eqs>1 then [copy_def] else []))
+           |> Sign.parent_path
+           |> fold add_matchers eqs
+    end; (* let (add_axioms) *)
+
 end; (* struct *)