src/HOL/Lifting.thy
 changeset 47501 0b9294e093db parent 47436 d8fad618a67a child 47521 69f95ac85c3d
```     1.1 --- a/src/HOL/Lifting.thy	Mon Apr 16 23:23:08 2012 +0200
1.2 +++ b/src/HOL/Lifting.thy	Mon Apr 16 20:50:43 2012 +0200
1.3 @@ -256,7 +256,7 @@
1.4  lemma typedef_to_Quotient:
1.5    assumes "type_definition Rep Abs S"
1.6    and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
1.7 -  shows "Quotient (Lifting.invariant (\<lambda>x. x \<in> S)) Abs Rep T"
1.8 +  shows "Quotient (invariant (\<lambda>x. x \<in> S)) Abs Rep T"
1.9  proof -
1.10    interpret type_definition Rep Abs S by fact
1.11    from Rep Abs_inject Rep_inverse Abs_inverse T_def show ?thesis
1.12 @@ -265,14 +265,14 @@
1.13
1.14  lemma typedef_to_part_equivp:
1.15    assumes "type_definition Rep Abs S"
1.16 -  shows "part_equivp (Lifting.invariant (\<lambda>x. x \<in> S))"
1.17 +  shows "part_equivp (invariant (\<lambda>x. x \<in> S))"
1.18  proof (intro part_equivpI)
1.19    interpret type_definition Rep Abs S by fact
1.20 -  show "\<exists>x. Lifting.invariant (\<lambda>x. x \<in> S) x x" using Rep by (auto simp: invariant_def)
1.21 +  show "\<exists>x. invariant (\<lambda>x. x \<in> S) x x" using Rep by (auto simp: invariant_def)
1.22  next
1.23 -  show "symp (Lifting.invariant (\<lambda>x. x \<in> S))" by (auto intro: sympI simp: invariant_def)
1.24 +  show "symp (invariant (\<lambda>x. x \<in> S))" by (auto intro: sympI simp: invariant_def)
1.25  next
1.26 -  show "transp (Lifting.invariant (\<lambda>x. x \<in> S))" by (auto intro: transpI simp: invariant_def)
1.27 +  show "transp (invariant (\<lambda>x. x \<in> S))" by (auto intro: transpI simp: invariant_def)
1.28  qed
1.29
1.30  lemma open_typedef_to_Quotient:
```