src/HOL/Library/Product_Order.thy
changeset 56218 1c3f1f2431f9
parent 56212 3253aaf73a01
child 58881 b9556a055632
     1.1 --- a/src/HOL/Library/Product_Order.thy	Wed Mar 19 17:06:02 2014 +0000
     1.2 +++ b/src/HOL/Library/Product_Order.thy	Wed Mar 19 18:47:22 2014 +0100
     1.3 @@ -219,11 +219,11 @@
     1.4  of two complete lattices: *}
     1.5  
     1.6  lemma INF_prod_alt_def:
     1.7 -  "INFI A f = (INFI A (fst o f), INFI A (snd o f))"
     1.8 +  "INFIMUM A f = (INFIMUM A (fst o f), INFIMUM A (snd o f))"
     1.9    unfolding INF_def Inf_prod_def by simp
    1.10  
    1.11  lemma SUP_prod_alt_def:
    1.12 -  "SUPR A f = (SUPR A (fst o f), SUPR A (snd o f))"
    1.13 +  "SUPREMUM A f = (SUPREMUM A (fst o f), SUPREMUM A (snd o f))"
    1.14    unfolding SUP_def Sup_prod_def by simp
    1.15  
    1.16