src/HOL/Algebra/UnivPoly.thy
 changeset 44890 22f665a2e91c parent 44821 a92f65e174cf child 49962 a8cc904a6820
```     1.1 --- a/src/HOL/Algebra/UnivPoly.thy	Sun Sep 11 22:56:05 2011 +0200
1.2 +++ b/src/HOL/Algebra/UnivPoly.thy	Mon Sep 12 07:55:43 2011 +0200
1.3 @@ -105,7 +105,7 @@
1.4      proof
1.5        fix i
1.6        assume "max n m < i"
1.7 -      with boundn and boundm and UP show "p i \<oplus> q i = \<zero>" by fastsimp
1.8 +      with boundn and boundm and UP show "p i \<oplus> q i = \<zero>" by fastforce
1.9      qed
1.10      then show ?thesis ..
1.11    qed
1.12 @@ -780,7 +780,7 @@
1.13      then have "EX m. deg R p <= m & coeff P p m ~= \<zero>" by (simp add: deg minus)
1.14      then show ?thesis by (auto intro: that)
1.15    qed
1.16 -  with deg_belowI R have "deg R p = m" by fastsimp
1.17 +  with deg_belowI R have "deg R p = m" by fastforce
1.18    with m_coeff show ?thesis by simp
1.19  qed
1.20
1.21 @@ -827,7 +827,7 @@
1.22
1.23  lemma deg_monom [simp]:
1.24    "[| a ~= \<zero>; a \<in> carrier R |] ==> deg R (monom P a n) = n"
1.25 -  by (fastsimp intro: le_antisym deg_aboveI deg_belowI)
1.26 +  by (fastforce intro: le_antisym deg_aboveI deg_belowI)
1.27
1.28  lemma deg_const [simp]:
1.29    assumes R: "a \<in> carrier R" shows "deg R (monom P a 0) = 0"
1.30 @@ -1061,7 +1061,7 @@
1.31      finally have "coeff P p 0 \<otimes> coeff P q 0 = \<zero>" .
1.32      with R have "coeff P p 0 = \<zero> | coeff P q 0 = \<zero>"
1.33        by (simp add: R.integral_iff)
1.34 -    with p q show "p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" by fastsimp
1.35 +    with p q show "p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" by fastforce
1.36    qed
1.37  qed
1.38
```