src/ZF/Order.thy
changeset 1478 2b8c2a7547ab
parent 1401 0c439768f45c
child 1851 7b1e1c298e50
     1.1 --- a/src/ZF/Order.thy	Mon Feb 05 21:33:14 1996 +0100
     1.2 +++ b/src/ZF/Order.thy	Tue Feb 06 12:27:17 1996 +0100
     1.3 @@ -1,6 +1,6 @@
     1.4 -(*  Title: 	ZF/Order.thy
     1.5 +(*  Title:      ZF/Order.thy
     1.6      ID:         $Id$
     1.7 -    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
     1.8 +    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     1.9      Copyright   1994  University of Cambridge
    1.10  
    1.11  Orders in Zermelo-Fraenkel Set Theory 
    1.12 @@ -8,13 +8,13 @@
    1.13  
    1.14  Order = WF + Perm + 
    1.15  consts
    1.16 -  part_ord        :: [i,i]=>o		(*Strict partial ordering*)
    1.17 -  linear, tot_ord :: [i,i]=>o		(*Strict total ordering*)
    1.18 -  well_ord        :: [i,i]=>o		(*Well-ordering*)
    1.19 -  mono_map        :: [i,i,i,i]=>i	(*Order-preserving maps*)
    1.20 -  ord_iso         :: [i,i,i,i]=>i	(*Order isomorphisms*)
    1.21 -  pred            :: [i,i,i]=>i	(*Set of predecessors*)
    1.22 -  ord_iso_map     :: [i,i,i,i]=>i	(*Construction for linearity theorem*)
    1.23 +  part_ord        :: [i,i]=>o           (*Strict partial ordering*)
    1.24 +  linear, tot_ord :: [i,i]=>o           (*Strict total ordering*)
    1.25 +  well_ord        :: [i,i]=>o           (*Well-ordering*)
    1.26 +  mono_map        :: [i,i,i,i]=>i       (*Order-preserving maps*)
    1.27 +  ord_iso         :: [i,i,i,i]=>i       (*Order isomorphisms*)
    1.28 +  pred            :: [i,i,i]=>i (*Set of predecessors*)
    1.29 +  ord_iso_map     :: [i,i,i,i]=>i       (*Construction for linearity theorem*)
    1.30  
    1.31  defs
    1.32    part_ord_def "part_ord(A,r) == irrefl(A,r) & trans[A](r)"