src/HOL/Probability/Fin_Map.thy
 changeset 50088 32d1795cc77a child 50091 b3b5dc2350b7
```     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/src/HOL/Probability/Fin_Map.thy	Thu Nov 15 11:16:58 2012 +0100
1.3 @@ -0,0 +1,1503 @@
1.4 +(*  Title:      HOL/Probability/Projective_Family.thy
1.5 +    Author:     Fabian Immler, TU München
1.6 +*)
1.7 +
1.8 +theory Fin_Map
1.9 +imports Finite_Product_Measure
1.10 +begin
1.11 +
1.12 +section {* Finite Maps *}
1.13 +
1.14 +text {* Auxiliary type that is instantiated to @{class polish_space}, needed for the proof of
1.15 +  projective limit. @{const extensional} functions are used for the representation in order to
1.16 +  stay close to the developments of (finite) products @{const Pi\<^isub>E} and their sigma-algebra
1.17 +  @{const Pi\<^isub>M}. *}
1.18 +
1.19 +typedef ('i, 'a) finmap ("(_ \<Rightarrow>\<^isub>F /_)" [22, 21] 21) =
1.20 +  "{(I::'i set, f::'i \<Rightarrow> 'a). finite I \<and> f \<in> extensional I}" by auto
1.21 +
1.22 +subsection {* Domain and Application *}
1.23 +
1.24 +definition domain where "domain P = fst (Rep_finmap P)"
1.25 +
1.26 +lemma finite_domain[simp, intro]: "finite (domain P)"
1.27 +  by (cases P) (auto simp: domain_def Abs_finmap_inverse)
1.28 +
1.29 +definition proj ("_\<^isub>F"  1000) where "proj P i = snd (Rep_finmap P) i"
1.30 +
1.31 +declare [[coercion proj]]
1.32 +
1.33 +lemma extensional_proj[simp, intro]: "(P)\<^isub>F \<in> extensional (domain P)"
1.34 +  by (cases P) (auto simp: domain_def Abs_finmap_inverse proj_def[abs_def])
1.35 +
1.36 +lemma proj_undefined[simp, intro]: "i \<notin> domain P \<Longrightarrow> P i = undefined"
1.37 +  using extensional_proj[of P] unfolding extensional_def by auto
1.38 +
1.39 +lemma finmap_eq_iff: "P = Q \<longleftrightarrow> (domain P = domain Q \<and> (\<forall>i\<in>domain P. P i = Q i))"
1.40 +  by (cases P, cases Q)
1.41 +     (auto simp add: Abs_finmap_inject extensional_def domain_def proj_def Abs_finmap_inverse
1.42 +              intro: extensionalityI)
1.43 +
1.44 +subsection {* Countable Finite Maps *}
1.45 +
1.46 +instance finmap :: (countable, countable) countable
1.47 +proof
1.48 +  obtain mapper where mapper: "\<And>fm :: 'a \<Rightarrow>\<^isub>F 'b. set (mapper fm) = domain fm"
1.49 +    by (metis finite_list[OF finite_domain])
1.50 +  have "inj (\<lambda>fm. map (\<lambda>i. (i, (fm)\<^isub>F i)) (mapper fm))" (is "inj ?F")
1.51 +  proof (rule inj_onI)
1.52 +    fix f1 f2 assume "?F f1 = ?F f2"
1.53 +    then have "map fst (?F f1) = map fst (?F f2)" by simp
1.54 +    then have "mapper f1 = mapper f2" by (simp add: comp_def)
1.55 +    then have "domain f1 = domain f2" by (simp add: mapper[symmetric])
1.56 +    with `?F f1 = ?F f2` show "f1 = f2"
1.57 +      unfolding `mapper f1 = mapper f2` map_eq_conv mapper
1.58 +      by (simp add: finmap_eq_iff)
1.59 +  qed
1.60 +  then show "\<exists>to_nat :: 'a \<Rightarrow>\<^isub>F 'b \<Rightarrow> nat. inj to_nat"
1.61 +    by (intro exI[of _ "to_nat \<circ> ?F"] inj_comp) auto
1.62 +qed
1.63 +
1.64 +subsection {* Constructor of Finite Maps *}
1.65 +
1.66 +definition "finmap_of inds f = Abs_finmap (inds, restrict f inds)"
1.67 +
1.68 +lemma proj_finmap_of[simp]:
1.69 +  assumes "finite inds"
1.70 +  shows "(finmap_of inds f)\<^isub>F = restrict f inds"
1.71 +  using assms
1.72 +  by (auto simp: Abs_finmap_inverse finmap_of_def proj_def)
1.73 +
1.74 +lemma domain_finmap_of[simp]:
1.75 +  assumes "finite inds"
1.76 +  shows "domain (finmap_of inds f) = inds"
1.77 +  using assms
1.78 +  by (auto simp: Abs_finmap_inverse finmap_of_def domain_def)
1.79 +
1.80 +lemma finmap_of_eq_iff[simp]:
1.81 +  assumes "finite i" "finite j"
1.82 +  shows "finmap_of i m = finmap_of j n \<longleftrightarrow> i = j \<and> restrict m i = restrict n i"
1.83 +  using assms
1.84 +  apply (auto simp: finmap_eq_iff restrict_def) by metis
1.85 +
1.86 +lemma
1.87 +  finmap_of_inj_on_extensional_finite:
1.88 +  assumes "finite K"
1.89 +  assumes "S \<subseteq> extensional K"
1.90 +  shows "inj_on (finmap_of K) S"
1.91 +proof (rule inj_onI)
1.92 +  fix x y::"'a \<Rightarrow> 'b"
1.93 +  assume "finmap_of K x = finmap_of K y"
1.94 +  hence "(finmap_of K x)\<^isub>F = (finmap_of K y)\<^isub>F" by simp
1.95 +  moreover
1.96 +  assume "x \<in> S" "y \<in> S" hence "x \<in> extensional K" "y \<in> extensional K" using assms by auto
1.97 +  ultimately
1.98 +  show "x = y" using assms by (simp add: extensional_restrict)
1.99 +qed
1.100 +
1.101 +lemma finmap_choice:
1.102 +  assumes *: "\<And>i. i \<in> I \<Longrightarrow> \<exists>x. P i x" and I: "finite I"
1.103 +  shows "\<exists>fm. domain fm = I \<and> (\<forall>i\<in>I. P i (fm i))"
1.104 +proof -
1.105 +  have "\<exists>f. \<forall>i\<in>I. P i (f i)"
1.106 +    unfolding bchoice_iff[symmetric] using * by auto
1.107 +  then guess f ..
1.108 +  with I show ?thesis
1.109 +    by (intro exI[of _ "finmap_of I f"]) auto
1.110 +qed
1.111 +
1.112 +subsection {* Product set of Finite Maps *}
1.113 +
1.114 +text {* This is @{term Pi} for Finite Maps, most of this is copied *}
1.115 +
1.116 +definition Pi' :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a set) \<Rightarrow> ('i \<Rightarrow>\<^isub>F 'a) set" where
1.117 +  "Pi' I A = { P. domain P = I \<and> (\<forall>i. i \<in> I \<longrightarrow> (P)\<^isub>F i \<in> A i) } "
1.118 +
1.119 +syntax
1.120 +  "_Pi'"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI' _:_./ _)" 10)
1.121 +
1.122 +syntax (xsymbols)
1.123 +  "_Pi'" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi>' _\<in>_./ _)"   10)
1.124 +
1.125 +syntax (HTML output)
1.126 +  "_Pi'" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi>' _\<in>_./ _)"   10)
1.127 +
1.128 +translations
1.129 +  "PI' x:A. B" == "CONST Pi' A (%x. B)"
1.130 +
1.131 +abbreviation
1.132 +  finmapset :: "['a set, 'b set] => ('a \<Rightarrow>\<^isub>F 'b) set"
1.133 +    (infixr "~>" 60) where
1.134 +  "A ~> B \<equiv> Pi' A (%_. B)"
1.135 +
1.136 +notation (xsymbols)
1.137 +  finmapset  (infixr "\<leadsto>" 60)
1.138 +
1.139 +subsubsection{*Basic Properties of @{term Pi'}*}
1.140 +
1.141 +lemma Pi'_I[intro!]: "domain f = A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi' A B"
1.142 +  by (simp add: Pi'_def)
1.143 +
1.144 +lemma Pi'_I'[simp]: "domain f = A \<Longrightarrow> (\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi' A B"
1.146 +
1.147 +lemma finmapsetI: "domain f = A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<leadsto> B"
1.148 +  by (simp add: Pi_def)
1.149 +
1.150 +lemma Pi'_mem: "f\<in> Pi' A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x"
1.151 +  by (simp add: Pi'_def)
1.152 +
1.153 +lemma Pi'_iff: "f \<in> Pi' I X \<longleftrightarrow> domain f = I \<and> (\<forall>i\<in>I. f i \<in> X i)"
1.154 +  unfolding Pi'_def by auto
1.155 +
1.156 +lemma Pi'E [elim]:
1.157 +  "f \<in> Pi' A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> domain f = A \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q"
1.158 +  by(auto simp: Pi'_def)
1.159 +
1.160 +lemma in_Pi'_cong:
1.161 +  "domain f = domain g \<Longrightarrow> (\<And> w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi' A B \<longleftrightarrow> g \<in> Pi' A B"
1.162 +  by (auto simp: Pi'_def)
1.163 +
1.164 +lemma funcset_mem: "[|f \<in> A \<leadsto> B; x \<in> A|] ==> f x \<in> B"
1.165 +  by (simp add: Pi'_def)
1.166 +
1.167 +lemma funcset_image: "f \<in> A \<leadsto> B ==> f ` A \<subseteq> B"
1.168 +by auto
1.169 +
1.170 +lemma Pi'_eq_empty[simp]:
1.171 +  assumes "finite A" shows "(Pi' A B) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})"
1.172 +  using assms
1.173 +  apply (simp add: Pi'_def, auto)
1.174 +  apply (drule_tac x = "finmap_of A (\<lambda>u. SOME y. y \<in> B u)" in spec, auto)
1.175 +  apply (cut_tac P= "%y. y \<in> B i" in some_eq_ex, auto)
1.176 +  done
1.177 +
1.178 +lemma Pi'_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi' A B \<subseteq> Pi' A C"
1.179 +  by (auto simp: Pi'_def)
1.180 +
1.181 +lemma Pi_Pi': "finite A \<Longrightarrow> (Pi\<^isub>E A B) = proj ` Pi' A B"
1.182 +  apply (auto simp: Pi'_def Pi_def extensional_def)
1.183 +  apply (rule_tac x = "finmap_of A (restrict x A)" in image_eqI)
1.184 +  apply auto
1.185 +  done
1.186 +
1.187 +subsection {* Metric Space of Finite Maps *}
1.188 +
1.189 +instantiation finmap :: (type, metric_space) metric_space
1.190 +begin
1.191 +
1.192 +definition dist_finmap where
1.193 +  "dist P Q = (\<Sum>i\<in>domain P \<union> domain Q. dist ((P)\<^isub>F i) ((Q)\<^isub>F i)) +
1.194 +    card ((domain P - domain Q) \<union> (domain Q - domain P))"
1.195 +
1.196 +lemma dist_finmap_extend:
1.197 +  assumes "finite X"
1.198 +  shows "dist P Q = (\<Sum>i\<in>domain P \<union> domain Q \<union> X. dist ((P)\<^isub>F i) ((Q)\<^isub>F i)) +
1.199 +    card ((domain P - domain Q) \<union> (domain Q - domain P))"
1.201 +    using assms extensional_arb[of "(P)\<^isub>F"] extensional_arb[of "(Q)\<^isub>F" "domain Q"]
1.202 +    by (intro setsum_mono_zero_cong_left) auto
1.203 +
1.204 +definition open_finmap :: "('a \<Rightarrow>\<^isub>F 'b) set \<Rightarrow> bool" where
1.205 +  "open_finmap S = (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
1.206 +
1.208 +  fixes a b::real
1.209 +  assumes "a \<ge> 0" "b \<ge> 0"
1.210 +  shows "a + b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
1.211 +using assms by auto
1.212 +
1.213 +lemma dist_le_1_imp_domain_eq:
1.214 +  assumes "dist P Q < 1"
1.215 +  shows "domain P = domain Q"
1.216 +proof -
1.217 +  have "0 \<le> (\<Sum>i\<in>domain P \<union> domain Q. dist (P i) (Q i))"
1.218 +    by (simp add: setsum_nonneg)
1.219 +  with assms have "card (domain P - domain Q \<union> (domain Q - domain P)) = 0"
1.220 +    unfolding dist_finmap_def by arith
1.221 +  thus "domain P = domain Q" by auto
1.222 +qed
1.223 +
1.224 +lemma dist_proj:
1.225 +  shows "dist ((x)\<^isub>F i) ((y)\<^isub>F i) \<le> dist x y"
1.226 +proof -
1.227 +  have "dist (x i) (y i) = (\<Sum>i\<in>{i}. dist (x i) (y i))" by simp
1.228 +  also have "\<dots> \<le> (\<Sum>i\<in>domain x \<union> domain y \<union> {i}. dist (x i) (y i))"
1.229 +    by (intro setsum_mono2) auto
1.230 +  also have "\<dots> \<le> dist x y" by (simp add: dist_finmap_extend[of "{i}"])
1.231 +  finally show ?thesis by simp
1.232 +qed
1.233 +
1.234 +lemma open_Pi'I:
1.235 +  assumes open_component: "\<And>i. i \<in> I \<Longrightarrow> open (A i)"
1.236 +  shows "open (Pi' I A)"
1.237 +proof (subst open_finmap_def, safe)
1.238 +  fix x assume x: "x \<in> Pi' I A"
1.239 +  hence dim_x: "domain x = I" by (simp add: Pi'_def)
1.240 +  hence [simp]: "finite I" unfolding dim_x[symmetric] by simp
1.241 +  have "\<exists>ei. \<forall>i\<in>I. 0 < ei i \<and> (\<forall>y. dist y (x i) < ei i \<longrightarrow> y \<in> A i)"
1.242 +  proof (safe intro!: bchoice)
1.243 +    fix i assume i: "i \<in> I"
1.244 +    moreover with open_component have "open (A i)" by simp
1.245 +    moreover have "x i \<in> A i" using x i
1.246 +      by (auto simp: proj_def)
1.247 +    ultimately show "\<exists>e>0. \<forall>y. dist y (x i) < e \<longrightarrow> y \<in> A i"
1.248 +      using x by (auto simp: open_dist Ball_def)
1.249 +  qed
1.250 +  then guess ei .. note ei = this
1.251 +  def es \<equiv> "ei ` I"
1.252 +  def e \<equiv> "if es = {} then 0.5 else min 0.5 (Min es)"
1.253 +  from ei have "e > 0" using x
1.254 +    by (auto simp add: e_def es_def Pi'_def Ball_def)
1.255 +  moreover have "\<forall>y. dist y x < e \<longrightarrow> y \<in> Pi' I A"
1.256 +  proof (intro allI impI)
1.257 +    fix y
1.258 +    assume "dist y x < e"
1.259 +    also have "\<dots> < 1" by (auto simp: e_def)
1.260 +    finally have "domain y = domain x" by (rule dist_le_1_imp_domain_eq)
1.261 +    with dim_x have dims: "domain y = domain x" "domain x = I" by auto
1.262 +    show "y \<in> Pi' I A"
1.263 +    proof
1.264 +      show "domain y = I" using dims by simp
1.265 +    next
1.266 +      fix i
1.267 +      assume "i \<in> I"
1.268 +      have "dist (y i) (x i) \<le> dist y x" using dims `i \<in> I`
1.269 +        by (auto intro: dist_proj)
1.270 +      also have "\<dots> < e" using `dist y x < e` dims
1.271 +        by (simp add: dist_finmap_def)
1.272 +      also have "e \<le> Min (ei ` I)" using dims `i \<in> I`
1.273 +        by (auto simp: e_def es_def)
1.274 +      also have "\<dots> \<le> ei i" using `i \<in> I` by (simp add: e_def)
1.275 +      finally have "dist (y i) (x i) < ei i" .
1.276 +      with ei `i \<in> I` show "y i \<in> A  i" by simp
1.277 +    qed
1.278 +  qed
1.279 +  ultimately
1.280 +  show "\<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> Pi' I A" by blast
1.281 +qed
1.282 +
1.283 +instance
1.284 +proof
1.285 +  fix S::"('a \<Rightarrow>\<^isub>F 'b) set"
1.286 +  show "open S = (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
1.287 +    unfolding open_finmap_def ..
1.288 +next
1.289 +  fix P Q::"'a \<Rightarrow>\<^isub>F 'b"
1.290 +  show "dist P Q = 0 \<longleftrightarrow> P = Q"
1.291 +    by (auto simp: finmap_eq_iff dist_finmap_def setsum_nonneg setsum_nonneg_eq_0_iff)
1.292 +next
1.293 +  fix P Q R::"'a \<Rightarrow>\<^isub>F 'b"
1.294 +  let ?symdiff = "\<lambda>a b. domain a - domain b \<union> (domain b - domain a)"
1.295 +  def E \<equiv> "domain P \<union> domain Q \<union> domain R"
1.296 +  hence "finite E" by (simp add: E_def)
1.297 +  have "card (?symdiff P Q) \<le> card (?symdiff P R \<union> ?symdiff Q R)"
1.298 +    by (auto intro: card_mono)
1.299 +  also have "\<dots> \<le> card (?symdiff P R) + card (?symdiff Q R)"
1.300 +    by (subst card_Un_Int) auto
1.301 +  finally have "dist P Q \<le> (\<Sum>i\<in>E. dist (P i) (R i) + dist (Q i) (R i)) +
1.302 +    real (card (?symdiff P R) + card (?symdiff Q R))"
1.303 +    unfolding dist_finmap_extend[OF `finite E`]
1.304 +    by (intro add_mono) (auto simp: E_def intro: setsum_mono dist_triangle_le)
1.305 +  also have "\<dots> \<le> dist P R + dist Q R"
1.306 +    unfolding dist_finmap_extend[OF `finite E`] by (simp add: ac_simps E_def setsum_addf[symmetric])
1.307 +  finally show "dist P Q \<le> dist P R + dist Q R" by simp
1.308 +qed
1.309 +
1.310 +end
1.311 +
1.312 +lemma open_restricted_space:
1.313 +  shows "open {m. P (domain m)}"
1.314 +proof -
1.315 +  have "{m. P (domain m)} = (\<Union>i \<in> Collect P. {m. domain m = i})" by auto
1.316 +  also have "open \<dots>"
1.317 +  proof (rule, safe, cases)
1.318 +    fix i::"'a set"
1.319 +    assume "finite i"
1.320 +    hence "{m. domain m = i} = Pi' i (\<lambda>_. UNIV)" by (auto simp: Pi'_def)
1.321 +    also have "open \<dots>" by (auto intro: open_Pi'I simp: `finite i`)
1.322 +    finally show "open {m. domain m = i}" .
1.323 +  next
1.324 +    fix i::"'a set"
1.325 +    assume "\<not> finite i" hence "{m. domain m = i} = {}" by auto
1.326 +    also have "open \<dots>" by simp
1.327 +    finally show "open {m. domain m = i}" .
1.328 +  qed
1.329 +  finally show ?thesis .
1.330 +qed
1.331 +
1.332 +lemma closed_restricted_space:
1.333 +  shows "closed {m. P (domain m)}"
1.334 +proof -
1.335 +  have "{m. P (domain m)} = - (\<Union>i \<in> - Collect P. {m. domain m = i})" by auto
1.336 +  also have "closed \<dots>"
1.337 +  proof (rule, rule, rule, cases)
1.338 +    fix i::"'a set"
1.339 +    assume "finite i"
1.340 +    hence "{m. domain m = i} = Pi' i (\<lambda>_. UNIV)" by (auto simp: Pi'_def)
1.341 +    also have "open \<dots>" by (auto intro: open_Pi'I simp: `finite i`)
1.342 +    finally show "open {m. domain m = i}" .
1.343 +  next
1.344 +    fix i::"'a set"
1.345 +    assume "\<not> finite i" hence "{m. domain m = i} = {}" by auto
1.346 +    also have "open \<dots>" by simp
1.347 +    finally show "open {m. domain m = i}" .
1.348 +  qed
1.349 +  finally show ?thesis .
1.350 +qed
1.351 +
1.352 +lemma continuous_proj:
1.353 +  shows "continuous_on s (\<lambda>x. (x)\<^isub>F i)"
1.354 +  unfolding continuous_on_topological
1.355 +proof safe
1.356 +  fix x B assume "x \<in> s" "open B" "x i \<in> B"
1.357 +  let ?A = "Pi' (domain x) (\<lambda>j. if i = j then B else UNIV)"
1.358 +  have "open ?A" using `open B` by (auto intro: open_Pi'I)
1.359 +  moreover have "x \<in> ?A" using `x i \<in> B` by auto
1.360 +  moreover have "(\<forall>y\<in>s. y \<in> ?A \<longrightarrow> y i \<in> B)"
1.361 +  proof (cases, safe)
1.362 +    fix y assume "y \<in> s"
1.363 +    assume "i \<notin> domain x" hence "undefined \<in> B" using `x i \<in> B`
1.364 +      by simp
1.365 +    moreover
1.366 +    assume "y \<in> ?A" hence "domain y = domain x" by (simp add: Pi'_def)
1.367 +    hence "y i = undefined" using `i \<notin> domain x` by simp
1.368 +    ultimately
1.369 +    show "y i \<in> B" by simp
1.370 +  qed force
1.371 +  ultimately
1.372 +  show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> y i \<in> B)" by blast
1.373 +qed
1.374 +
1.375 +subsection {* Complete Space of Finite Maps *}
1.376 +
1.377 +lemma tendsto_dist_zero:
1.378 +  assumes "(\<lambda>i. dist (f i) g) ----> 0"
1.379 +  shows "f ----> g"
1.380 +  using assms by (auto simp: tendsto_iff dist_real_def)
1.381 +
1.382 +lemma tendsto_dist_zero':
1.383 +  assumes "(\<lambda>i. dist (f i) g) ----> x"
1.384 +  assumes "0 = x"
1.385 +  shows "f ----> g"
1.386 +  using assms tendsto_dist_zero by simp
1.387 +
1.388 +lemma tendsto_finmap:
1.389 +  fixes f::"nat \<Rightarrow> ('i \<Rightarrow>\<^isub>F ('a::metric_space))"
1.390 +  assumes ind_f:  "\<And>n. domain (f n) = domain g"
1.391 +  assumes proj_g:  "\<And>i. i \<in> domain g \<Longrightarrow> (\<lambda>n. (f n) i) ----> g i"
1.392 +  shows "f ----> g"
1.393 +  apply (rule tendsto_dist_zero')
1.394 +  unfolding dist_finmap_def assms
1.395 +  apply (rule tendsto_intros proj_g | simp)+
1.396 +  done
1.397 +
1.398 +instance finmap :: (type, complete_space) complete_space
1.399 +proof
1.400 +  fix P::"nat \<Rightarrow> 'a \<Rightarrow>\<^isub>F 'b"
1.401 +  assume "Cauchy P"
1.402 +  then obtain Nd where Nd: "\<And>n. n \<ge> Nd \<Longrightarrow> dist (P n) (P Nd) < 1"
1.403 +    by (force simp: cauchy)
1.404 +  def d \<equiv> "domain (P Nd)"
1.405 +  with Nd have dim: "\<And>n. n \<ge> Nd \<Longrightarrow> domain (P n) = d" using dist_le_1_imp_domain_eq by auto
1.406 +  have [simp]: "finite d" unfolding d_def by simp
1.407 +  def p \<equiv> "\<lambda>i n. (P n) i"
1.408 +  def q \<equiv> "\<lambda>i. lim (p i)"
1.409 +  def Q \<equiv> "finmap_of d q"
1.410 +  have q: "\<And>i. i \<in> d \<Longrightarrow> q i = Q i" by (auto simp add: Q_def Abs_finmap_inverse)
1.411 +  {
1.412 +    fix i assume "i \<in> d"
1.413 +    have "Cauchy (p i)" unfolding cauchy p_def
1.414 +    proof safe
1.415 +      fix e::real assume "0 < e"
1.416 +      with `Cauchy P` obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> dist (P n) (P N) < min e 1"
1.417 +        by (force simp: cauchy min_def)
1.418 +      hence "\<And>n. n \<ge> N \<Longrightarrow> domain (P n) = domain (P N)" using dist_le_1_imp_domain_eq by auto
1.419 +      with dim have dim: "\<And>n. n \<ge> N \<Longrightarrow> domain (P n) = d" by (metis nat_le_linear)
1.420 +      show "\<exists>N. \<forall>n\<ge>N. dist ((P n) i) ((P N) i) < e"
1.421 +      proof (safe intro!: exI[where x="N"])
1.422 +        fix n assume "N \<le> n" have "N \<le> N" by simp
1.423 +        have "dist ((P n) i) ((P N) i) \<le> dist (P n) (P N)"
1.424 +          using dim[OF `N \<le> n`]  dim[OF `N \<le> N`] `i \<in> d`
1.425 +          by (auto intro!: dist_proj)
1.426 +        also have "\<dots> < e" using N[OF `N \<le> n`] by simp
1.427 +        finally show "dist ((P n) i) ((P N) i) < e" .
1.428 +      qed
1.429 +    qed
1.430 +    hence "convergent (p i)" by (metis Cauchy_convergent_iff)
1.431 +    hence "p i ----> q i" unfolding q_def convergent_def by (metis limI)
1.432 +  } note p = this
1.433 +  have "P ----> Q"
1.434 +  proof (rule metric_LIMSEQ_I)
1.435 +    fix e::real assume "0 < e"
1.436 +    def e' \<equiv> "min 1 (e / (card d + 1))"
1.437 +    hence "0 < e'" using `0 < e` by (auto simp: e'_def intro: divide_pos_pos)
1.438 +    have "\<exists>ni. \<forall>i\<in>d. \<forall>n\<ge>ni i. dist (p i n) (q i) < e'"
1.439 +    proof (safe intro!: bchoice)
1.440 +      fix i assume "i \<in> d"
1.441 +      from p[OF `i \<in> d`, THEN metric_LIMSEQ_D, OF `0 < e'`]
1.442 +      show "\<exists>no. \<forall>n\<ge>no. dist (p i n) (q i) < e'" .
1.443 +    qed then guess ni .. note ni = this
1.444 +    def N \<equiv> "max Nd (Max (ni ` d))"
1.445 +    show "\<exists>N. \<forall>n\<ge>N. dist (P n) Q < e"
1.446 +    proof (safe intro!: exI[where x="N"])
1.447 +      fix n assume "N \<le> n"
1.448 +      hence "domain (P n) = d" "domain Q = d" "domain (P n) = domain Q"
1.449 +        using dim by (simp_all add: N_def Q_def dim_def Abs_finmap_inverse)
1.450 +      hence "dist (P n) Q = (\<Sum>i\<in>d. dist ((P n) i) (Q i))" by (simp add: dist_finmap_def)
1.451 +      also have "\<dots> \<le> (\<Sum>i\<in>d. e')"
1.452 +      proof (intro setsum_mono less_imp_le)
1.453 +        fix i assume "i \<in> d"
1.454 +        hence "ni i \<le> Max (ni ` d)" by simp
1.455 +        also have "\<dots> \<le> N" by (simp add: N_def)
1.456 +        also have "\<dots> \<le> n" using `N \<le> n` .
1.457 +        finally
1.458 +        show "dist ((P n) i) (Q i) < e'"
1.459 +          using ni `i \<in> d` by (auto simp: p_def q N_def)
1.460 +      qed
1.461 +      also have "\<dots> = card d * e'" by (simp add: real_eq_of_nat)
1.462 +      also have "\<dots> < e" using `0 < e` by (simp add: e'_def field_simps min_def)
1.463 +      finally show "dist (P n) Q < e" .
1.464 +    qed
1.465 +  qed
1.466 +  thus "convergent P" by (auto simp: convergent_def)
1.467 +qed
1.468 +
1.469 +subsection {* Polish Space of Finite Maps *}
1.470 +
1.471 +instantiation finmap :: (countable, polish_space) polish_space
1.472 +begin
1.473 +
1.474 +definition enum_basis_finmap :: "nat \<Rightarrow> ('a \<Rightarrow>\<^isub>F 'b) set" where
1.475 +  "enum_basis_finmap n =
1.476 +  (let m = from_nat n::('a \<Rightarrow>\<^isub>F nat) in Pi' (domain m) (enum_basis o (m)\<^isub>F))"
1.477 +
1.478 +lemma range_enum_basis_eq:
1.479 +  "range enum_basis_finmap = {Pi' I S|I S. finite I \<and> (\<forall>i \<in> I. S i \<in> range enum_basis)}"
1.480 +proof (auto simp: enum_basis_finmap_def[abs_def])
1.481 +  fix S::"('a \<Rightarrow> 'b set)" and I
1.482 +  assume "\<forall>i\<in>I. S i \<in> range enum_basis"
1.483 +  hence "\<forall>i\<in>I. \<exists>n. S i = enum_basis n" by auto
1.484 +  then obtain n where n: "\<forall>i\<in>I. S i = enum_basis (n i)"
1.485 +    unfolding bchoice_iff by blast
1.486 +  assume [simp]: "finite I"
1.487 +  have "\<exists>fm. domain fm = I \<and> (\<forall>i\<in>I. n i = (fm i))"
1.488 +    by (rule finmap_choice) auto
1.489 +  then obtain m where "Pi' I S = Pi' (domain m) (enum_basis o m)"
1.490 +    using n by (auto simp: Pi'_def)
1.491 +  hence "Pi' I S = (let m = from_nat (to_nat m) in Pi' (domain m) (enum_basis \<circ> m))"
1.492 +    by simp
1.493 +  thus "Pi' I S \<in> range (\<lambda>n. let m = from_nat n in Pi' (domain m) (enum_basis \<circ> m))"
1.494 +    by blast
1.495 +qed (metis finite_domain o_apply rangeI)
1.496 +
1.497 +lemma in_enum_basis_finmapI:
1.498 +  assumes "finite I" assumes "\<And>i. i \<in> I \<Longrightarrow> S i \<in> range enum_basis"
1.499 +  shows "Pi' I S \<in> range enum_basis_finmap"
1.500 +  using assms unfolding range_enum_basis_eq by auto
1.501 +
1.502 +lemma finmap_topological_basis:
1.503 +  "topological_basis (range (enum_basis_finmap))"
1.504 +proof (subst topological_basis_iff, safe)
1.505 +  fix n::nat
1.506 +  show "open (enum_basis_finmap n::('a \<Rightarrow>\<^isub>F 'b) set)" using enumerable_basis
1.507 +    by (auto intro!: open_Pi'I simp: topological_basis_def enum_basis_finmap_def Let_def)
1.508 +next
1.509 +  fix O'::"('a \<Rightarrow>\<^isub>F 'b) set" and x
1.510 +  assume "open O'" "x \<in> O'"
1.511 +  then obtain e where e: "e > 0" "\<And>y. dist y x < e \<Longrightarrow> y \<in> O'"  unfolding open_dist by blast
1.512 +  def e' \<equiv> "e / (card (domain x) + 1)"
1.513 +
1.514 +  have "\<exists>B.
1.515 +    (\<forall>i\<in>domain x. x i \<in> enum_basis (B i) \<and> enum_basis (B i) \<subseteq> ball (x i) e')"
1.516 +  proof (rule bchoice, safe)
1.517 +    fix i assume "i \<in> domain x"
1.518 +    have "open (ball (x i) e')" "x i \<in> ball (x i) e'" using e
1.519 +      by (auto simp add: e'_def intro!: divide_pos_pos)
1.520 +    from enumerable_basisE[OF this] guess b' .
1.521 +    thus "\<exists>y. x i \<in> enum_basis y \<and>
1.522 +            enum_basis y \<subseteq> ball (x i) e'" by auto
1.523 +  qed
1.524 +  then guess B .. note B = this
1.525 +  def B' \<equiv> "Pi' (domain x) (\<lambda>i. enum_basis (B i)::'b set)"
1.526 +  hence "B' \<in> range enum_basis_finmap" unfolding B'_def
1.527 +    by (intro in_enum_basis_finmapI) auto
1.528 +  moreover have "x \<in> B'" unfolding B'_def using B by auto
1.529 +  moreover have "B' \<subseteq> O'"
1.530 +  proof
1.531 +    fix y assume "y \<in> B'" with B have "domain y = domain x" unfolding B'_def
1.532 +      by (simp add: Pi'_def)
1.533 +    show "y \<in> O'"
1.534 +    proof (rule e)
1.535 +      have "dist y x = (\<Sum>i \<in> domain x. dist (y i) (x i))"
1.536 +        using `domain y = domain x` by (simp add: dist_finmap_def)
1.537 +      also have "\<dots> \<le> (\<Sum>i \<in> domain x. e')"
1.538 +      proof (rule setsum_mono)
1.539 +        fix i assume "i \<in> domain x"
1.540 +        with `y \<in> B'` B have "y i \<in> enum_basis (B i)"
1.541 +          by (simp add: Pi'_def B'_def)
1.542 +        hence "y i \<in> ball (x i) e'" using B `domain y = domain x` `i \<in> domain x`
1.543 +          by force
1.544 +        thus "dist (y i) (x i) \<le> e'" by (simp add: dist_commute)
1.545 +      qed
1.546 +      also have "\<dots> = card (domain x) * e'" by (simp add: real_eq_of_nat)
1.547 +      also have "\<dots> < e" using e by (simp add: e'_def field_simps)
1.548 +      finally show "dist y x < e" .
1.549 +    qed
1.550 +  qed
1.551 +  ultimately
1.552 +  show "\<exists>B'\<in>range enum_basis_finmap. x \<in> B' \<and> B' \<subseteq> O'" by blast
1.553 +qed
1.554 +
1.555 +lemma range_enum_basis_finmap_imp_open:
1.556 +  assumes "x \<in> range enum_basis_finmap"
1.557 +  shows "open x"
1.558 +  using finmap_topological_basis assms by (auto simp: topological_basis_def)
1.559 +
1.560 +lemma
1.561 +  open_imp_ex_UNION_of_enum:
1.562 +  fixes X::"('a \<Rightarrow>\<^isub>F 'b) set"
1.563 +  assumes "open X" assumes "X \<noteq> {}"
1.564 +  shows "\<exists>A::nat\<Rightarrow>'a set. \<exists>B::nat\<Rightarrow>('a \<Rightarrow> 'b set) . X = UNION UNIV (\<lambda>i. Pi' (A i) (B i)) \<and>
1.565 +    (\<forall>n. \<forall>i\<in>A n. (B n) i \<in> range enum_basis) \<and> (\<forall>n. finite (A n))"
1.566 +proof -
1.567 +  from `open X` obtain B' where B': "B'\<subseteq>range enum_basis_finmap" "\<Union>B' = X"
1.568 +    using finmap_topological_basis by (force simp add: topological_basis_def)
1.569 +  then obtain B where B: "B' = enum_basis_finmap ` B" by (auto simp: subset_image_iff)
1.570 +  show ?thesis
1.571 +  proof cases
1.572 +    assume "B = {}" with B have "B' = {}" by simp hence False using B' assms by simp
1.573 +    thus ?thesis by simp
1.574 +  next
1.575 +    assume "B \<noteq> {}" then obtain b where b: "b \<in> B" by auto
1.576 +    def NA \<equiv> "\<lambda>n::nat. if n \<in> B
1.577 +      then domain ((from_nat::_\<Rightarrow>'a \<Rightarrow>\<^isub>F nat) n)
1.578 +      else domain ((from_nat::_\<Rightarrow>'a\<Rightarrow>\<^isub>F nat) b)"
1.579 +    def NB \<equiv> "\<lambda>n::nat. if n \<in> B
1.580 +      then (\<lambda>i. (enum_basis::nat\<Rightarrow>'b set) (((from_nat::_\<Rightarrow>'a \<Rightarrow>\<^isub>F nat) n) i))
1.581 +      else (\<lambda>i. (enum_basis::nat\<Rightarrow>'b set) (((from_nat::_\<Rightarrow>'a \<Rightarrow>\<^isub>F nat) b) i))"
1.582 +    have "X = UNION UNIV (\<lambda>i. Pi' (NA i) (NB i))" unfolding B'(2)[symmetric] using b
1.583 +      unfolding B
1.584 +      by safe
1.585 +         (auto simp add: NA_def NB_def enum_basis_finmap_def Let_def o_def split: split_if_asm)
1.586 +    moreover
1.587 +    have "(\<forall>n. \<forall>i\<in>NA n. (NB n) i \<in> range enum_basis)"
1.588 +      using enumerable_basis by (auto simp: topological_basis_def NA_def NB_def)
1.589 +    moreover have "(\<forall>n. finite (NA n))" by (simp add: NA_def)
1.590 +    ultimately show ?thesis by auto
1.591 +  qed
1.592 +qed
1.593 +
1.594 +lemma
1.595 +  open_imp_ex_UNION:
1.596 +  fixes X::"('a \<Rightarrow>\<^isub>F 'b) set"
1.597 +  assumes "open X" assumes "X \<noteq> {}"
1.598 +  shows "\<exists>A::nat\<Rightarrow>'a set. \<exists>B::nat\<Rightarrow>('a \<Rightarrow> 'b set) . X = UNION UNIV (\<lambda>i. Pi' (A i) (B i)) \<and>
1.599 +    (\<forall>n. \<forall>i\<in>A n. open ((B n) i)) \<and> (\<forall>n. finite (A n))"
1.600 +  using open_imp_ex_UNION_of_enum[OF assms]
1.601 +  apply auto
1.602 +  apply (rule_tac x = A in exI)
1.603 +  apply (rule_tac x = B in exI)
1.604 +  apply (auto simp: open_enum_basis)
1.605 +  done
1.606 +
1.607 +lemma
1.608 +  open_basisE:
1.609 +  assumes "open X" assumes "X \<noteq> {}"
1.610 +  obtains A::"nat\<Rightarrow>'a set" and B::"nat\<Rightarrow>('a \<Rightarrow> 'b set)" where
1.611 +  "X = UNION UNIV (\<lambda>i. Pi' (A i) (B i))" "\<And>n i. i\<in>A n \<Longrightarrow> open ((B n) i)" "\<And>n. finite (A n)"
1.612 +using open_imp_ex_UNION[OF assms] by auto
1.613 +
1.614 +lemma
1.615 +  open_basis_of_enumE:
1.616 +  assumes "open X" assumes "X \<noteq> {}"
1.617 +  obtains A::"nat\<Rightarrow>'a set" and B::"nat\<Rightarrow>('a \<Rightarrow> 'b set)" where
1.618 +  "X = UNION UNIV (\<lambda>i. Pi' (A i) (B i))" "\<And>n i. i\<in>A n \<Longrightarrow> (B n) i \<in> range enum_basis"
1.619 +  "\<And>n. finite (A n)"
1.620 +using open_imp_ex_UNION_of_enum[OF assms] by auto
1.621 +
1.622 +instance proof qed (blast intro: finmap_topological_basis)
1.623 +
1.624 +end
1.625 +
1.626 +subsection {* Product Measurable Space of Finite Maps *}
1.627 +
1.628 +definition "PiF I M \<equiv>
1.629 +  sigma
1.630 +    (\<Union>J \<in> I. (\<Pi>' j\<in>J. space (M j)))
1.631 +    {(\<Pi>' j\<in>J. X j) |X J. J \<in> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}"
1.632 +
1.633 +abbreviation
1.634 +  "Pi\<^isub>F I M \<equiv> PiF I M"
1.635 +
1.636 +syntax
1.637 +  "_PiF" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3PIF _:_./ _)" 10)
1.638 +
1.639 +syntax (xsymbols)
1.640 +  "_PiF" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3\<Pi>\<^isub>F _\<in>_./ _)"  10)
1.641 +
1.642 +syntax (HTML output)
1.643 +  "_PiF" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3\<Pi>\<^isub>F _\<in>_./ _)"  10)
1.644 +
1.645 +translations
1.646 +  "PIF x:I. M" == "CONST PiF I (%x. M)"
1.647 +
1.648 +lemma PiF_gen_subset: "{(\<Pi>' j\<in>J. X j) |X J. J \<in> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))} \<subseteq>
1.649 +    Pow (\<Union>J \<in> I. (\<Pi>' j\<in>J. space (M j)))"
1.650 +  by (auto simp: Pi'_def) (blast dest: sets_into_space)
1.651 +
1.652 +lemma space_PiF: "space (PiF I M) = (\<Union>J \<in> I. (\<Pi>' j\<in>J. space (M j)))"
1.653 +  unfolding PiF_def using PiF_gen_subset by (rule space_measure_of)
1.654 +
1.655 +lemma sets_PiF:
1.656 +  "sets (PiF I M) = sigma_sets (\<Union>J \<in> I. (\<Pi>' j\<in>J. space (M j)))
1.657 +    {(\<Pi>' j\<in>J. X j) |X J. J \<in> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}"
1.658 +  unfolding PiF_def using PiF_gen_subset by (rule sets_measure_of)
1.659 +
1.660 +lemma sets_PiF_singleton:
1.661 +  "sets (PiF {I} M) = sigma_sets (\<Pi>' j\<in>I. space (M j))
1.662 +    {(\<Pi>' j\<in>I. X j) |X. X \<in> (\<Pi> j\<in>I. sets (M j))}"
1.663 +  unfolding sets_PiF by simp
1.664 +
1.665 +lemma in_sets_PiFI:
1.666 +  assumes "X = (Pi' J S)" "J \<in> I" "\<And>i. i\<in>J \<Longrightarrow> S i \<in> sets (M i)"
1.667 +  shows "X \<in> sets (PiF I M)"
1.668 +  unfolding sets_PiF
1.669 +  using assms by blast
1.670 +
1.671 +lemma product_in_sets_PiFI:
1.672 +  assumes "J \<in> I" "\<And>i. i\<in>J \<Longrightarrow> S i \<in> sets (M i)"
1.673 +  shows "(Pi' J S) \<in> sets (PiF I M)"
1.674 +  unfolding sets_PiF
1.675 +  using assms by blast
1.676 +
1.677 +lemma singleton_space_subset_in_sets:
1.678 +  fixes J
1.679 +  assumes "J \<in> I"
1.680 +  assumes "finite J"
1.681 +  shows "space (PiF {J} M) \<in> sets (PiF I M)"
1.682 +  using assms
1.683 +  by (intro in_sets_PiFI[where J=J and S="\<lambda>i. space (M i)"])
1.684 +      (auto simp: product_def space_PiF)
1.685 +
1.686 +lemma singleton_subspace_set_in_sets:
1.687 +  assumes A: "A \<in> sets (PiF {J} M)"
1.688 +  assumes "finite J"
1.689 +  assumes "J \<in> I"
1.690 +  shows "A \<in> sets (PiF I M)"
1.691 +  using A[unfolded sets_PiF]
1.692 +  apply (induct A)
1.693 +  unfolding sets_PiF[symmetric] unfolding space_PiF[symmetric]
1.694 +  using assms
1.695 +  by (auto intro: in_sets_PiFI intro!: singleton_space_subset_in_sets)
1.696 +
1.697 +lemma
1.698 +  finite_measurable_singletonI:
1.699 +  assumes "finite I"
1.700 +  assumes "\<And>J. J \<in> I \<Longrightarrow> finite J"
1.701 +  assumes MN: "\<And>J. J \<in> I \<Longrightarrow> A \<in> measurable (PiF {J} M) N"
1.702 +  shows "A \<in> measurable (PiF I M) N"
1.703 +  unfolding measurable_def
1.704 +proof safe
1.705 +  fix y assume "y \<in> sets N"
1.706 +  have "A -` y \<inter> space (PiF I M) = (\<Union>J\<in>I. A -` y \<inter> space (PiF {J} M))"
1.707 +    by (auto simp: space_PiF)
1.708 +  also have "\<dots> \<in> sets (PiF I M)"
1.709 +  proof
1.710 +    show "finite I" by fact
1.711 +    fix J assume "J \<in> I"
1.712 +    with assms have "finite J" by simp
1.713 +    show "A -` y \<inter> space (PiF {J} M) \<in> sets (PiF I M)"
1.714 +      by (rule singleton_subspace_set_in_sets[OF measurable_sets[OF assms(3)]]) fact+
1.715 +  qed
1.716 +  finally show "A -` y \<inter> space (PiF I M) \<in> sets (PiF I M)" .
1.717 +next
1.718 +  fix x assume "x \<in> space (PiF I M)" thus "A x \<in> space N"
1.719 +    using MN[of "domain x"]
1.720 +    by (auto simp: space_PiF measurable_space Pi'_def)
1.721 +qed
1.722 +
1.723 +lemma
1.724 +  countable_finite_comprehension:
1.725 +  fixes f :: "'a::countable set \<Rightarrow> _"
1.726 +  assumes "\<And>s. P s \<Longrightarrow> finite s"
1.727 +  assumes "\<And>s. P s \<Longrightarrow> f s \<in> sets M"
1.728 +  shows "\<Union>{f s|s. P s} \<in> sets M"
1.729 +proof -
1.730 +  have "\<Union>{f s|s. P s} = (\<Union>n::nat. let s = set (from_nat n) in if P s then f s else {})"
1.731 +  proof safe
1.732 +    fix x X s assume "x \<in> f s" "P s"
1.733 +    moreover with assms obtain l where "s = set l" using finite_list by blast
1.734 +    ultimately show "x \<in> (\<Union>n. let s = set (from_nat n) in if P s then f s else {})" using `P s`
1.735 +      by (auto intro!: exI[where x="to_nat l"])
1.736 +  next
1.737 +    fix x n assume "x \<in> (let s = set (from_nat n) in if P s then f s else {})"
1.738 +    thus "x \<in> \<Union>{f s|s. P s}" using assms by (auto simp: Let_def split: split_if_asm)
1.739 +  qed
1.740 +  hence "\<Union>{f s|s. P s} = (\<Union>n. let s = set (from_nat n) in if P s then f s else {})" by simp
1.741 +  also have "\<dots> \<in> sets M" using assms by (auto simp: Let_def)
1.742 +  finally show ?thesis .
1.743 +qed
1.744 +
1.745 +lemma space_subset_in_sets:
1.746 +  fixes J::"'a::countable set set"
1.747 +  assumes "J \<subseteq> I"
1.748 +  assumes "\<And>j. j \<in> J \<Longrightarrow> finite j"
1.749 +  shows "space (PiF J M) \<in> sets (PiF I M)"
1.750 +proof -
1.751 +  have "space (PiF J M) = \<Union>{space (PiF {j} M)|j. j \<in> J}"
1.752 +    unfolding space_PiF by blast
1.753 +  also have "\<dots> \<in> sets (PiF I M)" using assms
1.754 +    by (intro countable_finite_comprehension) (auto simp: singleton_space_subset_in_sets)
1.755 +  finally show ?thesis .
1.756 +qed
1.757 +
1.758 +lemma subspace_set_in_sets:
1.759 +  fixes J::"'a::countable set set"
1.760 +  assumes A: "A \<in> sets (PiF J M)"
1.761 +  assumes "J \<subseteq> I"
1.762 +  assumes "\<And>j. j \<in> J \<Longrightarrow> finite j"
1.763 +  shows "A \<in> sets (PiF I M)"
1.764 +  using A[unfolded sets_PiF]
1.765 +  apply (induct A)
1.766 +  unfolding sets_PiF[symmetric] unfolding space_PiF[symmetric]
1.767 +  using assms
1.768 +  by (auto intro: in_sets_PiFI intro!: space_subset_in_sets)
1.769 +
1.770 +lemma
1.771 +  countable_measurable_PiFI:
1.772 +  fixes I::"'a::countable set set"
1.773 +  assumes MN: "\<And>J. J \<in> I \<Longrightarrow> finite J \<Longrightarrow> A \<in> measurable (PiF {J} M) N"
1.774 +  shows "A \<in> measurable (PiF I M) N"
1.775 +  unfolding measurable_def
1.776 +proof safe
1.777 +  fix y assume "y \<in> sets N"
1.778 +  have "A -` y = (\<Union>{A -` y \<inter> {x. domain x = J}|J. finite J})" by auto
1.779 +  hence "A -` y \<inter> space (PiF I M) = (\<Union>n. A -` y \<inter> space (PiF ({set (from_nat n)}\<inter>I) M))"
1.780 +    apply (auto simp: space_PiF Pi'_def)
1.781 +  proof -
1.782 +    case goal1
1.783 +    from finite_list[of "domain x"] obtain xs where "set xs = domain x" by auto
1.784 +    thus ?case
1.785 +      apply (intro exI[where x="to_nat xs"])
1.786 +      apply auto
1.787 +      done
1.788 +  qed
1.789 +  also have "\<dots> \<in> sets (PiF I M)"
1.790 +    apply (intro Int countable_nat_UN subsetI, safe)
1.791 +    apply (case_tac "set (from_nat i) \<in> I")
1.792 +    apply simp_all
1.793 +    apply (rule singleton_subspace_set_in_sets[OF measurable_sets[OF MN]])
1.794 +    using assms `y \<in> sets N`
1.795 +    apply (auto simp: space_PiF)
1.796 +    done
1.797 +  finally show "A -` y \<inter> space (PiF I M) \<in> sets (PiF I M)" .
1.798 +next
1.799 +  fix x assume "x \<in> space (PiF I M)" thus "A x \<in> space N"
1.800 +    using MN[of "domain x"] by (auto simp: space_PiF measurable_space Pi'_def)
1.801 +qed
1.802 +
1.803 +lemma measurable_PiF:
1.804 +  assumes f: "\<And>x. x \<in> space N \<Longrightarrow> domain (f x) \<in> I \<and> (\<forall>i\<in>domain (f x). (f x) i \<in> space (M i))"
1.805 +  assumes S: "\<And>J S. J \<in> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> S i \<in> sets (M i)) \<Longrightarrow>
1.806 +    f -` (Pi' J S) \<inter> space N \<in> sets N"
1.807 +  shows "f \<in> measurable N (PiF I M)"
1.808 +  unfolding PiF_def
1.809 +  using PiF_gen_subset
1.810 +  apply (rule measurable_measure_of)
1.811 +  using f apply force
1.812 +  apply (insert S, auto)
1.813 +  done
1.814 +
1.815 +lemma
1.816 +  restrict_sets_measurable:
1.817 +  assumes A: "A \<in> sets (PiF I M)" and "J \<subseteq> I"
1.818 +  shows "A \<inter> {m. domain m \<in> J} \<in> sets (PiF J M)"
1.819 +  using A[unfolded sets_PiF]
1.820 +  apply (induct A)
1.821 +  unfolding sets_PiF[symmetric] unfolding space_PiF[symmetric]
1.822 +proof -
1.823 +  fix a assume "a \<in> {Pi' J X |X J. J \<in> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}"
1.824 +  then obtain K S where S: "a = Pi' K S" "K \<in> I" "(\<forall>i\<in>K. S i \<in> sets (M i))"
1.825 +    by auto
1.826 +  show "a \<inter> {m. domain m \<in> J} \<in> sets (PiF J M)"
1.827 +  proof cases
1.828 +    assume "K \<in> J"
1.829 +    hence "a \<inter> {m. domain m \<in> J} \<in> {Pi' K X |X K. K \<in> J \<and> X \<in> (\<Pi> j\<in>K. sets (M j))}" using S
1.830 +      by (auto intro!: exI[where x=K] exI[where x=S] simp: Pi'_def)
1.831 +    also have "\<dots> \<subseteq> sets (PiF J M)" unfolding sets_PiF by auto
1.832 +    finally show ?thesis .
1.833 +  next
1.834 +    assume "K \<notin> J"
1.835 +    hence "a \<inter> {m. domain m \<in> J} = {}" using S by (auto simp: Pi'_def)
1.836 +    also have "\<dots> \<in> sets (PiF J M)" by simp
1.837 +    finally show ?thesis .
1.838 +  qed
1.839 +next
1.840 +  show "{} \<inter> {m. domain m \<in> J} \<in> sets (PiF J M)" by simp
1.841 +next
1.842 +  fix a :: "nat \<Rightarrow> _"
1.843 +  assume a: "(\<And>i. a i \<inter> {m. domain m \<in> J} \<in> sets (PiF J M))"
1.844 +  have "UNION UNIV a \<inter> {m. domain m \<in> J} = (\<Union>i. (a i \<inter> {m. domain m \<in> J}))"
1.845 +    by simp
1.846 +  also have "\<dots> \<in> sets (PiF J M)" using a by (intro countable_nat_UN) auto
1.847 +  finally show "UNION UNIV a \<inter> {m. domain m \<in> J} \<in> sets (PiF J M)" .
1.848 +next
1.849 +  fix a assume a: "a \<inter> {m. domain m \<in> J} \<in> sets (PiF J M)"
1.850 +  have "(space (PiF I M) - a) \<inter> {m. domain m \<in> J} = (space (PiF J M) - (a \<inter> {m. domain m \<in> J}))"
1.851 +    using `J \<subseteq> I` by (auto simp: space_PiF Pi'_def)
1.852 +  also have "\<dots> \<in> sets (PiF J M)" using a by auto
1.853 +  finally show "(space (PiF I M) - a) \<inter> {m. domain m \<in> J} \<in> sets (PiF J M)" .
1.854 +qed
1.855 +
1.856 +lemma measurable_finmap_of:
1.857 +  assumes f: "\<And>i. (\<exists>x \<in> space N. i \<in> J x) \<Longrightarrow> (\<lambda>x. f x i) \<in> measurable N (M i)"
1.858 +  assumes J: "\<And>x. x \<in> space N \<Longrightarrow> J x \<in> I" "\<And>x. x \<in> space N \<Longrightarrow> finite (J x)"
1.859 +  assumes JN: "\<And>S. {x. J x = S} \<inter> space N \<in> sets N"
1.860 +  shows "(\<lambda>x. finmap_of (J x) (f x)) \<in> measurable N (PiF I M)"
1.861 +proof (rule measurable_PiF)
1.862 +  fix x assume "x \<in> space N"
1.863 +  with J[of x] measurable_space[OF f]
1.864 +  show "domain (finmap_of (J x) (f x)) \<in> I \<and>
1.865 +        (\<forall>i\<in>domain (finmap_of (J x) (f x)). (finmap_of (J x) (f x)) i \<in> space (M i))"
1.866 +    by auto
1.867 +next
1.868 +  fix K S assume "K \<in> I" and *: "\<And>i. i \<in> K \<Longrightarrow> S i \<in> sets (M i)"
1.869 +  with J have eq: "(\<lambda>x. finmap_of (J x) (f x)) -` Pi' K S \<inter> space N =
1.870 +    (if \<exists>x \<in> space N. K = J x \<and> finite K then if K = {} then {x \<in> space N. J x = K}
1.871 +      else (\<Inter>i\<in>K. (\<lambda>x. f x i) -` S i \<inter> {x \<in> space N. J x = K}) else {})"
1.872 +    by (auto simp: Pi'_def)
1.873 +  have r: "{x \<in> space N. J x = K} = space N \<inter> ({x. J x = K} \<inter> space N)" by auto
1.874 +  show "(\<lambda>x. finmap_of (J x) (f x)) -` Pi' K S \<inter> space N \<in> sets N"
1.875 +    unfolding eq r
1.876 +    apply (simp del: INT_simps add: )
1.877 +    apply (intro conjI impI finite_INT JN Int[OF top])
1.878 +    apply simp apply assumption
1.879 +    apply (subst Int_assoc[symmetric])
1.880 +    apply (rule Int)
1.881 +    apply (intro measurable_sets[OF f] *) apply force apply assumption
1.882 +    apply (intro JN)
1.883 +    done
1.884 +qed
1.885 +
1.886 +lemma measurable_PiM_finmap_of:
1.887 +  assumes "finite J"
1.888 +  shows "finmap_of J \<in> measurable (Pi\<^isub>M J M) (PiF {J} M)"
1.889 +  apply (rule measurable_finmap_of)
1.890 +  apply (rule measurable_component_singleton)
1.891 +  apply simp
1.892 +  apply rule
1.893 +  apply (rule `finite J`)
1.894 +  apply simp
1.895 +  done
1.896 +
1.897 +lemma proj_measurable_singleton:
1.898 +  assumes "A \<in> sets (M i)" "finite I"
1.899 +  shows "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space (PiF {I} M) \<in> sets (PiF {I} M)"
1.900 +proof cases
1.901 +  assume "i \<in> I"
1.902 +  hence "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space (PiF {I} M) =
1.903 +    Pi' I (\<lambda>x. if x = i then A else space (M x))"
1.904 +    using sets_into_space[OF ] `A \<in> sets (M i)` assms
1.905 +    by (auto simp: space_PiF Pi'_def)
1.906 +  thus ?thesis  using assms `A \<in> sets (M i)`
1.907 +    by (intro in_sets_PiFI) auto
1.908 +next
1.909 +  assume "i \<notin> I"
1.910 +  hence "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space (PiF {I} M) =
1.911 +    (if undefined \<in> A then space (PiF {I} M) else {})" by (auto simp: space_PiF Pi'_def)
1.912 +  thus ?thesis by simp
1.913 +qed
1.914 +
1.915 +lemma measurable_proj_singleton:
1.916 +  fixes I
1.917 +  assumes "finite I" "i \<in> I"
1.918 +  shows "(\<lambda>x. (x)\<^isub>F i) \<in> measurable (PiF {I} M) (M i)"
1.919 +proof (unfold measurable_def, intro CollectI conjI ballI proj_measurable_singleton assms)
1.920 +qed (insert `i \<in> I`, auto simp: space_PiF)
1.921 +
1.922 +lemma measurable_proj_countable:
1.923 +  fixes I::"'a::countable set set"
1.924 +  assumes "y \<in> space (M i)"
1.925 +  shows "(\<lambda>x. if i \<in> domain x then (x)\<^isub>F i else y) \<in> measurable (PiF I M) (M i)"
1.926 +proof (rule countable_measurable_PiFI)
1.927 +  fix J assume "J \<in> I" "finite J"
1.928 +  show "(\<lambda>x. if i \<in> domain x then x i else y) \<in> measurable (PiF {J} M) (M i)"
1.929 +    unfolding measurable_def
1.930 +  proof safe
1.931 +    fix z assume "z \<in> sets (M i)"
1.932 +    have "(\<lambda>x. if i \<in> domain x then x i else y) -` z \<inter> space (PiF {J} M) =
1.933 +      (\<lambda>x. if i \<in> J then (x)\<^isub>F i else y) -` z \<inter> space (PiF {J} M)"
1.934 +      by (auto simp: space_PiF Pi'_def)
1.935 +    also have "\<dots> \<in> sets (PiF {J} M)" using `z \<in> sets (M i)` `finite J`
1.936 +      by (cases "i \<in> J") (auto intro!: measurable_sets[OF measurable_proj_singleton])
1.937 +    finally show "(\<lambda>x. if i \<in> domain x then x i else y) -` z \<inter> space (PiF {J} M) \<in>
1.938 +      sets (PiF {J} M)" .
1.939 +  qed (insert `y \<in> space (M i)`, auto simp: space_PiF Pi'_def)
1.940 +qed
1.941 +
1.942 +lemma measurable_restrict_proj:
1.943 +  assumes "J \<in> II" "finite J"
1.944 +  shows "finmap_of J \<in> measurable (PiM J M) (PiF II M)"
1.945 +  using assms
1.946 +  by (intro measurable_finmap_of measurable_component_singleton) auto
1.947 +
1.948 +lemma
1.949 +  measurable_proj_PiM:
1.950 +  fixes J K ::"'a::countable set" and I::"'a set set"
1.951 +  assumes "finite J" "J \<in> I"
1.952 +  assumes "x \<in> space (PiM J M)"
1.953 +  shows "proj \<in>
1.954 +    measurable (PiF {J} M) (PiM J M)"
1.955 +proof (rule measurable_PiM_single)
1.956 +  show "proj \<in> space (PiF {J} M) \<rightarrow> (\<Pi>\<^isub>E i \<in> J. space (M i))"
1.957 +    using assms by (auto simp add: space_PiM space_PiF extensional_def sets_PiF Pi'_def)
1.958 +next
1.959 +  fix A i assume A: "i \<in> J" "A \<in> sets (M i)"
1.960 +  show "{\<omega> \<in> space (PiF {J} M). (\<omega>)\<^isub>F i \<in> A} \<in> sets (PiF {J} M)"
1.961 +  proof
1.962 +    have "{\<omega> \<in> space (PiF {J} M). (\<omega>)\<^isub>F i \<in> A} =
1.963 +      (\<lambda>\<omega>. (\<omega>)\<^isub>F i) -` A \<inter> space (PiF {J} M)" by auto
1.964 +    also have "\<dots> \<in> sets (PiF {J} M)"
1.965 +      using assms A by (auto intro: measurable_sets[OF measurable_proj_singleton] simp: space_PiM)
1.966 +    finally show ?thesis .
1.967 +  qed simp
1.968 +qed
1.969 +
1.970 +lemma sets_subspaceI:
1.971 +  assumes "A \<inter> space M \<in> sets M"
1.972 +  assumes "B \<in> sets M"
1.973 +  shows "A \<inter> B \<in> sets M" using assms
1.974 +proof -
1.975 +  have "A \<inter> B = (A \<inter> space M) \<inter> B"
1.976 +    using assms sets_into_space by auto
1.977 +  thus ?thesis using assms by auto
1.978 +qed
1.979 +
1.980 +lemma space_PiF_singleton_eq_product:
1.981 +  assumes "finite I"
1.982 +  shows "space (PiF {I} M) = (\<Pi>' i\<in>I. space (M i))"
1.983 +  by (auto simp: product_def space_PiF assms)
1.984 +
1.985 +text {* adapted from @{thm sets_PiM_single} *}
1.986 +
1.987 +lemma sets_PiF_single:
1.988 +  assumes "finite I" "I \<noteq> {}"
1.989 +  shows "sets (PiF {I} M) =
1.990 +    sigma_sets (\<Pi>' i\<in>I. space (M i))
1.991 +      {{f\<in>\<Pi>' i\<in>I. space (M i). f i \<in> A} | i A. i \<in> I \<and> A \<in> sets (M i)}"
1.992 +    (is "_ = sigma_sets ?\<Omega> ?R")
1.993 +  unfolding sets_PiF_singleton
1.994 +proof (rule sigma_sets_eqI)
1.995 +  interpret R: sigma_algebra ?\<Omega> "sigma_sets ?\<Omega> ?R" by (rule sigma_algebra_sigma_sets) auto
1.996 +  fix A assume "A \<in> {Pi' I X |X. X \<in> (\<Pi> j\<in>I. sets (M j))}"
1.997 +  then obtain X where X: "A = Pi' I X" "X \<in> (\<Pi> j\<in>I. sets (M j))" by auto
1.998 +  show "A \<in> sigma_sets ?\<Omega> ?R"
1.999 +  proof -
1.1000 +    from `I \<noteq> {}` X have "A = (\<Inter>j\<in>I. {f\<in>space (PiF {I} M). f j \<in> X j})"
1.1001 +      using sets_into_space
1.1002 +      by (auto simp: space_PiF product_def) blast
1.1003 +    also have "\<dots> \<in> sigma_sets ?\<Omega> ?R"
1.1004 +      using X `I \<noteq> {}` assms by (intro R.finite_INT) (auto simp: space_PiF)
1.1005 +    finally show "A \<in> sigma_sets ?\<Omega> ?R" .
1.1006 +  qed
1.1007 +next
1.1008 +  fix A assume "A \<in> ?R"
1.1009 +  then obtain i B where A: "A = {f\<in>\<Pi>' i\<in>I. space (M i). f i \<in> B}" "i \<in> I" "B \<in> sets (M i)"
1.1010 +    by auto
1.1011 +  then have "A = (\<Pi>' j \<in> I. if j = i then B else space (M j))"
1.1012 +    using sets_into_space[OF A(3)]
1.1013 +    apply (auto simp: Pi'_iff split: split_if_asm)
1.1014 +    apply blast
1.1015 +    done
1.1016 +  also have "\<dots> \<in> sigma_sets ?\<Omega> {Pi' I X |X. X \<in> (\<Pi> j\<in>I. sets (M j))}"
1.1017 +    using A
1.1018 +    by (intro sigma_sets.Basic )
1.1019 +       (auto intro: exI[where x="\<lambda>j. if j = i then B else space (M j)"])
1.1020 +  finally show "A \<in> sigma_sets ?\<Omega> {Pi' I X |X. X \<in> (\<Pi> j\<in>I. sets (M j))}" .
1.1021 +qed
1.1022 +
1.1023 +text {* adapted from @{thm PiE_cong} *}
1.1024 +
1.1025 +lemma Pi'_cong:
1.1026 +  assumes "finite I"
1.1027 +  assumes "\<And>i. i \<in> I \<Longrightarrow> f i = g i"
1.1028 +  shows "Pi' I f = Pi' I g"
1.1029 +using assms by (auto simp: Pi'_def)
1.1030 +
1.1031 +text {* adapted from @{thm Pi_UN} *}
1.1032 +
1.1033 +lemma Pi'_UN:
1.1034 +  fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set"
1.1035 +  assumes "finite I"
1.1036 +  assumes mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i"
1.1037 +  shows "(\<Union>n. Pi' I (A n)) = Pi' I (\<lambda>i. \<Union>n. A n i)"
1.1038 +proof (intro set_eqI iffI)
1.1039 +  fix f assume "f \<in> Pi' I (\<lambda>i. \<Union>n. A n i)"
1.1040 +  then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i" "domain f = I" by (auto simp: `finite I` Pi'_def)
1.1041 +  from bchoice[OF this(1)] obtain n where n: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> (A (n i) i)" by auto
1.1042 +  obtain k where k: "\<And>i. i \<in> I \<Longrightarrow> n i \<le> k"
1.1043 +    using `finite I` finite_nat_set_iff_bounded_le[of "n`I"] by auto
1.1044 +  have "f \<in> Pi' I (\<lambda>i. A k i)"
1.1045 +  proof
1.1046 +    fix i assume "i \<in> I"
1.1047 +    from mono[OF this, of "n i" k] k[OF this] n[OF this] `domain f = I` `i \<in> I`
1.1048 +    show "f i \<in> A k i " by (auto simp: `finite I`)
1.1049 +  qed (simp add: `domain f = I` `finite I`)
1.1050 +  then show "f \<in> (\<Union>n. Pi' I (A n))" by auto
1.1051 +qed (auto simp: Pi'_def `finite I`)
1.1052 +
1.1053 +text {* adapted from @{thm sigma_prod_algebra_sigma_eq} *}
1.1054 +
1.1055 +lemma sigma_fprod_algebra_sigma_eq:
1.1056 +  fixes E :: "'i \<Rightarrow> 'a set set"
1.1057 +  assumes [simp]: "finite I" "I \<noteq> {}"
1.1058 +  assumes S_mono: "\<And>i. i \<in> I \<Longrightarrow> incseq (S i)"
1.1059 +    and S_union: "\<And>i. i \<in> I \<Longrightarrow> (\<Union>j. S i j) = space (M i)"
1.1060 +    and S_in_E: "\<And>i. i \<in> I \<Longrightarrow> range (S i) \<subseteq> E i"
1.1061 +  assumes E_closed: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (space (M i))"
1.1062 +    and E_generates: "\<And>i. i \<in> I \<Longrightarrow> sets (M i) = sigma_sets (space (M i)) (E i)"
1.1063 +  defines "P == { Pi' I F | F. \<forall>i\<in>I. F i \<in> E i }"
1.1064 +  shows "sets (PiF {I} M) = sigma_sets (space (PiF {I} M)) P"
1.1065 +proof
1.1066 +  let ?P = "sigma (space (Pi\<^isub>F {I} M)) P"
1.1067 +  have P_closed: "P \<subseteq> Pow (space (Pi\<^isub>F {I} M))"
1.1068 +    using E_closed by (auto simp: space_PiF P_def Pi'_iff subset_eq)
1.1069 +  then have space_P: "space ?P = (\<Pi>' i\<in>I. space (M i))"
1.1070 +    by (simp add: space_PiF)
1.1071 +  have "sets (PiF {I} M) =
1.1072 +      sigma_sets (space ?P) {{f \<in> \<Pi>' i\<in>I. space (M i). f i \<in> A} |i A. i \<in> I \<and> A \<in> sets (M i)}"
1.1073 +    using sets_PiF_single[of I M] by (simp add: space_P)
1.1074 +  also have "\<dots> \<subseteq> sets (sigma (space (PiF {I} M)) P)"
1.1075 +  proof (safe intro!: sigma_sets_subset)
1.1076 +    fix i A assume "i \<in> I" and A: "A \<in> sets (M i)"
1.1077 +    have "(\<lambda>x. (x)\<^isub>F i) \<in> measurable ?P (sigma (space (M i)) (E i))"
1.1078 +    proof (subst measurable_iff_measure_of)
1.1079 +      show "E i \<subseteq> Pow (space (M i))" using `i \<in> I` by fact
1.1080 +      from space_P `i \<in> I` show "(\<lambda>x. (x)\<^isub>F i) \<in> space ?P \<rightarrow> space (M i)"
1.1081 +        by auto
1.1082 +      show "\<forall>A\<in>E i. (\<lambda>x. (x)\<^isub>F i) -` A \<inter> space ?P \<in> sets ?P"
1.1083 +      proof
1.1084 +        fix A assume A: "A \<in> E i"
1.1085 +        then have "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space ?P = (\<Pi>' j\<in>I. if i = j then A else space (M j))"
1.1086 +          using E_closed `i \<in> I` by (auto simp: space_P Pi_iff subset_eq split: split_if_asm)
1.1087 +        also have "\<dots> = (\<Pi>' j\<in>I. \<Union>n. if i = j then A else S j n)"
1.1088 +          by (intro Pi'_cong) (simp_all add: S_union)
1.1089 +        also have "\<dots> = (\<Union>n. \<Pi>' j\<in>I. if i = j then A else S j n)"
1.1090 +          using S_mono
1.1091 +          by (subst Pi'_UN[symmetric, OF `finite I`]) (auto simp: incseq_def)
1.1092 +        also have "\<dots> \<in> sets ?P"
1.1093 +        proof (safe intro!: countable_UN)
1.1094 +          fix n show "(\<Pi>' j\<in>I. if i = j then A else S j n) \<in> sets ?P"
1.1095 +            using A S_in_E
1.1096 +            by (simp add: P_closed)
1.1097 +               (auto simp: P_def subset_eq intro!: exI[of _ "\<lambda>j. if i = j then A else S j n"])
1.1098 +        qed
1.1099 +        finally show "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space ?P \<in> sets ?P"
1.1100 +          using P_closed by simp
1.1101 +      qed
1.1102 +    qed
1.1103 +    from measurable_sets[OF this, of A] A `i \<in> I` E_closed
1.1104 +    have "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space ?P \<in> sets ?P"
1.1105 +      by (simp add: E_generates)
1.1106 +    also have "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space ?P = {f \<in> \<Pi>' i\<in>I. space (M i). f i \<in> A}"
1.1107 +      using P_closed by (auto simp: space_PiF)
1.1108 +    finally show "\<dots> \<in> sets ?P" .
1.1109 +  qed
1.1110 +  finally show "sets (PiF {I} M) \<subseteq> sigma_sets (space (PiF {I} M)) P"
1.1111 +    by (simp add: P_closed)
1.1112 +  show "sigma_sets (space (PiF {I} M)) P \<subseteq> sets (PiF {I} M)"
1.1113 +    using `finite I` `I \<noteq> {}`
1.1114 +    by (auto intro!: sigma_sets_subset product_in_sets_PiFI simp: E_generates P_def)
1.1115 +qed
1.1116 +
1.1117 +lemma enumerable_sigma_fprod_algebra_sigma_eq:
1.1118 +  assumes "I \<noteq> {}"
1.1119 +  assumes [simp]: "finite I"
1.1120 +  shows "sets (PiF {I} (\<lambda>_. borel)) = sigma_sets (space (PiF {I} (\<lambda>_. borel)))
1.1121 +    {Pi' I F |F. (\<forall>i\<in>I. F i \<in> range enum_basis)}"
1.1122 +proof -
1.1123 +  from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
1.1124 +  show ?thesis
1.1125 +  proof (rule sigma_fprod_algebra_sigma_eq)
1.1126 +    show "finite I" by simp
1.1127 +    show "I \<noteq> {}" by fact
1.1128 +    show "incseq S" "(\<Union>j. S j) = space borel" "range S \<subseteq> range enum_basis"
1.1129 +      using S by simp_all
1.1130 +    show "range enum_basis \<subseteq> Pow (space borel)" by simp
1.1131 +    show "sets borel = sigma_sets (space borel) (range enum_basis)"
1.1132 +      by (simp add: borel_eq_enum_basis)
1.1133 +  qed
1.1134 +qed
1.1135 +
1.1136 +text {* adapted from @{thm enumerable_sigma_fprod_algebra_sigma_eq} *}
1.1137 +
1.1138 +lemma enumerable_sigma_prod_algebra_sigma_eq:
1.1139 +  assumes "I \<noteq> {}"
1.1140 +  assumes [simp]: "finite I"
1.1141 +  shows "sets (PiM I (\<lambda>_. borel)) = sigma_sets (space (PiM I (\<lambda>_. borel)))
1.1142 +    {Pi\<^isub>E I F |F. \<forall>i\<in>I. F i \<in> range enum_basis}"
1.1143 +proof -
1.1144 +  from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
1.1145 +  show ?thesis
1.1146 +  proof (rule sigma_prod_algebra_sigma_eq)
1.1147 +    show "finite I" by simp note[[show_types]]
1.1148 +    fix i show "(\<Union>j. S j) = space borel" "range S \<subseteq> range enum_basis"
1.1149 +      using S by simp_all
1.1150 +    show "range enum_basis \<subseteq> Pow (space borel)" by simp
1.1151 +    show "sets borel = sigma_sets (space borel) (range enum_basis)"
1.1152 +      by (simp add: borel_eq_enum_basis)
1.1153 +  qed
1.1154 +qed
1.1155 +
1.1156 +lemma product_open_generates_sets_PiF_single:
1.1157 +  assumes "I \<noteq> {}"
1.1158 +  assumes [simp]: "finite I"
1.1159 +  shows "sets (PiF {I} (\<lambda>_. borel::'b::enumerable_basis measure)) =
1.1160 +    sigma_sets (space (PiF {I} (\<lambda>_. borel))) {Pi' I F |F. (\<forall>i\<in>I. F i \<in> Collect open)}"
1.1161 +proof -
1.1162 +  from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
1.1163 +  show ?thesis
1.1164 +  proof (rule sigma_fprod_algebra_sigma_eq)
1.1165 +    show "finite I" by simp
1.1166 +    show "I \<noteq> {}" by fact
1.1167 +    show "incseq S" "(\<Union>j. S j) = space borel" "range S \<subseteq> Collect open"
1.1168 +      using S by (auto simp: open_enum_basis)
1.1169 +    show "Collect open \<subseteq> Pow (space borel)" by simp
1.1170 +    show "sets borel = sigma_sets (space borel) (Collect open)"
1.1171 +      by (simp add: borel_def)
1.1172 +  qed
1.1173 +qed
1.1174 +
1.1175 +lemma product_open_generates_sets_PiM:
1.1176 +  assumes "I \<noteq> {}"
1.1177 +  assumes [simp]: "finite I"
1.1178 +  shows "sets (PiM I (\<lambda>_. borel::'b::enumerable_basis measure)) =
1.1179 +    sigma_sets (space (PiM I (\<lambda>_. borel))) {Pi\<^isub>E I F |F. \<forall>i\<in>I. F i \<in> Collect open}"
1.1180 +proof -
1.1181 +  from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
1.1182 +  show ?thesis
1.1183 +  proof (rule sigma_prod_algebra_sigma_eq)
1.1184 +    show "finite I" by simp note[[show_types]]
1.1185 +    fix i show "(\<Union>j. S j) = space borel" "range S \<subseteq> Collect open"
1.1186 +      using S by (auto simp: open_enum_basis)
1.1187 +    show "Collect open \<subseteq> Pow (space borel)" by simp
1.1188 +    show "sets borel = sigma_sets (space borel) (Collect open)"
1.1189 +      by (simp add: borel_def)
1.1190 +  qed
1.1191 +qed
1.1192 +
1.1193 +lemma finmap_UNIV[simp]: "(\<Union>J\<in>Collect finite. J \<leadsto> UNIV) = UNIV" by auto
1.1194 +
1.1195 +lemma borel_eq_PiF_borel:
1.1196 +  shows "(borel :: ('i::countable \<Rightarrow>\<^isub>F 'a::polish_space) measure) =
1.1197 +  PiF (Collect finite) (\<lambda>_. borel :: 'a measure)"
1.1198 +proof (rule measure_eqI)
1.1199 +  have C: "Collect finite \<noteq> {}" by auto
1.1200 +  show "sets (borel::('i \<Rightarrow>\<^isub>F 'a) measure) = sets (PiF (Collect finite) (\<lambda>_. borel))"
1.1201 +  proof
1.1202 +    show "sets (borel::('i \<Rightarrow>\<^isub>F 'a) measure) \<subseteq> sets (PiF (Collect finite) (\<lambda>_. borel))"
1.1203 +      apply (simp add: borel_def sets_PiF)
1.1204 +    proof (rule sigma_sets_mono, safe, cases)
1.1205 +      fix X::"('i \<Rightarrow>\<^isub>F 'a) set" assume "open X" "X \<noteq> {}"
1.1206 +      from open_basisE[OF this] guess NA NB . note N = this
1.1207 +      hence "X = (\<Union>i. Pi' (NA i) (NB i))" by simp
1.1208 +      also have "\<dots> \<in>
1.1209 +        sigma_sets UNIV {Pi' J S |S J. finite J \<and> S \<in> J \<rightarrow> sigma_sets UNIV (Collect open)}"
1.1210 +        using N by (intro Union sigma_sets.Basic) blast
1.1211 +      finally show "X \<in> sigma_sets UNIV
1.1212 +        {Pi' J X |X J. finite J \<and> X \<in> J \<rightarrow> sigma_sets UNIV (Collect open)}" .
1.1213 +    qed (auto simp: Empty)
1.1214 +  next
1.1215 +    show "sets (PiF (Collect finite) (\<lambda>_. borel)) \<subseteq> sets (borel::('i \<Rightarrow>\<^isub>F 'a) measure)"
1.1216 +    proof
1.1217 +      fix x assume x: "x \<in> sets (PiF (Collect finite::'i set set) (\<lambda>_. borel::'a measure))"
1.1218 +      hence x_sp: "x \<subseteq> space (PiF (Collect finite) (\<lambda>_. borel))" by (rule sets_into_space)
1.1219 +      let ?x = "\<lambda>J. x \<inter> {x. domain x = J}"
1.1220 +      have "x = \<Union>{?x J |J. finite J}" by auto
1.1221 +      also have "\<dots> \<in> sets borel"
1.1222 +      proof (rule countable_finite_comprehension, assumption)
1.1223 +        fix J::"'i set" assume "finite J"
1.1224 +        { assume ef: "J = {}"
1.1225 +          { assume e: "?x J = {}"
1.1226 +            hence "?x J \<in> sets borel" by simp
1.1227 +          } moreover {
1.1228 +            assume "?x J \<noteq> {}"
1.1229 +            then obtain f where "f \<in> x" "domain f = {}" using ef by auto
1.1230 +            hence "?x J = {f}" using `J = {}`
1.1231 +              by (auto simp: finmap_eq_iff)
1.1232 +            also have "{f} \<in> sets borel" by simp
1.1233 +            finally have "?x J \<in> sets borel" .
1.1234 +          } ultimately have "?x J \<in> sets borel" by blast
1.1235 +        } moreover {
1.1236 +          assume "J \<noteq> ({}::'i set)"
1.1237 +          from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'a set" . note S = this
1.1238 +          have "(?x J) = x \<inter> {m. domain m \<in> {J}}" by auto
1.1239 +          also have "\<dots> \<in> sets (PiF {J} (\<lambda>_. borel))"
1.1240 +            using x by (rule restrict_sets_measurable) (auto simp: `finite J`)
1.1241 +          also have "\<dots> = sigma_sets (space (PiF {J} (\<lambda>_. borel)))
1.1242 +            {Pi' (J) F |F. (\<forall>j\<in>J. F j \<in> range enum_basis)}"
1.1243 +            (is "_ = sigma_sets _ ?P")
1.1244 +            by (rule enumerable_sigma_fprod_algebra_sigma_eq[OF `J \<noteq> {}` `finite J`])
1.1245 +          also have "\<dots> \<subseteq> sets borel"
1.1246 +          proof
1.1247 +            fix x
1.1248 +            assume "x \<in> sigma_sets (space (PiF {J} (\<lambda>_. borel))) ?P"
1.1249 +            thus "x \<in> sets borel"
1.1250 +            proof (rule sigma_sets.induct, safe)
1.1251 +              fix F::"'i \<Rightarrow> 'a set"
1.1252 +              assume "\<forall>j\<in>J. F j \<in> range enum_basis"
1.1253 +              hence "Pi' J F \<in> range enum_basis_finmap"
1.1254 +                unfolding range_enum_basis_eq
1.1255 +                by (auto simp: `finite J` intro!: exI[where x=J] exI[where x=F])
1.1256 +              hence "open (Pi' (J) F)" by (rule range_enum_basis_finmap_imp_open)
1.1257 +              thus "Pi' (J) F \<in> sets borel" by simp
1.1258 +            next
1.1259 +              fix a::"('i \<Rightarrow>\<^isub>F 'a) set"
1.1260 +              have "space (PiF {J::'i set} (\<lambda>_. borel::'a measure)) =
1.1261 +                Pi' (J) (\<lambda>_. UNIV)"
1.1262 +                by (auto simp: space_PiF product_def)
1.1263 +              moreover have "open (Pi' (J::'i set) (\<lambda>_. UNIV::'a set))"
1.1264 +                by (intro open_Pi'I) auto
1.1265 +              ultimately
1.1266 +              have "space (PiF {J::'i set} (\<lambda>_. borel::'a measure)) \<in> sets borel"
1.1267 +                by simp
1.1268 +              moreover
1.1269 +              assume "a \<in> sets borel"
1.1270 +              ultimately show "space (PiF {J} (\<lambda>_. borel)) - a \<in> sets borel" ..
1.1271 +            qed auto
1.1272 +          qed
1.1273 +          finally have "(?x J) \<in> sets borel" .
1.1274 +        } ultimately show "(?x J) \<in> sets borel" by blast
1.1275 +      qed
1.1276 +      finally show "x \<in> sets (borel)" .
1.1277 +    qed
1.1278 +  qed
1.1279 +qed (simp add: emeasure_sigma borel_def PiF_def)
1.1280 +
1.1281 +subsection {* Isomorphism between Functions and Finite Maps *}
1.1282 +
1.1283 +lemma
1.1284 +  measurable_compose:
1.1285 +  fixes f::"'a \<Rightarrow> 'b"
1.1286 +  assumes inj: "\<And>j. j \<in> J \<Longrightarrow> f' (f j) = j"
1.1287 +  assumes "finite J"
1.1288 +  shows "(\<lambda>m. compose J m f) \<in> measurable (PiM (f ` J) (\<lambda>_. M)) (PiM J (\<lambda>_. M))"
1.1289 +proof (rule measurable_PiM)
1.1290 +  show "(\<lambda>m. compose J m f)
1.1291 +    \<in> space (Pi\<^isub>M (f ` J) (\<lambda>_. M)) \<rightarrow>
1.1292 +      (J \<rightarrow> space M) \<inter> extensional J"
1.1293 +  proof safe
1.1294 +    fix x and i
1.1295 +    assume x: "x \<in> space (PiM (f ` J) (\<lambda>_. M))" "i \<in> J"
1.1296 +    with inj show  "compose J x f i \<in> space M"
1.1297 +      by (auto simp: space_PiM compose_def)
1.1298 +  next
1.1299 +    fix x assume "x \<in> space (PiM (f ` J) (\<lambda>_. M))"
1.1300 +    show "(compose J x f) \<in> extensional J" by (rule compose_extensional)
1.1301 +  qed
1.1302 +next
1.1303 +  fix S X
1.1304 +  have inv: "\<And>j. j \<in> f ` J \<Longrightarrow> f (f' j) = j" using assms by auto
1.1305 +  assume S: "S \<noteq> {} \<or> J = {}" "finite S" "S \<subseteq> J" and P: "\<And>i. i \<in> S \<Longrightarrow> X i \<in> sets M"
1.1306 +  have "(\<lambda>m. compose J m f) -` prod_emb J (\<lambda>_. M) S (Pi\<^isub>E S X) \<inter>
1.1307 +    space (Pi\<^isub>M (f ` J) (\<lambda>_. M)) = prod_emb (f ` J) (\<lambda>_. M) (f ` S) (Pi\<^isub>E (f ` S) (\<lambda>b. X (f' b)))"
1.1308 +    using assms inv S sets_into_space[OF P]
1.1309 +    by (force simp: prod_emb_iff compose_def space_PiM extensional_def Pi_def intro: imageI)
1.1310 +  also have "\<dots> \<in> sets (Pi\<^isub>M (f ` J) (\<lambda>_. M))"
1.1311 +  proof
1.1312 +    from S show "f ` S \<subseteq> f `  J" by auto
1.1313 +    show "(\<Pi>\<^isub>E b\<in>f ` S. X (f' b)) \<in> sets (Pi\<^isub>M (f ` S) (\<lambda>_. M))"
1.1314 +    proof (rule sets_PiM_I_finite)
1.1315 +      show "finite (f ` S)" using S by simp
1.1316 +      fix i assume "i \<in> f ` S" hence "f' i \<in> S" using S assms by auto
1.1317 +      thus "X (f' i) \<in> sets M" by (rule P)
1.1318 +    qed
1.1319 +  qed
1.1320 +  finally show "(\<lambda>m. compose J m f) -` prod_emb J (\<lambda>_. M) S (Pi\<^isub>E S X) \<inter>
1.1321 +    space (Pi\<^isub>M (f ` J) (\<lambda>_. M)) \<in> sets (Pi\<^isub>M (f ` J) (\<lambda>_. M))" .
1.1322 +qed
1.1323 +
1.1324 +lemma
1.1325 +  measurable_compose_inv:
1.1326 +  fixes f::"'a \<Rightarrow> 'b"
1.1327 +  assumes inj: "\<And>j. j \<in> J \<Longrightarrow> f' (f j) = j"
1.1328 +  assumes "finite J"
1.1329 +  shows "(\<lambda>m. compose (f ` J) m f') \<in> measurable (PiM J (\<lambda>_. M)) (PiM (f ` J) (\<lambda>_. M))"
1.1330 +proof -
1.1331 +  have "(\<lambda>m. compose (f ` J) m f') \<in> measurable (Pi\<^isub>M (f' ` f ` J) (\<lambda>_. M)) (Pi\<^isub>M (f ` J) (\<lambda>_. M))"
1.1332 +    using assms by (auto intro: measurable_compose)
1.1333 +  moreover
1.1334 +  from inj have "f' ` f ` J = J" by (metis (hide_lams, mono_tags) image_iff set_eqI)
1.1335 +  ultimately show ?thesis by simp
1.1336 +qed
1.1337 +
1.1338 +locale function_to_finmap =
1.1339 +  fixes J::"'a set" and f :: "'a \<Rightarrow> 'b::countable" and f'
1.1340 +  assumes [simp]: "finite J"
1.1341 +  assumes inv: "i \<in> J \<Longrightarrow> f' (f i) = i"
1.1342 +begin
1.1343 +
1.1344 +text {* to measure finmaps *}
1.1345 +
1.1346 +definition "fm = (finmap_of (f ` J)) o (\<lambda>g. compose (f ` J) g f')"
1.1347 +
1.1348 +lemma domain_fm[simp]: "domain (fm x) = f ` J"
1.1349 +  unfolding fm_def by simp
1.1350 +
1.1351 +lemma fm_restrict[simp]: "fm (restrict y J) = fm y"
1.1352 +  unfolding fm_def by (auto simp: compose_def inv intro: restrict_ext)
1.1353 +
1.1354 +lemma fm_product:
1.1355 +  assumes "\<And>i. space (M i) = UNIV"
1.1356 +  shows "fm -` Pi' (f ` J) S \<inter> space (Pi\<^isub>M J M) = (\<Pi>\<^isub>E j \<in> J. S (f j))"
1.1357 +  using assms
1.1358 +  by (auto simp: inv fm_def compose_def space_PiM Pi'_def)
1.1359 +
1.1360 +lemma fm_measurable:
1.1361 +  assumes "f ` J \<in> N"
1.1362 +  shows "fm \<in> measurable (Pi\<^isub>M J (\<lambda>_. M)) (Pi\<^isub>F N (\<lambda>_. M))"
1.1363 +  unfolding fm_def
1.1364 +proof (rule measurable_comp, rule measurable_compose_inv)
1.1365 +  show "finmap_of (f ` J) \<in> measurable (Pi\<^isub>M (f ` J) (\<lambda>_. M)) (PiF N (\<lambda>_. M)) "
1.1366 +    using assms by (intro measurable_finmap_of measurable_component_singleton) auto
1.1368 +
1.1369 +lemma proj_fm:
1.1370 +  assumes "x \<in> J"
1.1371 +  shows "fm m (f x) = m x"
1.1372 +  using assms by (auto simp: fm_def compose_def o_def inv)
1.1373 +
1.1374 +lemma inj_on_compose_f': "inj_on (\<lambda>g. compose (f ` J) g f') (extensional J)"
1.1375 +proof (rule inj_on_inverseI)
1.1376 +  fix x::"'a \<Rightarrow> 'c" assume "x \<in> extensional J"
1.1377 +  thus "(\<lambda>x. compose J x f) (compose (f ` J) x f') = x"
1.1378 +    by (auto simp: compose_def inv extensional_def)
1.1379 +qed
1.1380 +
1.1381 +lemma inj_on_fm:
1.1382 +  assumes "\<And>i. space (M i) = UNIV"
1.1383 +  shows "inj_on fm (space (Pi\<^isub>M J M))"
1.1384 +  using assms
1.1385 +  apply (auto simp: fm_def space_PiM)
1.1386 +  apply (rule comp_inj_on)
1.1387 +  apply (rule inj_on_compose_f')
1.1388 +  apply (rule finmap_of_inj_on_extensional_finite)
1.1389 +  apply simp
1.1390 +  apply (auto)
1.1391 +  done
1.1392 +
1.1393 +text {* to measure functions *}
1.1394 +
1.1395 +definition "mf = (\<lambda>g. compose J g f) o proj"
1.1396 +
1.1397 +lemma
1.1398 +  assumes "x \<in> space (Pi\<^isub>M J (\<lambda>_. M))" "finite J"
1.1399 +  shows "proj (finmap_of J x) = x"
1.1400 +  using assms by (auto simp: space_PiM extensional_def)
1.1401 +
1.1402 +lemma
1.1403 +  assumes "x \<in> space (Pi\<^isub>F {J} (\<lambda>_. M))"
1.1404 +  shows "finmap_of J (proj x) = x"
1.1405 +  using assms by (auto simp: space_PiF Pi'_def finmap_eq_iff)
1.1406 +
1.1407 +lemma mf_fm:
1.1408 +  assumes "x \<in> space (Pi\<^isub>M J (\<lambda>_. M))"
1.1409 +  shows "mf (fm x) = x"
1.1410 +proof -
1.1411 +  have "mf (fm x) \<in> extensional J"
1.1412 +    by (auto simp: mf_def extensional_def compose_def)
1.1413 +  moreover
1.1414 +  have "x \<in> extensional J" using assms sets_into_space
1.1415 +    by (force simp: space_PiM)
1.1416 +  moreover
1.1417 +  { fix i assume "i \<in> J"
1.1418 +    hence "mf (fm x) i = x i"
1.1419 +      by (auto simp: inv mf_def compose_def fm_def)
1.1420 +  }
1.1421 +  ultimately
1.1422 +  show ?thesis by (rule extensionalityI)
1.1423 +qed
1.1424 +
1.1425 +lemma mf_measurable:
1.1426 +  assumes "space M = UNIV"
1.1427 +  shows "mf \<in> measurable (PiF {f ` J} (\<lambda>_. M)) (PiM J (\<lambda>_. M))"
1.1428 +  unfolding mf_def
1.1429 +proof (rule measurable_comp, rule measurable_proj_PiM)
1.1430 +  show "(\<lambda>g. compose J g f) \<in>
1.1431 +    measurable (Pi\<^isub>M (f ` J) (\<lambda>x. M)) (Pi\<^isub>M J (\<lambda>_. M))"
1.1432 +    by (rule measurable_compose, rule inv) auto
1.1433 +qed (auto simp add: space_PiM extensional_def assms)
1.1434 +
1.1435 +lemma fm_image_measurable:
1.1436 +  assumes "space M = UNIV"
1.1437 +  assumes "X \<in> sets (Pi\<^isub>M J (\<lambda>_. M))"
1.1438 +  shows "fm ` X \<in> sets (PiF {f ` J} (\<lambda>_. M))"
1.1439 +proof -
1.1440 +  have "fm ` X = (mf) -` X \<inter> space (PiF {f ` J} (\<lambda>_. M))"
1.1441 +  proof safe
1.1442 +    fix x assume "x \<in> X"
1.1443 +    with mf_fm[of x] sets_into_space[OF assms(2)] show "fm x \<in> mf -` X" by auto
1.1444 +    show "fm x \<in> space (PiF {f ` J} (\<lambda>_. M))" by (simp add: space_PiF assms)
1.1445 +  next
1.1446 +    fix y x
1.1447 +    assume x: "mf y \<in> X"
1.1448 +    assume y: "y \<in> space (PiF {f ` J} (\<lambda>_. M))"
1.1449 +    thus "y \<in> fm ` X"
1.1450 +      by (intro image_eqI[OF _ x], unfold finmap_eq_iff)
1.1451 +         (auto simp: space_PiF fm_def mf_def compose_def inv Pi'_def)
1.1452 +  qed
1.1453 +  also have "\<dots> \<in> sets (PiF {f ` J} (\<lambda>_. M))"
1.1454 +    using assms
1.1455 +    by (intro measurable_sets[OF mf_measurable]) auto
1.1456 +  finally show ?thesis .
1.1457 +qed
1.1458 +
1.1459 +lemma fm_image_measurable_finite:
1.1460 +  assumes "space M = UNIV"
1.1461 +  assumes "X \<in> sets (Pi\<^isub>M J (\<lambda>_. M::'c measure))"
1.1462 +  shows "fm ` X \<in> sets (PiF (Collect finite) (\<lambda>_. M::'c measure))"
1.1463 +  using fm_image_measurable[OF assms]
1.1464 +  by (rule subspace_set_in_sets) (auto simp: finite_subset)
1.1465 +
1.1466 +text {* measure on finmaps *}
1.1467 +
1.1468 +definition "mapmeasure M N = distr M (PiF (Collect finite) N) (fm)"
1.1469 +
1.1470 +lemma sets_mapmeasure[simp]: "sets (mapmeasure M N) = sets (PiF (Collect finite) N)"
1.1471 +  unfolding mapmeasure_def by simp
1.1472 +
1.1473 +lemma space_mapmeasure[simp]: "space (mapmeasure M N) = space (PiF (Collect finite) N)"
1.1474 +  unfolding mapmeasure_def by simp
1.1475 +
1.1476 +lemma mapmeasure_PiF:
1.1477 +  assumes s1: "space M = space (Pi\<^isub>M J (\<lambda>_. N))"
1.1478 +  assumes s2: "sets M = (Pi\<^isub>M J (\<lambda>_. N))"
1.1479 +  assumes "space N = UNIV"
1.1480 +  assumes "X \<in> sets (PiF (Collect finite) (\<lambda>_. N))"
1.1481 +  shows "emeasure (mapmeasure M (\<lambda>_. N)) X = emeasure M ((fm -` X \<inter> extensional J))"
1.1482 +  using assms
1.1483 +  by (auto simp: measurable_eqI[OF s1 refl s2 refl] mapmeasure_def emeasure_distr
1.1484 +    fm_measurable space_PiM)
1.1485 +
1.1486 +lemma mapmeasure_PiM:
1.1487 +  fixes N::"'c measure"
1.1488 +  assumes s1: "space M = space (Pi\<^isub>M J (\<lambda>_. N))"
1.1489 +  assumes s2: "sets M = (Pi\<^isub>M J (\<lambda>_. N))"
1.1490 +  assumes N: "space N = UNIV"
1.1491 +  assumes X: "X \<in> sets M"
1.1492 +  shows "emeasure M X = emeasure (mapmeasure M (\<lambda>_. N)) (fm ` X)"
1.1493 +  unfolding mapmeasure_def
1.1494 +proof (subst emeasure_distr, subst measurable_eqI[OF s1 refl s2 refl], rule fm_measurable)
1.1495 +  have "X \<subseteq> space (Pi\<^isub>M J (\<lambda>_. N))" using assms by (simp add: sets_into_space)
1.1496 +  from assms inj_on_fm[of "\<lambda>_. N"] set_mp[OF this] have "fm -` fm ` X \<inter> space (Pi\<^isub>M J (\<lambda>_. N)) = X"
1.1497 +    by (auto simp: vimage_image_eq inj_on_def)
1.1498 +  thus "emeasure M X = emeasure M (fm -` fm ` X \<inter> space M)" using s1
1.1499 +    by simp
1.1500 +  show "fm ` X \<in> sets (PiF (Collect finite) (\<lambda>_. N))"
1.1501 +    by (rule fm_image_measurable_finite[OF N X[simplified s2]])
1.1502 +qed simp
1.1503 +
1.1504 +end
1.1505 +
1.1506 +end
```