src/HOL/UNITY/Comp.thy
changeset 6295 351b3c2b0d83
parent 6138 b7e6e607bb4d
child 6646 3ea726909fff
     1.1 --- a/src/HOL/UNITY/Comp.thy	Mon Mar 01 18:37:52 1999 +0100
     1.2 +++ b/src/HOL/UNITY/Comp.thy	Mon Mar 01 18:38:43 1999 +0100
     1.3 @@ -6,11 +6,6 @@
     1.4  Composition
     1.5  
     1.6  From Chandy and Sanders, "Reasoning About Program Composition"
     1.7 -
     1.8 -QUESTIONS:
     1.9 -  refines_def: needs the States F = States G?
    1.10 -
    1.11 -  uv_prop, component: should be States F = States (F Join G)
    1.12  *)
    1.13  
    1.14  Comp = Union +
    1.15 @@ -21,29 +16,23 @@
    1.16      case, proving equivalence with Chandy and Sanders's n-ary definitions*)
    1.17  
    1.18    ex_prop  :: 'a program set => bool
    1.19 -   "ex_prop X ==
    1.20 -      ALL F G. (F:X | G: X) & States F = States G --> (F Join G) : X"
    1.21 +   "ex_prop X == ALL F G. F:X | G: X --> (F Join G) : X"
    1.22  
    1.23    strict_ex_prop  :: 'a program set => bool
    1.24 -   "strict_ex_prop X ==
    1.25 -      ALL F G. States F = States G --> (F:X | G: X) = (F Join G : X)"
    1.26 +   "strict_ex_prop X == ALL F G. (F:X | G: X) = (F Join G : X)"
    1.27  
    1.28    uv_prop  :: 'a program set => bool
    1.29 -   "uv_prop X ==
    1.30 -      SKIP UNIV : X &
    1.31 -      (ALL F G. F:X & G: X & States F = States G --> (F Join G) : X)"
    1.32 +   "uv_prop X == SKIP : X & (ALL F G. F:X & G: X --> (F Join G) : X)"
    1.33  
    1.34    strict_uv_prop  :: 'a program set => bool
    1.35 -   "strict_uv_prop X ==
    1.36 -      SKIP UNIV : X &
    1.37 -      (ALL F G. States F = States G --> (F:X & G: X) = (F Join G : X))"
    1.38 +   "strict_uv_prop X == SKIP : X & (ALL F G. (F:X & G: X) = (F Join G : X))"
    1.39  
    1.40    (*Ill-defined programs can arise through "Join"*)
    1.41    welldef :: 'a program set  
    1.42     "welldef == {F. Init F ~= {}}"
    1.43  
    1.44    component :: ['a program, 'a program] => bool
    1.45 -   "component F H == EX G. F Join G = H & States F = States G"
    1.46 +   "component F H == EX G. F Join G = H"
    1.47  
    1.48    guarantees :: ['a program set, 'a program set] => 'a program set (infixl 65)
    1.49     "X guarantees Y == {F. ALL H. component F H --> H:X --> H:Y}"
    1.50 @@ -51,9 +40,7 @@
    1.51    refines :: ['a program, 'a program, 'a program set] => bool
    1.52  			("(3_ refines _ wrt _)" [10,10,10] 10)
    1.53     "G refines F wrt X ==
    1.54 -      States F = States G &
    1.55 -      (ALL H. States F = States H & (F Join H) : welldef Int X
    1.56 -        --> G Join H : welldef Int X)"
    1.57 +      ALL H. (F Join H) : welldef Int X --> G Join H : welldef Int X"
    1.58  
    1.59    iso_refines :: ['a program, 'a program, 'a program set] => bool
    1.60  			("(3_ iso'_refines _ wrt _)" [10,10,10] 10)