src/HOL/Library/Permutation.thy
changeset 39078 39f8f6d1eb74
parent 39075 a18e5946d63c
child 39916 8c83139a1433
     1.1 --- a/src/HOL/Library/Permutation.thy	Thu Sep 02 13:32:17 2010 +0200
     1.2 +++ b/src/HOL/Library/Permutation.thy	Thu Sep 02 14:34:08 2010 +0200
     1.3 @@ -193,7 +193,7 @@
     1.4    show ?case
     1.5    proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI)
     1.6      show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
     1.7 -      by (rule bij_betw_swap) (auto simp: bij_betw_def)
     1.8 +      by (auto simp: bij_betw_def bij_betw_swap_iff)
     1.9      fix i assume "i < length(y#x#l)"
    1.10      show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i"
    1.11        by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc)
    1.12 @@ -207,7 +207,7 @@
    1.13    proof (intro exI[of _ ?f] allI conjI impI)
    1.14      have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
    1.15              "{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
    1.16 -      by (simp_all add: lessThan_eq_Suc_image)
    1.17 +      by (simp_all add: lessThan_Suc_eq_insert_0)
    1.18      show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}" unfolding *
    1.19      proof (rule bij_betw_combine)
    1.20        show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"