1.1 --- a/src/HOL/List.thy Tue Dec 31 22:18:31 2013 +0100
1.2 +++ b/src/HOL/List.thy Tue Dec 31 22:18:31 2013 +0100
1.3 @@ -2822,7 +2822,7 @@
1.4 "A \<inter> List.coset xs = fold Set.remove xs A"
1.5 by (simp add: Diff_eq [symmetric] minus_set_fold)
1.6
1.7 -lemma (in semilattice_set) set_eq_fold:
1.8 +lemma (in semilattice_set) set_eq_fold [code]:
1.9 "F (set (x # xs)) = fold f xs x"
1.10 proof -
1.11 interpret comp_fun_idem f
1.12 @@ -2830,11 +2830,6 @@
1.13 show ?thesis by (simp add: eq_fold fold_set_fold)
1.14 qed
1.15
1.16 -declare Inf_fin.set_eq_fold [code]
1.17 -declare Sup_fin.set_eq_fold [code]
1.18 -declare Min.set_eq_fold [code]
1.19 -declare Max.set_eq_fold [code]
1.20 -
1.21 lemma (in complete_lattice) Inf_set_fold:
1.22 "Inf (set xs) = fold inf xs top"
1.23 proof -