1.1 --- a/src/HOL/Orderings.thy Wed Dec 08 13:34:50 2010 +0100
1.2 +++ b/src/HOL/Orderings.thy Wed Dec 08 13:34:50 2010 +0100
1.3 @@ -1214,13 +1214,13 @@
1.4 less_bool_def: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q"
1.5
1.6 definition
1.7 - top_bool_eq: "top = True"
1.8 + top_bool_def: "top = True"
1.9
1.10 definition
1.11 - bot_bool_eq: "bot = False"
1.12 + bot_bool_def: "bot = False"
1.13
1.14 instance proof
1.15 -qed (auto simp add: bot_bool_eq top_bool_eq less_bool_def, auto simp add: le_bool_def)
1.16 +qed (auto simp add: bot_bool_def top_bool_def less_bool_def, auto simp add: le_bool_def)
1.17
1.18 end
1.19
1.20 @@ -1237,10 +1237,10 @@
1.21 by (simp add: le_bool_def)
1.22
1.23 lemma bot_boolE: "bot \<Longrightarrow> P"
1.24 - by (simp add: bot_bool_eq)
1.25 + by (simp add: bot_bool_def)
1.26
1.27 lemma top_boolI: top
1.28 - by (simp add: top_bool_eq)
1.29 + by (simp add: top_bool_def)
1.30
1.31 lemma [code]:
1.32 "False \<le> b \<longleftrightarrow> True"
1.33 @@ -1276,11 +1276,11 @@
1.34 begin
1.35
1.36 definition
1.37 - top_fun_eq [no_atp]: "top = (\<lambda>x. top)"
1.38 -declare top_fun_eq_raw [no_atp]
1.39 + top_fun_def [no_atp]: "top = (\<lambda>x. top)"
1.40 +declare top_fun_def_raw [no_atp]
1.41
1.42 instance proof
1.43 -qed (simp add: top_fun_eq le_fun_def)
1.44 +qed (simp add: top_fun_def le_fun_def)
1.45
1.46 end
1.47
1.48 @@ -1288,10 +1288,10 @@
1.49 begin
1.50
1.51 definition
1.52 - bot_fun_eq: "bot = (\<lambda>x. bot)"
1.53 + bot_fun_def: "bot = (\<lambda>x. bot)"
1.54
1.55 instance proof
1.56 -qed (simp add: bot_fun_eq le_fun_def)
1.57 +qed (simp add: bot_fun_def le_fun_def)
1.58
1.59 end
1.60