src/HOL/IMP/Denotation.thy
changeset 1476 608483c2122a
parent 1374 5e407f2a3323
child 1481 03f096efa26d
     1.1 --- a/src/HOL/IMP/Denotation.thy	Mon Feb 05 21:27:16 1996 +0100
     1.2 +++ b/src/HOL/IMP/Denotation.thy	Mon Feb 05 21:29:06 1996 +0100
     1.3 @@ -1,6 +1,6 @@
     1.4 -(*  Title: 	HOL/IMP/Denotation.thy
     1.5 +(*  Title:      HOL/IMP/Denotation.thy
     1.6      ID:         $Id$
     1.7 -    Author: 	Heiko Loetzbeyer & Robert Sandner, TUM
     1.8 +    Author:     Heiko Loetzbeyer & Robert Sandner, TUM
     1.9      Copyright   1994 TUM
    1.10  
    1.11  Denotational semantics of expressions & commands
    1.12 @@ -16,31 +16,31 @@
    1.13    Gamma :: [bexp,com_den] => (com_den => com_den)
    1.14  
    1.15  primrec A aexp
    1.16 -  A_nat	"A(N(n)) = (%s. n)"
    1.17 -  A_loc	"A(X(x)) = (%s. s(x))" 
    1.18 -  A_op1	"A(Op1 f a) = (%s. f(A a s))"
    1.19 -  A_op2	"A(Op2 f a0 a1) = (%s. f (A a0 s) (A a1 s))"
    1.20 +  A_nat "A(N(n)) = (%s. n)"
    1.21 +  A_loc "A(X(x)) = (%s. s(x))" 
    1.22 +  A_op1 "A(Op1 f a) = (%s. f(A a s))"
    1.23 +  A_op2 "A(Op2 f a0 a1) = (%s. f (A a0 s) (A a1 s))"
    1.24  
    1.25  primrec B bexp
    1.26    B_true  "B(true) = (%s. True)"
    1.27    B_false "B(false) = (%s. False)"
    1.28 -  B_op	  "B(ROp f a0 a1) = (%s. f (A a0 s) (A a1 s))" 
    1.29 -  B_not	  "B(noti(b)) = (%s. ~(B b s))"
    1.30 -  B_and	  "B(b0 andi b1) = (%s. (B b0 s) & (B b1 s))"
    1.31 -  B_or	  "B(b0 ori b1) = (%s. (B b0 s) | (B b1 s))"
    1.32 +  B_op    "B(ROp f a0 a1) = (%s. f (A a0 s) (A a1 s))" 
    1.33 +  B_not   "B(noti(b)) = (%s. ~(B b s))"
    1.34 +  B_and   "B(b0 andi b1) = (%s. (B b0 s) & (B b1 s))"
    1.35 +  B_or    "B(b0 ori b1) = (%s. (B b0 s) | (B b1 s))"
    1.36  
    1.37  defs
    1.38 -  Gamma_def	"Gamma b cd ==   
    1.39 -		   (%phi.{st. st : (phi O cd) & B b (fst st)} Un 
    1.40 -	                 {st. st : id & ~B b (fst st)})"
    1.41 +  Gamma_def     "Gamma b cd ==   
    1.42 +                   (%phi.{st. st : (phi O cd) & B b (fst st)} Un 
    1.43 +                         {st. st : id & ~B b (fst st)})"
    1.44  
    1.45  primrec C com
    1.46    C_skip    "C(skip) = id"
    1.47    C_assign  "C(x := a) = {st . snd(st) = fst(st)[A a (fst st)/x]}"
    1.48    C_comp    "C(c0 ; c1) = C(c1) O C(c0)"
    1.49 -  C_if	    "C(ifc b then c0 else c1) =   
    1.50 -		   {st. st:C(c0) & (B b (fst st))} Un 
    1.51 -	           {st. st:C(c1) & ~(B b (fst st))}"
    1.52 +  C_if      "C(ifc b then c0 else c1) =   
    1.53 +                   {st. st:C(c0) & (B b (fst st))} Un 
    1.54 +                   {st. st:C(c1) & ~(B b (fst st))}"
    1.55    C_while   "C(while b do c) = lfp (Gamma b (C c))"
    1.56  
    1.57  end