src/HOL/Probability/Projective_Family.thy
changeset 50042 6fe18351e9dd
parent 50041 afe886a04198
child 50087 635d73673b5e
--- a/src/HOL/Probability/Projective_Family.thy	Fri Nov 09 14:14:45 2012 +0100
+++ b/src/HOL/Probability/Projective_Family.thy	Fri Nov 09 14:31:26 2012 +0100
@@ -1,3 +1,10 @@
+(*  Title:      HOL/Probability/Projective_Family.thy
+    Author:     Fabian Immler, TU München
+    Author:     Johannes Hölzl, TU München
+*)
+
+header {*Projective Family*}
+
 theory Projective_Family
 imports Finite_Product_Measure Probability_Measure
 begin
@@ -99,6 +106,195 @@
   using assms
   by (subst PiP_finite) (auto simp: PiP_finite finite_subset projective)
 
+lemma prod_emb_injective:
+  assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
+  assumes "prod_emb L M J X = prod_emb L M J Y"
+  shows "X = Y"
+proof (rule injective_vimage_restrict)
+  show "X \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))" "Y \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
+    using sets[THEN sets_into_space] by (auto simp: space_PiM)
+  have "\<forall>i\<in>L. \<exists>x. x \<in> space (M i)"
+  proof
+    fix i assume "i \<in> L"
+    interpret prob_space "P {i}" using prob_space by simp
+    from not_empty show "\<exists>x. x \<in> space (M i)" by (auto simp add: proj_space space_PiM)
+  qed
+  from bchoice[OF this]
+  show "(\<Pi>\<^isub>E i\<in>L. space (M i)) \<noteq> {}" by auto
+  show "(\<lambda>x. restrict x J) -` X \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i)) = (\<lambda>x. restrict x J) -` Y \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i))"
+    using `prod_emb L M J X = prod_emb L M J Y` by (simp add: prod_emb_def)
+qed fact
+
+abbreviation
+  "emb L K X \<equiv> prod_emb L M K X"
+
+definition generator :: "('i \<Rightarrow> 'a) set set" where
+  "generator = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M))"
+
+lemma generatorI':
+  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> emb I J X \<in> generator"
+  unfolding generator_def by auto
+
+lemma algebra_generator:
+  assumes "I \<noteq> {}" shows "algebra (\<Pi>\<^isub>E i\<in>I. space (M i)) generator" (is "algebra ?\<Omega> ?G")
+  unfolding algebra_def algebra_axioms_def ring_of_sets_iff
+proof (intro conjI ballI)
+  let ?G = generator
+  show "?G \<subseteq> Pow ?\<Omega>"
+    by (auto simp: generator_def prod_emb_def)
+  from `I \<noteq> {}` obtain i where "i \<in> I" by auto
+  then show "{} \<in> ?G"
+    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="\<lambda>i. {}"]
+             simp: sigma_sets.Empty generator_def prod_emb_def)
+  from `i \<in> I` show "?\<Omega> \<in> ?G"
+    by (auto intro!: exI[of _ "{i}"] image_eqI[where x="Pi\<^isub>E {i} (\<lambda>i. space (M i))"]
+             simp: generator_def prod_emb_def)
+  fix A assume "A \<in> ?G"
+  then obtain JA XA where XA: "JA \<noteq> {}" "finite JA" "JA \<subseteq> I" "XA \<in> sets (Pi\<^isub>M JA M)" and A: "A = emb I JA XA"
+    by (auto simp: generator_def)
+  fix B assume "B \<in> ?G"
+  then obtain JB XB where XB: "JB \<noteq> {}" "finite JB" "JB \<subseteq> I" "XB \<in> sets (Pi\<^isub>M JB M)" and B: "B = emb I JB XB"
+    by (auto simp: generator_def)
+  let ?RA = "emb (JA \<union> JB) JA XA"
+  let ?RB = "emb (JA \<union> JB) JB XB"
+  have *: "A - B = emb I (JA \<union> JB) (?RA - ?RB)" "A \<union> B = emb I (JA \<union> JB) (?RA \<union> ?RB)"
+    using XA A XB B by auto
+  show "A - B \<in> ?G" "A \<union> B \<in> ?G"
+    unfolding * using XA XB by (safe intro!: generatorI') auto
+qed
+
+lemma sets_PiM_generator:
+  "sets (PiM I M) = sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
+proof cases
+  assume "I = {}" then show ?thesis
+    unfolding generator_def
+    by (auto simp: sets_PiM_empty sigma_sets_empty_eq cong: conj_cong)
+next
+  assume "I \<noteq> {}"
+  show ?thesis
+  proof
+    show "sets (Pi\<^isub>M I M) \<subseteq> sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
+      unfolding sets_PiM
+    proof (safe intro!: sigma_sets_subseteq)
+      fix A assume "A \<in> prod_algebra I M" with `I \<noteq> {}` show "A \<in> generator"
+        by (auto intro!: generatorI' sets_PiM_I_finite elim!: prod_algebraE)
+    qed
+  qed (auto simp: generator_def space_PiM[symmetric] intro!: sigma_sets_subset)
+qed
+
+lemma generatorI:
+  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> generator"
+  unfolding generator_def by auto
+
+definition
+  "\<mu>G A =
+    (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = emeasure (PiP J M P) X))"
+
+lemma \<mu>G_spec:
+  assumes J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
+  shows "\<mu>G A = emeasure (PiP J M P) X"
+  unfolding \<mu>G_def
+proof (intro the_equality allI impI ballI)
+  fix K Y assume K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "A = emb I K Y" "Y \<in> sets (Pi\<^isub>M K M)"
+  have "emeasure (PiP K M P) Y = emeasure (PiP (K \<union> J) M P) (emb (K \<union> J) K Y)"
+    using K J by simp
+  also have "emb (K \<union> J) K Y = emb (K \<union> J) J X"
+    using K J by (simp add: prod_emb_injective[of "K \<union> J" I])
+  also have "emeasure (PiP (K \<union> J) M P) (emb (K \<union> J) J X) = emeasure (PiP J M P) X"
+    using K J by simp
+  finally show "emeasure (PiP J M P) X = emeasure (PiP K M P) Y" ..
+qed (insert J, force)
+
+lemma \<mu>G_eq:
+  "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = emeasure (PiP J M P) X"
+  by (intro \<mu>G_spec) auto
+
+lemma generator_Ex:
+  assumes *: "A \<in> generator"
+  shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = emeasure (PiP J M P) X"
+proof -
+  from * obtain J X where J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
+    unfolding generator_def by auto
+  with \<mu>G_spec[OF this] show ?thesis by auto
+qed
+
+lemma generatorE:
+  assumes A: "A \<in> generator"
+  obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = emeasure (PiP J M P) X"
+proof -
+  from generator_Ex[OF A] obtain X J where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A"
+    "\<mu>G A = emeasure (PiP J M P) X" by auto
+  then show thesis by (intro that) auto
+qed
+
+lemma merge_sets:
+  "J \<inter> K = {} \<Longrightarrow> A \<in> sets (Pi\<^isub>M (J \<union> K) M) \<Longrightarrow> x \<in> space (Pi\<^isub>M J M) \<Longrightarrow> (\<lambda>y. merge J K (x,y)) -` A \<inter> space (Pi\<^isub>M K M) \<in> sets (Pi\<^isub>M K M)"
+  by simp
+
+lemma merge_emb:
+  assumes "K \<subseteq> I" "J \<subseteq> I" and y: "y \<in> space (Pi\<^isub>M J M)"
+  shows "((\<lambda>x. merge J (I - J) (y, x)) -` emb I K X \<inter> space (Pi\<^isub>M I M)) =
+    emb I (K - J) ((\<lambda>x. merge J (K - J) (y, x)) -` emb (J \<union> K) K X \<inter> space (Pi\<^isub>M (K - J) M))"
+proof -
+  have [simp]: "\<And>x J K L. merge J K (y, restrict x L) = merge J (K \<inter> L) (y, x)"
+    by (auto simp: restrict_def merge_def)
+  have [simp]: "\<And>x J K L. restrict (merge J K (y, x)) L = merge (J \<inter> L) (K \<inter> L) (y, x)"
+    by (auto simp: restrict_def merge_def)
+  have [simp]: "(I - J) \<inter> K = K - J" using `K \<subseteq> I` `J \<subseteq> I` by auto
+  have [simp]: "(K - J) \<inter> (K \<union> J) = K - J" by auto
+  have [simp]: "(K - J) \<inter> K = K - J" by auto
+  from y `K \<subseteq> I` `J \<subseteq> I` show ?thesis
+    by (simp split: split_merge add: prod_emb_def Pi_iff extensional_merge_sub set_eq_iff space_PiM)
+       auto
+qed
+
+lemma positive_\<mu>G:
+  assumes "I \<noteq> {}"
+  shows "positive generator \<mu>G"
+proof -
+  interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
+  show ?thesis
+  proof (intro positive_def[THEN iffD2] conjI ballI)
+    from generatorE[OF G.empty_sets] guess J X . note this[simp]
+    have "X = {}"
+      by (rule prod_emb_injective[of J I]) simp_all
+    then show "\<mu>G {} = 0" by simp
+  next
+    fix A assume "A \<in> generator"
+    from generatorE[OF this] guess J X . note this[simp]
+    show "0 \<le> \<mu>G A" by (simp add: emeasure_nonneg)
+  qed
+qed
+
+lemma additive_\<mu>G:
+  assumes "I \<noteq> {}"
+  shows "additive generator \<mu>G"
+proof -
+  interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
+  show ?thesis
+  proof (intro additive_def[THEN iffD2] ballI impI)
+    fix A assume "A \<in> generator" with generatorE guess J X . note J = this
+    fix B assume "B \<in> generator" with generatorE guess K Y . note K = this
+    assume "A \<inter> B = {}"
+    have JK: "J \<union> K \<noteq> {}" "J \<union> K \<subseteq> I" "finite (J \<union> K)"
+      using J K by auto
+    have JK_disj: "emb (J \<union> K) J X \<inter> emb (J \<union> K) K Y = {}"
+      apply (rule prod_emb_injective[of "J \<union> K" I])
+      apply (insert `A \<inter> B = {}` JK J K)
+      apply (simp_all add: Int prod_emb_Int)
+      done
+    have AB: "A = emb I (J \<union> K) (emb (J \<union> K) J X)" "B = emb I (J \<union> K) (emb (J \<union> K) K Y)"
+      using J K by simp_all
+    then have "\<mu>G (A \<union> B) = \<mu>G (emb I (J \<union> K) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y))"
+      by simp
+    also have "\<dots> = emeasure (PiP (J \<union> K) M P) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)"
+      using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq Un del: prod_emb_Un)
+    also have "\<dots> = \<mu>G A + \<mu>G B"
+      using J K JK_disj by (simp add: plus_emeasure[symmetric])
+    finally show "\<mu>G (A \<union> B) = \<mu>G A + \<mu>G B" .
+  qed
+qed
+
 end
 
 end