src/HOL/Sexp.thy
changeset 1475 7f5a4cd08209
parent 1395 7095d6b89734
child 1788 ca62fab4ce92
     1.1 --- a/src/HOL/Sexp.thy	Mon Feb 05 14:44:09 1996 +0100
     1.2 +++ b/src/HOL/Sexp.thy	Mon Feb 05 21:27:16 1996 +0100
     1.3 @@ -1,6 +1,6 @@
     1.4 -(*  Title: 	HOL/Sexp
     1.5 +(*  Title:      HOL/Sexp
     1.6      ID:         $Id$
     1.7 -    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
     1.8 +    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     1.9      Copyright   1992  University of Cambridge
    1.10  
    1.11  S-expressions, general binary trees for defining recursive data structures
    1.12 @@ -13,7 +13,7 @@
    1.13    sexp_case :: "['a=>'b, nat=>'b, ['a item, 'a item]=>'b, 
    1.14                  'a item] => 'b"
    1.15  
    1.16 -  sexp_rec  :: "['a item, 'a=>'b, nat=>'b, 	
    1.17 +  sexp_rec  :: "['a item, 'a=>'b, nat=>'b,      
    1.18                  ['a item, 'a item, 'b, 'b]=>'b] => 'b"
    1.19    
    1.20    pred_sexp :: "('a item * 'a item)set"
    1.21 @@ -26,7 +26,7 @@
    1.22  
    1.23  defs
    1.24  
    1.25 -  sexp_case_def	
    1.26 +  sexp_case_def 
    1.27     "sexp_case c d e M == @ z. (? x.   M=Leaf(x) & z=c(x))  
    1.28                              | (? k.   M=Numb(k) & z=d(k))  
    1.29                              | (? N1 N2. M = N1 $ N2  & z=e N1 N2)"
    1.30 @@ -35,6 +35,6 @@
    1.31       "pred_sexp == UN M: sexp. UN N: sexp. {(M, M$N), (N, M$N)}"
    1.32  
    1.33    sexp_rec_def
    1.34 -   "sexp_rec M c d e == wfrec pred_sexp M  
    1.35 -             (%M g. sexp_case c d (%N1 N2. e N1 N2 (g N1) (g N2)) M)"
    1.36 +   "sexp_rec M c d e == wfrec pred_sexp
    1.37 +             (%g. sexp_case c d (%N1 N2. e N1 N2 (g N1) (g N2))) M"
    1.38  end