src/HOL/Sexp.thy
 changeset 1475 7f5a4cd08209 parent 1395 7095d6b89734 child 1788 ca62fab4ce92
```     1.1 --- a/src/HOL/Sexp.thy	Mon Feb 05 14:44:09 1996 +0100
1.2 +++ b/src/HOL/Sexp.thy	Mon Feb 05 21:27:16 1996 +0100
1.3 @@ -1,6 +1,6 @@
1.4 -(*  Title: 	HOL/Sexp
1.5 +(*  Title:      HOL/Sexp
1.6      ID:         \$Id\$
1.7 -    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
1.8 +    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
1.9      Copyright   1992  University of Cambridge
1.10
1.11  S-expressions, general binary trees for defining recursive data structures
1.12 @@ -13,7 +13,7 @@
1.13    sexp_case :: "['a=>'b, nat=>'b, ['a item, 'a item]=>'b,
1.14                  'a item] => 'b"
1.15
1.16 -  sexp_rec  :: "['a item, 'a=>'b, nat=>'b,
1.17 +  sexp_rec  :: "['a item, 'a=>'b, nat=>'b,
1.18                  ['a item, 'a item, 'b, 'b]=>'b] => 'b"
1.19
1.20    pred_sexp :: "('a item * 'a item)set"
1.21 @@ -26,7 +26,7 @@
1.22
1.23  defs
1.24
1.25 -  sexp_case_def
1.26 +  sexp_case_def
1.27     "sexp_case c d e M == @ z. (? x.   M=Leaf(x) & z=c(x))
1.28                              | (? k.   M=Numb(k) & z=d(k))
1.29                              | (? N1 N2. M = N1 \$ N2  & z=e N1 N2)"
1.30 @@ -35,6 +35,6 @@
1.31       "pred_sexp == UN M: sexp. UN N: sexp. {(M, M\$N), (N, M\$N)}"
1.32
1.33    sexp_rec_def
1.34 -   "sexp_rec M c d e == wfrec pred_sexp M
1.35 -             (%M g. sexp_case c d (%N1 N2. e N1 N2 (g N1) (g N2)) M)"
1.36 +   "sexp_rec M c d e == wfrec pred_sexp
1.37 +             (%g. sexp_case c d (%N1 N2. e N1 N2 (g N1) (g N2))) M"
1.38  end
```