src/HOL/Library/Lattice_Algebras.thy
changeset 46986 8198cbff1771
parent 41528 276078f01ada
child 53240 07593a0a27f4
     1.1 --- a/src/HOL/Library/Lattice_Algebras.thy	Sat Mar 17 12:00:11 2012 +0100
     1.2 +++ b/src/HOL/Library/Lattice_Algebras.thy	Sat Mar 17 12:21:15 2012 +0100
     1.3 @@ -164,16 +164,16 @@
     1.4  lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
     1.5  
     1.6  lemma pprt_eq_id [simp, no_atp]: "0 \<le> x \<Longrightarrow> pprt x = x"
     1.7 -  by (simp add: pprt_def sup_aci sup_absorb1)
     1.8 +  by (simp add: pprt_def sup_absorb1)
     1.9  
    1.10  lemma nprt_eq_id [simp, no_atp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
    1.11 -  by (simp add: nprt_def inf_aci inf_absorb1)
    1.12 +  by (simp add: nprt_def inf_absorb1)
    1.13  
    1.14  lemma pprt_eq_0 [simp, no_atp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
    1.15 -  by (simp add: pprt_def sup_aci sup_absorb2)
    1.16 +  by (simp add: pprt_def sup_absorb2)
    1.17  
    1.18  lemma nprt_eq_0 [simp, no_atp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
    1.19 -  by (simp add: nprt_def inf_aci inf_absorb2)
    1.20 +  by (simp add: nprt_def inf_absorb2)
    1.21  
    1.22  lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
    1.23  proof -