src/HOL/HOL.thy
 changeset 11451 8abfb4f7bd02 parent 11438 3d9222b80989 child 11687 b0fe6e522559
```--- a/src/HOL/HOL.thy	Tue Jul 24 11:25:54 2001 +0200
+++ b/src/HOL/HOL.thy	Wed Jul 25 13:13:01 2001 +0200
@@ -7,8 +7,7 @@
*)

theory HOL = CPure
-  ("meson_lemmas.ML") ("Tools/meson.ML"):

(** Core syntax **)
@@ -37,7 +36,6 @@

(* Binders *)

-  Eps           :: "('a => bool) => 'a"
The           :: "('a => bool) => 'a"
All           :: "('a => bool) => bool"           (binder "ALL " 10)
Ex            :: "('a => bool) => bool"           (binder "EX " 10)
@@ -79,9 +77,9 @@
divide        :: "['a::inverse, 'a] => 'a"        (infixl "'/" 70)

syntax (xsymbols)
-  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
+  abs :: "'a::minus => 'a"    ("\\<bar>_\\<bar>")
syntax (HTML output)
-  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
+  abs :: "'a::minus => 'a"    ("\\<bar>_\\<bar>")

axclass plus_ac0 < plus, zero
commute: "x + y = y + x"
@@ -97,7 +95,6 @@

syntax
~=            :: "['a, 'a] => bool"                    (infixl 50)
-  "_Eps"        :: "[pttrn, bool] => 'a"                 ("(3SOME _./ _)" [0, 10] 10)
"_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)

(* Let expressions *)
@@ -116,7 +113,6 @@

translations
"x ~= y"                == "~ (x = y)"
-  "SOME x. P"             == "Eps (%x. P)"
"THE x. P"              == "The (%x. P)"
"_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
"let x = a in e"        == "Let a (%x. e)"
@@ -126,31 +122,27 @@
"op ~="       :: "['a, 'a] => bool"                    ("(_ ~=/ _)" [51, 51] 50)

syntax (symbols)
-  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
-  "op &"        :: "[bool, bool] => bool"                (infixr "\<and>" 35)
-  "op |"        :: "[bool, bool] => bool"                (infixr "\<or>" 30)
-  "op -->"      :: "[bool, bool] => bool"                (infixr "\<midarrow>\<rightarrow>" 25)
-  "op ~="       :: "['a, 'a] => bool"                    (infixl "\<noteq>" 50)
-  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
-  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
-  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
-  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
+  Not           :: "bool => bool"                        ("\\<not> _" [40] 40)
+  "op &"        :: "[bool, bool] => bool"                (infixr "\\<and>" 35)
+  "op |"        :: "[bool, bool] => bool"                (infixr "\\<or>" 30)
+  "op -->"      :: "[bool, bool] => bool"                (infixr "\\<midarrow>\\<rightarrow>" 25)
+  "op ~="       :: "['a, 'a] => bool"                    (infixl "\\<noteq>" 50)
+  "ALL "        :: "[idts, bool] => bool"                ("(3\\<forall>_./ _)" [0, 10] 10)
+  "EX "         :: "[idts, bool] => bool"                ("(3\\<exists>_./ _)" [0, 10] 10)
+  "EX! "        :: "[idts, bool] => bool"                ("(3\\<exists>!_./ _)" [0, 10] 10)
+  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \\<Rightarrow>/ _)" 10)
(*"_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ \\<orelse> _")*)

-syntax (input)
-  "_Eps"        :: "[pttrn, bool] => 'a"                 ("(3\<epsilon>_./ _)" [0, 10] 10)
-
syntax (symbols output)
-  "op ~="       :: "['a, 'a] => bool"                    ("(_ \<noteq>/ _)" [51, 51] 50)
+  "op ~="       :: "['a, 'a] => bool"                    ("(_ \\<noteq>/ _)" [51, 51] 50)

syntax (xsymbols)
-  "op -->"      :: "[bool, bool] => bool"                (infixr "\<longrightarrow>" 25)
+  "op -->"      :: "[bool, bool] => bool"                (infixr "\\<longrightarrow>" 25)

syntax (HTML output)
-  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
+  Not           :: "bool => bool"                        ("\\<not> _" [40] 40)

syntax (HOL)
-  "_Eps"        :: "[pttrn, bool] => 'a"                 ("(3@ _./ _)" [0, 10] 10)
"ALL "        :: "[idts, bool] => bool"                ("(3! _./ _)" [0, 10] 10)
"EX "         :: "[idts, bool] => bool"                ("(3? _./ _)" [0, 10] 10)
"EX! "        :: "[idts, bool] => bool"                ("(3?! _./ _)" [0, 10] 10)
@@ -173,7 +165,6 @@
rule, and similar to the ABS rule of HOL.*)
ext:          "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"

-  someI:        "P (x::'a) ==> P (SOME x. P x)"
the_eq_trivial: "(THE x. x = a) = (a::'a)"

impI:         "(P ==> Q) ==> P-->Q"
@@ -183,7 +174,7 @@

True_def:     "True      == ((%x::bool. x) = (%x. x))"
All_def:      "All(P)    == (P = (%x. True))"
-  Ex_def:       "Ex(P)     == P (SOME x. P x)"
+  Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
False_def:    "False     == (!P. P)"
not_def:      "~ P       == P-->False"
and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
@@ -199,11 +190,11 @@
defs
(*misc definitions*)
Let_def:      "Let s f == f(s)"
-  if_def:       "If P x y == SOME z::'a. (P=True --> z=x) & (P=False --> z=y)"
+  if_def:       "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"

(*arbitrary is completely unspecified, but is made to appear as a
definition syntactically*)
-  arbitrary_def:  "False ==> arbitrary == (SOME x. False)"
+  arbitrary_def:  "False ==> arbitrary == (THE x. False)"

@@ -256,8 +247,4 @@
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup
setup Splitter.setup setup Clasimp.setup

-use "meson_lemmas.ML"
-use "Tools/meson.ML"
-setup meson_setup
-
end```