src/HOL/SMT_Examples/SMT_Examples.certs
changeset 58367 8af1e68d7e1a
parent 58365 b638978797fd
child 58431 751e8517daa7
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/SMT_Examples/SMT_Examples.certs	Thu Sep 18 00:03:46 2014 +0200
     1.3 @@ -0,0 +1,4736 @@
     1.4 +3aa17d1c77bc1a92bca05df291d11d81c645a931 6 0
     1.5 +unsat
     1.6 +((set-logic AUFLIA)
     1.7 +(proof
     1.8 +(let ((@x30 (rewrite (= (not true) false))))
     1.9 +(mp (asserted (not true)) @x30 false))))
    1.10 +
    1.11 +572677daa32981bf8212986300f1362edf42a0c1 7 0
    1.12 +unsat
    1.13 +((set-logic AUFLIA)
    1.14 +(proof
    1.15 +(let ((@x36 (monotonicity (rewrite (= (or p$ (not p$)) true)) (= (not (or p$ (not p$))) (not true)))))
    1.16 +(let ((@x40 (trans @x36 (rewrite (= (not true) false)) (= (not (or p$ (not p$))) false))))
    1.17 +(mp (asserted (not (or p$ (not p$)))) @x40 false)))))
    1.18 +
    1.19 +dfd95b23f80baacb2acdc442487bd8121f072035 9 0
    1.20 +unsat
    1.21 +((set-logic AUFLIA)
    1.22 +(proof
    1.23 +(let ((@x36 (monotonicity (rewrite (= (and p$ true) p$)) (= (= (and p$ true) p$) (= p$ p$)))))
    1.24 +(let ((@x40 (trans @x36 (rewrite (= (= p$ p$) true)) (= (= (and p$ true) p$) true))))
    1.25 +(let ((@x43 (monotonicity @x40 (= (not (= (and p$ true) p$)) (not true)))))
    1.26 +(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= (and p$ true) p$)) false))))
    1.27 +(mp (asserted (not (= (and p$ true) p$))) @x47 false)))))))
    1.28 +
    1.29 +8d6b87f1242925c8eefb2ec3e8ab8eefcd64e572 13 0
    1.30 +unsat
    1.31 +((set-logic AUFLIA)
    1.32 +(proof
    1.33 +(let (($x33 (not (=> (and (or p$ q$) (not p$)) q$))))
    1.34 +(let (($x37 (= (=> (and (or p$ q$) (not p$)) q$) (or (not (and (or p$ q$) (not p$))) q$))))
    1.35 +(let ((@x41 (monotonicity (rewrite $x37) (= $x33 (not (or (not (and (or p$ q$) (not p$))) q$))))))
    1.36 +(let ((@x44 (mp (asserted $x33) @x41 (not (or (not (and (or p$ q$) (not p$))) q$)))))
    1.37 +(let ((@x45 (and-elim (not-or-elim @x44 (and (or p$ q$) (not p$))) (not p$))))
    1.38 +(let ((@x54 (monotonicity (iff-false @x45 (= p$ false)) (iff-false (not-or-elim @x44 (not q$)) (= q$ false)) (= (or p$ q$) (or false false)))))
    1.39 +(let ((@x58 (trans @x54 (rewrite (= (or false false) false)) (= (or p$ q$) false))))
    1.40 +(let (($x29 (or p$ q$)))
    1.41 +(mp (and-elim (not-or-elim @x44 (and $x29 (not p$))) $x29) @x58 false)))))))))))
    1.42 +
    1.43 +a021a5fec5486f23204e54770f9c04c64baf7e25 11 0
    1.44 +unsat
    1.45 +((set-logic AUFLIA)
    1.46 +(proof
    1.47 +(let (($x32 (and c$ d$)))
    1.48 +(let (($x29 (and a$ b$)))
    1.49 +(let (($x33 (or $x29 $x32)))
    1.50 +(let (($x34 (=> $x33 $x33)))
    1.51 +(let (($x35 (not $x34)))
    1.52 +(let ((@x45 (trans (monotonicity (rewrite (= $x34 true)) (= $x35 (not true))) (rewrite (= (not true) false)) (= $x35 false))))
    1.53 +(mp (asserted $x35) @x45 false)))))))))
    1.54 +
    1.55 +dfb7aeab4f33cdf91b335d72ad619dbd0d65fb62 23 0
    1.56 +unsat
    1.57 +((set-logic AUFLIA)
    1.58 +(proof
    1.59 +(let (($x33 (and p1$ p3$)))
    1.60 +(let (($x32 (and p3$ p2$)))
    1.61 +(let (($x34 (or $x32 $x33)))
    1.62 +(let (($x35 (=> p1$ $x34)))
    1.63 +(let (($x36 (or $x35 p1$)))
    1.64 +(let (($x29 (and p1$ p2$)))
    1.65 +(let (($x31 (or $x29 p3$)))
    1.66 +(let (($x37 (=> $x31 $x36)))
    1.67 +(let (($x38 (not $x37)))
    1.68 +(let (($x40 (not p1$)))
    1.69 +(let (($x41 (or $x40 $x34)))
    1.70 +(let (($x44 (or $x41 p1$)))
    1.71 +(let (($x50 (not $x31)))
    1.72 +(let (($x51 (or $x50 $x44)))
    1.73 +(let (($x56 (not $x51)))
    1.74 +(let ((@x67 (trans (monotonicity (rewrite (= $x51 true)) (= $x56 (not true))) (rewrite (= (not true) false)) (= $x56 false))))
    1.75 +(let ((@x49 (monotonicity (monotonicity (rewrite (= $x35 $x41)) (= $x36 $x44)) (= $x37 (=> $x31 $x44)))))
    1.76 +(let ((@x58 (monotonicity (trans @x49 (rewrite (= (=> $x31 $x44) $x51)) (= $x37 $x51)) (= $x38 $x56))))
    1.77 +(mp (asserted $x38) (trans @x58 @x67 (= $x38 false)) false)))))))))))))))))))))
    1.78 +
    1.79 +3efca8956be216e9acda1b32436ba8f01358d35e 24 0
    1.80 +unsat
    1.81 +((set-logic AUFLIA)
    1.82 +(proof
    1.83 +(let (($x28 (= p$ p$)))
    1.84 +(let (($x29 (= $x28 p$)))
    1.85 +(let (($x30 (= $x29 p$)))
    1.86 +(let (($x31 (= $x30 p$)))
    1.87 +(let (($x32 (= $x31 p$)))
    1.88 +(let (($x33 (= $x32 p$)))
    1.89 +(let (($x34 (= $x33 p$)))
    1.90 +(let (($x35 (= $x34 p$)))
    1.91 +(let (($x36 (= $x35 p$)))
    1.92 +(let (($x37 (not $x36)))
    1.93 +(let ((@x40 (rewrite (= $x28 true))))
    1.94 +(let ((@x45 (rewrite (= (= true p$) p$))))
    1.95 +(let ((@x47 (trans (monotonicity @x40 (= $x29 (= true p$))) @x45 (= $x29 p$))))
    1.96 +(let ((@x53 (monotonicity (trans (monotonicity @x47 (= $x30 $x28)) @x40 (= $x30 true)) (= $x31 (= true p$)))))
    1.97 +(let ((@x59 (trans (monotonicity (trans @x53 @x45 (= $x31 p$)) (= $x32 $x28)) @x40 (= $x32 true))))
    1.98 +(let ((@x63 (trans (monotonicity @x59 (= $x33 (= true p$))) @x45 (= $x33 p$))))
    1.99 +(let ((@x69 (monotonicity (trans (monotonicity @x63 (= $x34 $x28)) @x40 (= $x34 true)) (= $x35 (= true p$)))))
   1.100 +(let ((@x75 (trans (monotonicity (trans @x69 @x45 (= $x35 p$)) (= $x36 $x28)) @x40 (= $x36 true))))
   1.101 +(let ((@x82 (trans (monotonicity @x75 (= $x37 (not true))) (rewrite (= (not true) false)) (= $x37 false))))
   1.102 +(mp (asserted $x37) @x82 false))))))))))))))))))))))
   1.103 +
   1.104 +d600888ef4325a32ff87997035fed7a7c01e4767 39 0
   1.105 +unsat
   1.106 +((set-logic AUFLIA)
   1.107 +(proof
   1.108 +(let (($x100 (not d$)))
   1.109 +(let (($x45 (not c$)))
   1.110 +(let (($x112 (or p$ (and q$ (not q$)))))
   1.111 +(let (($x113 (and (not p$) $x112)))
   1.112 +(let (($x114 (or c$ $x113)))
   1.113 +(let (($x115 (not $x114)))
   1.114 +(let ((@x121 (monotonicity (rewrite (= (and q$ (not q$)) false)) (= $x112 (or p$ false)))))
   1.115 +(let ((@x128 (monotonicity (trans @x121 (rewrite (= (or p$ false) p$)) (= $x112 p$)) (= $x113 (and (not p$) p$)))))
   1.116 +(let ((@x132 (trans @x128 (rewrite (= (and (not p$) p$) false)) (= $x113 false))))
   1.117 +(let ((@x139 (trans (monotonicity @x132 (= $x114 (or c$ false))) (rewrite (= (or c$ false) c$)) (= $x114 c$))))
   1.118 +(let ((@x153 (iff-false (mp (asserted $x115) (monotonicity @x139 (= $x115 $x45)) $x45) (= c$ false))))
   1.119 +(let ((@x147 (trans (monotonicity @x153 (= (or $x100 c$) (or $x100 false))) (rewrite (= (or $x100 false) $x100)) (= (or $x100 c$) $x100))))
   1.120 +(let (($x103 (or $x100 c$)))
   1.121 +(let ((@x102 (monotonicity (rewrite (= (or d$ false) d$)) (= (not (or d$ false)) $x100))))
   1.122 +(let ((@x108 (mp (asserted (or (not (or d$ false)) c$)) (monotonicity @x102 (= (or (not (or d$ false)) c$) $x103)) $x103)))
   1.123 +(let (($x87 (not b$)))
   1.124 +(let ((@x164 (trans (monotonicity @x153 (= (or $x87 c$) (or $x87 false))) (rewrite (= (or $x87 false) $x87)) (= (or $x87 c$) $x87))))
   1.125 +(let (($x90 (or $x87 c$)))
   1.126 +(let ((@x82 (monotonicity (rewrite (= (or x$ (not x$)) true)) (= (and b$ (or x$ (not x$))) (and b$ true)))))
   1.127 +(let ((@x86 (trans @x82 (rewrite (= (and b$ true) b$)) (= (and b$ (or x$ (not x$))) b$))))
   1.128 +(let ((@x92 (monotonicity (monotonicity @x86 (= (not (and b$ (or x$ (not x$)))) $x87)) (= (or (not (and b$ (or x$ (not x$)))) c$) $x90))))
   1.129 +(let ((@x95 (mp (asserted (or (not (and b$ (or x$ (not x$)))) c$)) @x92 $x90)))
   1.130 +(let (($x64 (not a$)))
   1.131 +(let ((@x170 (monotonicity (iff-false (mp @x95 @x164 $x87) (= b$ false)) (= (or $x64 b$) (or $x64 false)))))
   1.132 +(let ((@x174 (trans @x170 (rewrite (= (or $x64 false) $x64)) (= (or $x64 b$) $x64))))
   1.133 +(let (($x67 (or $x64 b$)))
   1.134 +(let ((@x59 (monotonicity (rewrite (= (and c$ $x45) false)) (= (or a$ (and c$ $x45)) (or a$ false)))))
   1.135 +(let ((@x63 (trans @x59 (rewrite (= (or a$ false) a$)) (= (or a$ (and c$ $x45)) a$))))
   1.136 +(let ((@x69 (monotonicity (monotonicity @x63 (= (not (or a$ (and c$ $x45))) $x64)) (= (or (not (or a$ (and c$ $x45))) b$) $x67))))
   1.137 +(let ((@x175 (mp (mp (asserted (or (not (or a$ (and c$ $x45))) b$)) @x69 $x67) @x174 $x64)))
   1.138 +(let ((@x198 (monotonicity (iff-false @x175 (= a$ false)) (iff-false (mp @x95 @x164 $x87) (= b$ false)) @x153 (iff-false (mp @x108 @x147 $x100) (= d$ false)) (= (or a$ b$ c$ d$) (or false false false false)))))
   1.139 +(let ((@x202 (trans @x198 (rewrite (= (or false false false false) false)) (= (or a$ b$ c$ d$) false))))
   1.140 +(let (($x37 (or a$ b$ c$ d$)))
   1.141 +(let ((@x40 (mp (asserted (or a$ (or b$ (or c$ d$)))) (rewrite (= (or a$ (or b$ (or c$ d$))) $x37)) $x37)))
   1.142 +(mp @x40 @x202 false)))))))))))))))))))))))))))))))))))))
   1.143 +
   1.144 +143f46ba7acb4b0a8f67b0de474b0a249f30985b 27 0
   1.145 +unsat
   1.146 +((set-logic AUFLIA)
   1.147 +(proof
   1.148 +(let ((?x38 (symm_f$ b$ a$)))
   1.149 +(let ((?x37 (symm_f$ a$ b$)))
   1.150 +(let (($x39 (= ?x37 ?x38)))
   1.151 +(let (($x52 (not $x39)))
   1.152 +(let ((@x47 (monotonicity (rewrite (= (= a$ a$) true)) (= (and (= a$ a$) $x39) (and true $x39)))))
   1.153 +(let ((@x51 (trans @x47 (rewrite (= (and true $x39) $x39)) (= (and (= a$ a$) $x39) $x39))))
   1.154 +(let ((@x57 (mp (asserted (not (and (= a$ a$) $x39))) (monotonicity @x51 (= (not (and (= a$ a$) $x39)) $x52)) $x52)))
   1.155 +(let (($x480 (forall ((?v0 A$) (?v1 A$) )(!(let ((?x30 (symm_f$ ?v1 ?v0)))
   1.156 +(let ((?x29 (symm_f$ ?v0 ?v1)))
   1.157 +(= ?x29 ?x30))) :pattern ( (symm_f$ ?v0 ?v1) ) :pattern ( (symm_f$ ?v1 ?v0) )))
   1.158 +))
   1.159 +(let (($x32 (forall ((?v0 A$) (?v1 A$) )(let ((?x30 (symm_f$ ?v1 ?v0)))
   1.160 +(let ((?x29 (symm_f$ ?v0 ?v1)))
   1.161 +(= ?x29 ?x30))))
   1.162 +))
   1.163 +(let ((?x30 (symm_f$ ?0 ?1)))
   1.164 +(let ((?x29 (symm_f$ ?1 ?0)))
   1.165 +(let (($x31 (= ?x29 ?x30)))
   1.166 +(let ((@x60 (mp~ (asserted $x32) (nnf-pos (refl (~ $x31 $x31)) (~ $x32 $x32)) $x32)))
   1.167 +(let ((@x485 (mp @x60 (quant-intro (refl (= $x31 $x31)) (= $x32 $x480)) $x480)))
   1.168 +(let (($x149 (or (not $x480) $x39)))
   1.169 +(let ((@x61 ((_ quant-inst a$ b$) $x149)))
   1.170 +(unit-resolution @x61 @x485 @x57 false)))))))))))))))))))
   1.171 +
   1.172 +a6dd135a0c109f49b36d7266dc7a6becc640e496 637 0
   1.173 +unsat
   1.174 +((set-logic AUFLIA)
   1.175 +(proof
   1.176 +(let (($x397 (not x38$)))
   1.177 +(let (($x553 (not x51$)))
   1.178 +(let (($x657 (not x25$)))
   1.179 +(let (($x610 (not x56$)))
   1.180 +(let (($x538 (not x17$)))
   1.181 +(let ((@x897 (hypothesis $x538)))
   1.182 +(let (($x482 (not x45$)))
   1.183 +(let (($x609 (not x22$)))
   1.184 +(let (($x453 (not x11$)))
   1.185 +(let ((@x815 (hypothesis $x453)))
   1.186 +(let (($x667 (not x27$)))
   1.187 +(let (($x638 (not x58$)))
   1.188 +(let (($x567 (not x52$)))
   1.189 +(let ((@x756 (hypothesis $x567)))
   1.190 +(let (($x509 (not x47$)))
   1.191 +(let (($x637 (not x24$)))
   1.192 +(let (($x566 (not x19$)))
   1.193 +(let (($x294 (or x24$ x53$)))
   1.194 +(let ((@x774 (monotonicity (iff-false (asserted (not x59$)) (= x59$ false)) (= (or x59$ x24$ x53$) (or false x24$ x53$)))))
   1.195 +(let ((@x778 (trans @x774 (rewrite (= (or false x24$ x53$) $x294)) (= (or x59$ x24$ x53$) $x294))))
   1.196 +(let (($x303 (or x59$ x24$ x53$)))
   1.197 +(let ((@x306 (mp (asserted (or x59$ $x294)) (rewrite (= (or x59$ $x294) $x303)) $x303)))
   1.198 +(let ((@x779 (mp @x306 @x778 $x294)))
   1.199 +(let ((@x1181 (unit-resolution @x779 (unit-resolution (asserted (or $x637 $x638)) (hypothesis x58$) $x637) x53$)))
   1.200 +(let (($x580 (not x53$)))
   1.201 +(let (($x581 (or $x580 $x566)))
   1.202 +(let ((@x582 (asserted $x581)))
   1.203 +(let ((@x1182 (unit-resolution @x582 @x1181 $x566)))
   1.204 +(let (($x496 (not x46$)))
   1.205 +(let (($x583 (or $x580 $x509)))
   1.206 +(let ((@x584 (asserted $x583)))
   1.207 +(let ((@x1183 (unit-resolution @x584 @x1181 $x509)))
   1.208 +(let (($x438 (not x41$)))
   1.209 +(let (($x363 (not x4$)))
   1.210 +(let (($x347 (not x2$)))
   1.211 +(let (($x336 (not x31$)))
   1.212 +(let (($x623 (not x23$)))
   1.213 +(let (($x645 (or $x638 $x623)))
   1.214 +(let ((@x646 (asserted $x645)))
   1.215 +(let ((@x974 (hypothesis $x509)))
   1.216 +(let ((@x757 (hypothesis $x566)))
   1.217 +(let ((@x853 (hypothesis $x397)))
   1.218 +(let (($x410 (not x8$)))
   1.219 +(let (($x355 (not x3$)))
   1.220 +(let (($x467 (not x12$)))
   1.221 +(let ((@x882 (hypothesis $x467)))
   1.222 +(let ((@x845 (hypothesis $x347)))
   1.223 +(let (($x356 (not x33$)))
   1.224 +(let (($x481 (not x13$)))
   1.225 +(let (($x424 (not x9$)))
   1.226 +(let ((@x728 (hypothesis x41$)))
   1.227 +(let (($x439 (or $x438 $x424)))
   1.228 +(let ((@x440 (asserted $x439)))
   1.229 +(let ((@x922 (unit-resolution @x440 @x728 $x424)))
   1.230 +(let (($x364 (not x34$)))
   1.231 +(let (($x72 (or x35$ x4$)))
   1.232 +(let ((@x77 (asserted $x72)))
   1.233 +(let ((@x994 (unit-resolution @x77 (unit-resolution (asserted (or $x438 (not x35$))) @x728 (not x35$)) x4$)))
   1.234 +(let (($x365 (or $x363 $x364)))
   1.235 +(let ((@x366 (asserted $x365)))
   1.236 +(let ((@x999 (unit-resolution @x366 @x994 $x364)))
   1.237 +(let (($x396 (not x7$)))
   1.238 +(let (($x414 (or $x410 $x396)))
   1.239 +(let ((@x415 (asserted $x414)))
   1.240 +(let (($x348 (not x32$)))
   1.241 +(let ((@x942 (hypothesis $x355)))
   1.242 +(let (($x64 (or x3$ x33$ x2$)))
   1.243 +(let ((@x67 (mp (asserted (or x3$ (or x33$ x2$))) (rewrite (= (or x3$ (or x33$ x2$)) $x64)) $x64)))
   1.244 +(let ((@x1048 (unit-resolution @x67 (unit-resolution (asserted (or $x410 $x356)) (hypothesis x8$) $x356) @x942 x2$)))
   1.245 +(let (($x349 (or $x347 $x348)))
   1.246 +(let ((@x350 (asserted $x349)))
   1.247 +(let (($x105 (or x7$ x38$ x6$ x32$)))
   1.248 +(let ((@x108 (mp (asserted (or x7$ (or x38$ (or x6$ x32$)))) (rewrite (= (or x7$ (or x38$ (or x6$ x32$))) $x105)) $x105)))
   1.249 +(let ((@x842 (unit-resolution @x108 (unit-resolution @x350 @x1048 $x348) (unit-resolution @x415 (hypothesis x8$) $x396) @x853 x6$)))
   1.250 +(let (($x701 (or x1$ x31$)))
   1.251 +(let ((@x700 (monotonicity (iff-false (asserted (not x0$)) (= x0$ false)) (= (or x1$ x31$ x0$) (or x1$ x31$ false)))))
   1.252 +(let ((@x705 (trans @x700 (rewrite (= (or x1$ x31$ false) $x701)) (= (or x1$ x31$ x0$) $x701))))
   1.253 +(let (($x46 (or x1$ x31$ x0$)))
   1.254 +(let ((@x49 (mp (asserted (or x1$ (or x31$ x0$))) (rewrite (= (or x1$ (or x31$ x0$)) $x46)) $x46)))
   1.255 +(let ((@x706 (mp @x49 @x705 $x701)))
   1.256 +(let ((@x1002 (unit-resolution @x706 (unit-resolution (asserted (or $x347 (not x1$))) @x1048 (not x1$)) x31$)))
   1.257 +(let (($x382 (not x6$)))
   1.258 +(let (($x388 (or $x382 $x336)))
   1.259 +(let ((@x389 (asserted $x388)))
   1.260 +(let ((@x1011 (lemma (unit-resolution @x389 @x1002 @x842 false) (or $x410 x38$ x3$))))
   1.261 +(let ((@x952 (unit-resolution @x1011 (unit-resolution (asserted (or $x363 $x355)) @x994 $x355) @x853 $x410)))
   1.262 +(let (($x125 (or x9$ x40$ x8$ x34$)))
   1.263 +(let ((@x128 (mp (asserted (or x9$ (or x40$ (or x8$ x34$)))) (rewrite (= (or x9$ (or x40$ (or x8$ x34$))) $x125)) $x125)))
   1.264 +(let (($x425 (not x40$)))
   1.265 +(let (($x505 (or $x496 $x425)))
   1.266 +(let ((@x506 (asserted $x505)))
   1.267 +(let ((@x868 (unit-resolution @x506 (unit-resolution @x128 @x952 @x999 @x922 x40$) $x496)))
   1.268 +(let (($x239 (or x19$ x52$ x18$ x46$)))
   1.269 +(let ((@x242 (mp (asserted (or x19$ (or x52$ (or x18$ x46$)))) (rewrite (= (or x19$ (or x52$ (or x18$ x46$))) $x239)) $x239)))
   1.270 +(let (($x411 (not x39$)))
   1.271 +(let ((@x992 (unit-resolution @x67 (unit-resolution (asserted (or $x363 $x355)) @x994 $x355) @x845 x33$)))
   1.272 +(let (($x420 (or $x411 $x356)))
   1.273 +(let ((@x421 (asserted $x420)))
   1.274 +(let (($x507 (or $x481 $x425)))
   1.275 +(let ((@x508 (asserted $x507)))
   1.276 +(let ((@x1036 (unit-resolution @x508 (unit-resolution @x128 @x952 @x999 @x922 x40$) $x481)))
   1.277 +(let (($x172 (or x13$ x45$ x12$ x39$)))
   1.278 +(let ((@x175 (mp (asserted (or x13$ (or x45$ (or x12$ x39$)))) (rewrite (= (or x13$ (or x45$ (or x12$ x39$))) $x172)) $x172)))
   1.279 +(let ((@x1037 (unit-resolution @x175 @x1036 @x882 (unit-resolution @x421 @x992 $x411) x45$)))
   1.280 +(let (($x552 (not x18$)))
   1.281 +(let (($x558 (or $x552 $x482)))
   1.282 +(let ((@x559 (asserted $x558)))
   1.283 +(let ((@x1080 (unit-resolution @x559 @x1037 (unit-resolution @x242 @x868 @x757 @x756 x18$) false)))
   1.284 +(let ((@x1051 (unit-resolution (lemma @x1080 (or $x438 x12$ x19$ x52$ x2$ x38$)) @x845 @x757 @x756 @x882 @x853 $x438)))
   1.285 +(let (($x190 (or x47$ x14$ x41$)))
   1.286 +(let ((@x193 (mp (asserted (or x47$ (or x14$ x41$))) (rewrite (= (or x47$ (or x14$ x41$)) $x190)) $x190)))
   1.287 +(let ((@x732 (unit-resolution @x193 @x1051 @x974 x14$)))
   1.288 +(let (($x495 (not x14$)))
   1.289 +(let (($x499 (or $x495 $x481)))
   1.290 +(let ((@x500 (asserted $x499)))
   1.291 +(let ((@x941 (unit-resolution @x242 (unit-resolution (asserted (or $x495 $x496)) @x732 $x496) @x757 @x756 x18$)))
   1.292 +(let ((@x991 (unit-resolution @x175 (unit-resolution @x559 @x941 $x482) @x882 (unit-resolution @x500 @x732 $x481) x39$)))
   1.293 +(let (($x367 (or $x363 $x355)))
   1.294 +(let ((@x368 (asserted $x367)))
   1.295 +(let ((@x980 (unit-resolution @x368 (unit-resolution @x67 (unit-resolution @x421 @x991 $x356) @x845 x3$) $x363)))
   1.296 +(let (($x369 (or $x364 $x355)))
   1.297 +(let ((@x370 (asserted $x369)))
   1.298 +(let ((@x878 (unit-resolution @x370 (unit-resolution @x67 (unit-resolution @x421 @x991 $x356) @x845 x3$) $x364)))
   1.299 +(let ((@x879 (unit-resolution @x128 @x878 (unit-resolution (asserted (or $x495 $x425)) @x732 $x425) (unit-resolution (asserted (or $x410 $x411)) @x991 $x410) x9$)))
   1.300 +(let (($x371 (not x35$)))
   1.301 +(let (($x443 (or $x424 $x371)))
   1.302 +(let ((@x444 (asserted $x443)))
   1.303 +(let ((@x912 (lemma (unit-resolution @x444 @x879 (unit-resolution @x77 @x980 x35$) false) (or x2$ x12$ x19$ x52$ x47$ x38$))))
   1.304 +(let ((@x1091 (unit-resolution @x912 @x882 @x757 @x756 @x974 @x853 x2$)))
   1.305 +(let (($x359 (or $x355 $x347)))
   1.306 +(let ((@x360 (asserted $x359)))
   1.307 +(let ((@x784 (unit-resolution @x706 (unit-resolution (asserted (or $x347 (not x1$))) @x1091 (not x1$)) x31$)))
   1.308 +(let ((@x808 (unit-resolution @x108 (unit-resolution @x389 @x784 $x382) (unit-resolution @x350 @x1091 $x348) @x853 x7$)))
   1.309 +(let (($x418 (or $x411 $x396)))
   1.310 +(let ((@x419 (asserted $x418)))
   1.311 +(let ((@x913 (hypothesis $x410)))
   1.312 +(let ((@x931 (unit-resolution @x193 (unit-resolution @x500 (hypothesis x13$) $x495) @x974 x41$)))
   1.313 +(let ((@x867 (unit-resolution @x128 (unit-resolution @x440 @x931 $x424) (unit-resolution @x508 (hypothesis x13$) $x425) @x913 x34$)))
   1.314 +(let ((@x917 (unit-resolution @x77 (unit-resolution (asserted (or $x438 $x371)) @x931 $x371) x4$)))
   1.315 +(let ((@x1090 (lemma (unit-resolution @x366 @x917 @x867 false) (or $x481 x8$ x47$))))
   1.316 +(let ((@x1056 (unit-resolution @x1090 (unit-resolution @x1011 (unit-resolution @x360 @x1091 $x355) @x853 $x410) @x974 $x481)))
   1.317 +(let ((@x1057 (unit-resolution @x175 @x1056 @x882 (unit-resolution @x419 @x808 $x411) x45$)))
   1.318 +(let ((@x937 (unit-resolution @x242 (unit-resolution @x559 @x1057 $x552) @x757 @x756 x46$)))
   1.319 +(let ((@x884 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) @x937 $x495) @x974 x41$)))
   1.320 +(let ((@x800 (unit-resolution @x128 (unit-resolution @x440 @x884 $x424) (unit-resolution @x506 @x937 $x425) (unit-resolution @x1011 (unit-resolution @x360 @x1091 $x355) @x853 $x410) x34$)))
   1.321 +(let ((@x864 (unit-resolution @x77 (unit-resolution (asserted (or $x438 $x371)) @x884 $x371) x4$)))
   1.322 +(let ((@x1089 (lemma (unit-resolution @x366 @x864 @x800 false) (or x12$ x47$ x19$ x52$ x38$))))
   1.323 +(let ((@x1116 (unit-resolution @x1089 @x853 @x757 @x756 @x974 x12$)))
   1.324 +(let (($x489 (or $x482 $x467)))
   1.325 +(let ((@x490 (asserted $x489)))
   1.326 +(let (($x539 (not x50$)))
   1.327 +(let (($x619 (or $x610 $x539)))
   1.328 +(let ((@x620 (asserted $x619)))
   1.329 +(let ((@x1058 (unit-resolution @x620 (hypothesis x56$) $x539)))
   1.330 +(let (($x524 (not x16$)))
   1.331 +(let (($x587 (not x20$)))
   1.332 +(let ((@x896 (hypothesis $x539)))
   1.333 +(let (($x517 (not x48$)))
   1.334 +(let ((@x841 (hypothesis $x517)))
   1.335 +(let ((@x989 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) (hypothesis x46$) $x495) @x974 x41$)))
   1.336 +(let (($x441 (or $x438 $x371)))
   1.337 +(let ((@x442 (asserted $x441)))
   1.338 +(let ((@x838 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x989 $x371) x4$) $x355)))
   1.339 +(let ((@x1053 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x989 $x371) x4$) $x364)))
   1.340 +(let ((@x862 (unit-resolution @x128 @x1053 (unit-resolution @x440 @x989 $x424) (unit-resolution @x506 (hypothesis x46$) $x425) x8$)))
   1.341 +(let (($x416 (or $x410 $x356)))
   1.342 +(let ((@x417 (asserted $x416)))
   1.343 +(let ((@x987 (unit-resolution @x350 (unit-resolution @x67 (unit-resolution @x417 @x862 $x356) @x838 x2$) $x348)))
   1.344 +(let (($x335 (not x1$)))
   1.345 +(let (($x351 (or $x347 $x335)))
   1.346 +(let ((@x352 (asserted $x351)))
   1.347 +(let ((@x935 (unit-resolution @x352 (unit-resolution @x67 (unit-resolution @x417 @x862 $x356) @x838 x2$) $x335)))
   1.348 +(let ((@x746 (unit-resolution @x706 @x935 x31$)))
   1.349 +(let ((@x1060 (unit-resolution @x108 (unit-resolution @x389 @x746 $x382) (unit-resolution @x415 @x862 $x396) @x987 x38$)))
   1.350 +(let (($x479 (or $x453 $x397)))
   1.351 +(let ((@x480 (asserted $x479)))
   1.352 +(let (($x445 (not x10$)))
   1.353 +(let (($x720 (or x5$ x36$)))
   1.354 +(let ((@x719 (monotonicity (iff-false (asserted (not x30$)) (= x30$ false)) (= (or x5$ x36$ x30$) (or x5$ x36$ false)))))
   1.355 +(let ((@x724 (trans @x719 (rewrite (= (or x5$ x36$ false) $x720)) (= (or x5$ x36$ x30$) $x720))))
   1.356 +(let (($x85 (or x5$ x36$ x30$)))
   1.357 +(let ((@x88 (mp (asserted (or x5$ (or x36$ x30$))) (rewrite (= (or x5$ (or x36$ x30$)) $x85)) $x85)))
   1.358 +(let ((@x725 (mp @x88 @x724 $x720)))
   1.359 +(let ((@x810 (unit-resolution @x725 (unit-resolution (asserted (or (not x5$) $x336)) @x746 (not x5$)) x36$)))
   1.360 +(let (($x375 (not x36$)))
   1.361 +(let (($x449 (or $x445 $x375)))
   1.362 +(let ((@x450 (asserted $x449)))
   1.363 +(let (($x152 (or x11$ x43$ x10$ x37$)))
   1.364 +(let ((@x155 (mp (asserted (or x11$ (or x43$ (or x10$ x37$)))) (rewrite (= (or x11$ (or x43$ (or x10$ x37$))) $x152)) $x152)))
   1.365 +(let ((@x840 (unit-resolution @x155 (unit-resolution @x450 @x810 $x445) (unit-resolution (asserted (or (not x37$) $x336)) @x746 (not x37$)) (unit-resolution @x480 @x1060 $x453) x43$)))
   1.366 +(let (($x199 (or x15$ x48$ x42$)))
   1.367 +(let ((@x202 (mp (asserted (or x15$ (or x48$ x42$))) (rewrite (= (or x15$ (or x48$ x42$)) $x199)) $x199)))
   1.368 +(let ((@x712 (unit-resolution @x202 (unit-resolution (asserted (or (not x42$) $x375)) @x810 (not x42$)) @x841 x15$)))
   1.369 +(let (($x454 (not x43$)))
   1.370 +(let (($x516 (not x15$)))
   1.371 +(let (($x536 (or $x516 $x454)))
   1.372 +(let ((@x537 (asserted $x536)))
   1.373 +(let ((@x844 (lemma (unit-resolution @x537 @x712 @x840 false) (or $x496 x48$ x47$))))
   1.374 +(let ((@x893 (unit-resolution @x242 (unit-resolution @x844 @x841 @x974 $x496) @x757 @x756 x18$)))
   1.375 +(let (($x556 (or $x552 $x538)))
   1.376 +(let ((@x557 (asserted $x556)))
   1.377 +(let (($x446 (not x42$)))
   1.378 +(let ((@x1023 (unit-resolution @x559 @x893 $x482)))
   1.379 +(let (($x468 (not x44$)))
   1.380 +(let ((@x738 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) (hypothesis x42$) $x375) x5$)))
   1.381 +(let (($x374 (not x5$)))
   1.382 +(let (($x394 (or $x374 $x336)))
   1.383 +(let ((@x395 (asserted $x394)))
   1.384 +(let (($x353 (or $x348 $x335)))
   1.385 +(let ((@x354 (asserted $x353)))
   1.386 +(let ((@x1005 (unit-resolution @x354 (unit-resolution @x706 (unit-resolution @x395 @x738 $x336) x1$) $x348)))
   1.387 +(let ((@x983 (unit-resolution @x352 (unit-resolution @x706 (unit-resolution @x395 @x738 $x336) x1$) $x347)))
   1.388 +(let ((@x998 (hypothesis $x482)))
   1.389 +(let ((@x932 (unit-resolution @x128 (unit-resolution @x417 @x992 $x410) @x922 @x999 x40$)))
   1.390 +(let ((@x1030 (hypothesis $x348)))
   1.391 +(let ((@x1031 (hypothesis $x382)))
   1.392 +(let ((@x1039 (unit-resolution @x108 (unit-resolution (asserted (or $x396 $x356)) @x992 $x396) @x1031 @x1030 x38$)))
   1.393 +(let (($x473 (or $x467 $x397)))
   1.394 +(let ((@x474 (asserted $x473)))
   1.395 +(let ((@x971 (unit-resolution @x175 (unit-resolution @x474 @x1039 $x467) (unit-resolution @x508 @x932 $x481) @x998 (unit-resolution @x421 @x992 $x411) false)))
   1.396 +(let ((@x1013 (lemma @x971 (or $x438 x45$ x6$ x32$ x2$))))
   1.397 +(let ((@x1040 (unit-resolution @x1013 (unit-resolution (asserted (or $x382 $x374)) @x738 $x382) @x998 @x1005 @x983 $x438)))
   1.398 +(let (($x447 (or $x445 $x446)))
   1.399 +(let ((@x448 (asserted $x447)))
   1.400 +(let ((@x830 (unit-resolution @x448 (hypothesis x42$) $x445)))
   1.401 +(let ((@x1020 (hypothesis x12$)))
   1.402 +(let (($x469 (or $x467 $x468)))
   1.403 +(let ((@x470 (asserted $x469)))
   1.404 +(let ((@x1021 (unit-resolution @x470 @x1020 $x468)))
   1.405 +(let (($x219 (or x17$ x50$ x16$ x44$)))
   1.406 +(let ((@x222 (mp (asserted (or x17$ (or x50$ (or x16$ x44$)))) (rewrite (= (or x17$ (or x50$ (or x16$ x44$))) $x219)) $x219)))
   1.407 +(let (($x471 (or $x467 $x453)))
   1.408 +(let ((@x472 (asserted $x471)))
   1.409 +(let ((@x889 (unit-resolution @x472 @x1020 $x453)))
   1.410 +(let ((@x924 (unit-resolution @x155 @x889 (hypothesis $x445) (hypothesis (not x37$)) x43$)))
   1.411 +(let (($x530 (or $x524 $x454)))
   1.412 +(let ((@x531 (asserted $x530)))
   1.413 +(let ((@x925 (unit-resolution @x531 @x924 (unit-resolution @x222 @x1021 @x897 @x896 x16$) false)))
   1.414 +(let ((@x1075 (lemma @x925 (or $x467 x10$ x37$ x17$ x50$))))
   1.415 +(let ((@x831 (unit-resolution @x1075 @x830 (unit-resolution (asserted (or (not x37$) $x374)) @x738 (not x37$)) @x897 @x896 $x467)))
   1.416 +(let ((@x856 (unit-resolution @x175 @x831 @x998 (unit-resolution @x500 (unit-resolution @x193 @x1040 @x974 x14$) $x481) x39$)))
   1.417 +(let ((@x715 (unit-resolution @x108 (unit-resolution @x419 @x856 $x396) (unit-resolution (asserted (or $x382 $x374)) @x738 $x382) @x1005 x38$)))
   1.418 +(let (($x477 (or $x468 $x397)))
   1.419 +(let ((@x478 (asserted $x477)))
   1.420 +(let ((@x850 (unit-resolution @x222 (unit-resolution @x478 @x715 $x468) @x897 @x896 x16$)))
   1.421 +(let ((@x828 (unit-resolution @x155 (unit-resolution @x480 @x715 $x453) @x830 (unit-resolution (asserted (or (not x37$) $x374)) @x738 (not x37$)) x43$)))
   1.422 +(let ((@x1001 (lemma (unit-resolution @x531 @x828 @x850 false) (or $x446 x17$ x50$ x45$ x47$))))
   1.423 +(let ((@x762 (unit-resolution @x1001 (unit-resolution @x557 @x893 $x538) @x896 @x1023 @x974 $x446)))
   1.424 +(let (($x528 (or $x524 $x516)))
   1.425 +(let ((@x529 (asserted $x528)))
   1.426 +(let ((@x1017 (unit-resolution @x222 (unit-resolution @x529 (unit-resolution @x202 @x762 @x841 x15$) $x524) (unit-resolution @x557 @x893 $x538) @x896 x44$)))
   1.427 +(let ((@x901 (unit-resolution @x706 (unit-resolution @x395 (hypothesis x5$) $x336) x1$)))
   1.428 +(let ((@x823 (unit-resolution @x108 (unit-resolution @x354 @x901 $x348) @x853 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x5$) $x382) x7$)))
   1.429 +(let ((@x740 (unit-resolution @x1013 (unit-resolution @x354 @x901 $x348) @x998 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x5$) $x382) (unit-resolution @x352 @x901 $x347) $x438)))
   1.430 +(let ((@x835 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x740 @x974 x14$) $x481) (unit-resolution @x419 @x823 $x411) @x998 @x882 false)))
   1.431 +(let ((@x769 (lemma @x835 (or $x374 x45$ x12$ x47$ x38$))))
   1.432 +(let ((@x898 (unit-resolution @x769 @x1023 (unit-resolution @x470 @x1017 $x467) @x974 (unit-resolution @x478 @x1017 $x397) $x374)))
   1.433 +(let ((@x735 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x898 x36$) $x445) (unit-resolution @x537 (unit-resolution @x202 @x762 @x841 x15$) $x454) (unit-resolution (asserted (or $x468 $x453)) @x1017 $x453) x37$)))
   1.434 +(let (($x383 (not x37$)))
   1.435 +(let (($x384 (or $x382 $x383)))
   1.436 +(let ((@x385 (asserted $x384)))
   1.437 +(let ((@x946 (unit-resolution @x706 (unit-resolution (asserted (or $x383 $x336)) @x735 $x336) x1$)))
   1.438 +(let ((@x836 (unit-resolution @x108 (unit-resolution @x354 @x946 $x348) (unit-resolution @x478 @x1017 $x397) (unit-resolution @x385 @x735 $x382) x7$)))
   1.439 +(let ((@x1025 (unit-resolution @x1013 (unit-resolution @x354 @x946 $x348) @x1023 (unit-resolution @x385 @x735 $x382) (unit-resolution @x352 @x946 $x347) $x438)))
   1.440 +(let ((@x886 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x1025 @x974 x14$) $x481) (unit-resolution @x419 @x836 $x411) @x1023 (unit-resolution @x470 @x1017 $x467) false)))
   1.441 +(let ((@x1059 (unit-resolution (lemma @x886 (or x48$ x47$ x50$ x19$ x52$)) @x1058 @x974 @x757 @x756 x48$)))
   1.442 +(let (($x591 (or $x587 $x517)))
   1.443 +(let ((@x592 (asserted $x591)))
   1.444 +(let (($x595 (not x21$)))
   1.445 +(let (($x617 (or $x610 $x595)))
   1.446 +(let ((@x618 (asserted $x617)))
   1.447 +(let (($x596 (not x55$)))
   1.448 +(let (($x302 (or x25$ x54$)))
   1.449 +(let ((@x307 (asserted $x302)))
   1.450 +(let ((@x855 (unit-resolution @x307 (unit-resolution (asserted (or (not x54$) $x517)) @x1059 (not x54$)) x25$)))
   1.451 +(let (($x665 (or $x657 $x596)))
   1.452 +(let ((@x666 (asserted $x665)))
   1.453 +(let (($x266 (or x21$ x55$ x20$ x49$)))
   1.454 +(let ((@x269 (mp (asserted (or x21$ (or x55$ (or x20$ x49$)))) (rewrite (= (or x21$ (or x55$ (or x20$ x49$))) $x266)) $x266)))
   1.455 +(let ((@x911 (unit-resolution @x269 (unit-resolution @x666 @x855 $x596) (unit-resolution @x618 (hypothesis x56$) $x595) (unit-resolution @x592 @x1059 $x587) x49$)))
   1.456 +(let (($x525 (not x49$)))
   1.457 +(let (($x526 (or $x524 $x525)))
   1.458 +(let ((@x527 (asserted $x526)))
   1.459 +(let ((@x1006 (unit-resolution @x242 (unit-resolution @x557 (hypothesis x17$) $x552) @x757 @x756 x46$)))
   1.460 +(let (($x503 (or $x496 $x481)))
   1.461 +(let ((@x504 (asserted $x503)))
   1.462 +(let ((@x752 (unit-resolution @x175 (unit-resolution @x504 @x1006 $x481) (unit-resolution (asserted (or $x538 $x482)) (hypothesis x17$) $x482) @x882 x39$)))
   1.463 +(let (($x412 (or $x410 $x411)))
   1.464 +(let ((@x413 (asserted $x412)))
   1.465 +(let ((@x806 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) @x1006 $x495) @x974 x41$)))
   1.466 +(let ((@x954 (unit-resolution @x128 (unit-resolution @x440 @x806 $x424) (unit-resolution @x506 @x1006 $x425) (unit-resolution @x413 @x752 $x410) x34$)))
   1.467 +(let ((@x745 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x806 $x371) x4$) @x954 false)))
   1.468 +(let ((@x771 (lemma @x745 (or $x538 x12$ x47$ x19$ x52$))))
   1.469 +(let ((@x928 (unit-resolution @x222 (unit-resolution @x771 @x882 @x974 @x757 @x756 $x538) (hypothesis $x524) @x896 x44$)))
   1.470 +(let ((@x929 (unit-resolution @x478 @x928 $x397)))
   1.471 +(let ((@x832 (hypothesis $x454)))
   1.472 +(let ((@x859 (unit-resolution @x242 (unit-resolution (asserted (or $x495 $x496)) (hypothesis x14$) $x496) @x757 @x756 x18$)))
   1.473 +(let ((@x951 (unit-resolution @x175 (unit-resolution @x559 @x859 $x482) (unit-resolution @x500 (hypothesis x14$) $x481) @x882 x39$)))
   1.474 +(let ((@x833 (unit-resolution @x769 (unit-resolution @x559 @x859 $x482) @x882 @x974 @x853 $x374)))
   1.475 +(let ((@x1076 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x833 x36$) $x445) @x832 @x815 x37$)))
   1.476 +(let ((@x872 (unit-resolution @x108 (unit-resolution @x385 @x1076 $x382) (unit-resolution @x419 @x951 $x396) @x853 x32$)))
   1.477 +(let ((@x962 (unit-resolution @x706 (unit-resolution (asserted (or $x383 $x336)) @x1076 $x336) x1$)))
   1.478 +(let ((@x861 (lemma (unit-resolution @x354 @x962 @x872 false) (or $x495 x38$ x43$ x11$ x12$ x47$ x19$ x52$))))
   1.479 +(let ((@x1079 (unit-resolution @x861 @x929 @x832 (unit-resolution (asserted (or $x468 $x453)) @x928 $x453) @x882 @x974 @x757 @x756 $x495)))
   1.480 +(let ((@x709 (unit-resolution @x77 (unit-resolution @x442 (unit-resolution @x193 @x1079 @x974 x41$) $x371) x4$)))
   1.481 +(let ((@x939 (unit-resolution @x128 (unit-resolution @x1011 @x929 (unit-resolution @x368 @x709 $x355) $x410) (unit-resolution @x440 (unit-resolution @x193 @x1079 @x974 x41$) $x424) (unit-resolution @x366 @x709 $x364) x40$)))
   1.482 +(let ((@x754 (unit-resolution @x242 (unit-resolution @x506 @x939 $x496) @x757 @x756 x18$)))
   1.483 +(let ((@x904 (unit-resolution @x175 (unit-resolution @x559 @x754 $x482) (unit-resolution @x508 @x939 $x481) @x882 x39$)))
   1.484 +(let ((@x877 (unit-resolution @x67 (unit-resolution @x421 @x904 $x356) (unit-resolution @x368 @x709 $x355) x2$)))
   1.485 +(let ((@x927 (unit-resolution @x769 (unit-resolution @x559 @x754 $x482) @x882 @x974 @x929 $x374)))
   1.486 +(let ((@x880 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x927 x36$) $x445) @x832 (unit-resolution (asserted (or $x468 $x453)) @x928 $x453) x37$)))
   1.487 +(let ((@x812 (unit-resolution @x108 (unit-resolution @x385 @x880 $x382) (unit-resolution @x350 @x877 $x348) (unit-resolution @x419 @x904 $x396) @x929 false)))
   1.488 +(let ((@x713 (unit-resolution (lemma @x812 (or x12$ x43$ x47$ x19$ x52$ x16$ x50$)) (unit-resolution (asserted (or $x525 $x454)) @x911 $x454) @x974 @x757 @x756 (unit-resolution @x527 @x911 $x524) @x1058 x12$)))
   1.489 +(let ((@x817 (unit-resolution @x222 (unit-resolution @x470 @x713 $x468) (unit-resolution @x527 @x911 $x524) @x1058 x17$)))
   1.490 +(let ((@x903 (unit-resolution @x242 (unit-resolution @x557 @x817 $x552) @x757 @x756 x46$)))
   1.491 +(let (($x497 (or $x495 $x496)))
   1.492 +(let ((@x498 (asserted $x497)))
   1.493 +(let ((@x748 (unit-resolution @x442 (unit-resolution @x193 (unit-resolution @x498 @x903 $x495) @x974 x41$) $x371)))
   1.494 +(let ((@x1027 (unit-resolution @x440 (unit-resolution @x193 (unit-resolution @x498 @x903 $x495) @x974 x41$) $x424)))
   1.495 +(let ((@x890 (unit-resolution @x128 (unit-resolution @x366 (unit-resolution @x77 @x748 x4$) $x364) (unit-resolution @x506 @x903 $x425) @x1027 x8$)))
   1.496 +(let ((@x891 (unit-resolution @x1011 @x890 (unit-resolution @x368 (unit-resolution @x77 @x748 x4$) $x355) (unit-resolution @x474 @x713 $x397) false)))
   1.497 +(let ((@x1118 (unit-resolution (lemma @x891 (or $x610 x47$ x19$ x52$)) @x974 @x757 @x756 $x610)))
   1.498 +(let ((@x802 (hypothesis $x623)))
   1.499 +(let ((@x914 (hypothesis $x610)))
   1.500 +(let (($x392 (or $x383 $x336)))
   1.501 +(let ((@x393 (asserted $x392)))
   1.502 +(let ((@x969 (unit-resolution @x393 (hypothesis x31$) $x383)))
   1.503 +(let ((@x1047 (unit-resolution @x725 (unit-resolution @x395 (hypothesis x31$) $x374) x36$)))
   1.504 +(let ((@x966 (unit-resolution @x450 @x1047 $x445)))
   1.505 +(let (($x615 (or $x609 $x539)))
   1.506 +(let ((@x616 (asserted $x615)))
   1.507 +(let ((@x730 (unit-resolution @x616 (unit-resolution @x1075 @x966 @x1020 @x897 @x969 x50$) $x609)))
   1.508 +(let (($x286 (or x23$ x57$ x22$ x51$)))
   1.509 +(let ((@x289 (mp (asserted (or x23$ (or x57$ (or x22$ x51$)))) (rewrite (= (or x23$ (or x57$ (or x22$ x51$))) $x286)) $x286)))
   1.510 +(let (($x624 (not x57$)))
   1.511 +(let (($x679 (or $x667 $x624)))
   1.512 +(let ((@x680 (asserted $x679)))
   1.513 +(let ((@x948 (unit-resolution @x680 (unit-resolution @x289 @x730 @x802 (hypothesis $x553) x57$) $x667)))
   1.514 +(let (($x322 (or x27$ x26$ x56$)))
   1.515 +(let ((@x325 (mp (asserted (or x27$ (or x26$ x56$))) (rewrite (= (or x27$ (or x26$ x56$)) $x322)) $x322)))
   1.516 +(let (($x588 (not x54$)))
   1.517 +(let ((@x798 (unit-resolution @x537 (unit-resolution @x155 @x966 @x889 @x969 x43$) $x516)))
   1.518 +(let ((@x799 (unit-resolution @x202 @x798 (unit-resolution (asserted (or $x446 $x375)) @x1047 $x446) x48$)))
   1.519 +(let (($x593 (or $x588 $x517)))
   1.520 +(let ((@x594 (asserted $x593)))
   1.521 +(let (($x660 (not x26$)))
   1.522 +(let (($x661 (or $x660 $x657)))
   1.523 +(let ((@x662 (asserted $x661)))
   1.524 +(let ((@x1094 (unit-resolution @x662 (unit-resolution @x307 (unit-resolution @x594 @x799 $x588) x25$) (unit-resolution @x325 @x948 @x914 x26$) false)))
   1.525 +(let ((@x1096 (lemma @x1094 (or $x336 x56$ x23$ x51$ $x467 x17$))))
   1.526 +(let ((@x1099 (unit-resolution @x1096 (unit-resolution (asserted (or $x552 $x553)) @x859 $x553) @x802 @x914 @x1020 (unit-resolution @x557 @x859 $x538) $x336)))
   1.527 +(let ((@x804 (unit-resolution @x725 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x6$) $x374) x36$)))
   1.528 +(let ((@x1008 (unit-resolution @x1075 (unit-resolution @x450 @x804 $x445) @x1020 @x897 (unit-resolution @x385 (hypothesis x6$) $x383) x50$)))
   1.529 +(let ((@x874 (unit-resolution @x289 (unit-resolution @x616 @x1008 $x609) @x802 (hypothesis $x553) x57$)))
   1.530 +(let ((@x766 (unit-resolution @x155 (unit-resolution @x450 @x804 $x445) @x889 (unit-resolution @x385 (hypothesis x6$) $x383) x43$)))
   1.531 +(let ((@x818 (unit-resolution @x202 (unit-resolution @x537 @x766 $x516) (unit-resolution (asserted (or $x446 $x375)) @x804 $x446) x48$)))
   1.532 +(let ((@x783 (unit-resolution @x662 (unit-resolution @x307 (unit-resolution @x594 @x818 $x588) x25$) (unit-resolution @x325 (unit-resolution @x680 @x874 $x667) @x914 x26$) false)))
   1.533 +(let ((@x737 (lemma @x783 (or $x382 x56$ x23$ x51$ $x467 x17$))))
   1.534 +(let ((@x1102 (unit-resolution @x737 (unit-resolution (asserted (or $x552 $x553)) @x859 $x553) @x802 @x914 @x1020 (unit-resolution @x557 @x859 $x538) $x382)))
   1.535 +(let ((@x1104 (unit-resolution @x108 (unit-resolution @x354 (unit-resolution @x706 @x1099 x1$) $x348) @x1102 @x853 x7$)))
   1.536 +(let (($x422 (or $x396 $x356)))
   1.537 +(let ((@x423 (asserted $x422)))
   1.538 +(let ((@x1106 (unit-resolution @x67 (unit-resolution @x423 @x1104 $x356) (unit-resolution @x352 (unit-resolution @x706 @x1099 x1$) $x347) x3$)))
   1.539 +(let ((@x1112 (unit-resolution @x128 (unit-resolution @x370 @x1106 $x364) (unit-resolution (asserted (or $x495 $x425)) (hypothesis x14$) $x425) (unit-resolution @x415 @x1104 $x410) x9$)))
   1.540 +(let ((@x1113 (unit-resolution @x444 @x1112 (unit-resolution @x77 (unit-resolution @x368 @x1106 $x363) x35$) false)))
   1.541 +(let ((@x1119 (unit-resolution (lemma @x1113 (or $x495 x38$ x23$ x56$ $x467 x19$ x52$)) @x853 @x802 @x1118 @x1116 @x757 @x756 $x495)))
   1.542 +(let ((@x1120 (unit-resolution @x193 @x1119 @x974 x41$)))
   1.543 +(let ((@x1123 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x1120 $x371) x4$) $x364)))
   1.544 +(let ((@x1125 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x1120 $x371) x4$) $x355)))
   1.545 +(let ((@x1127 (unit-resolution @x128 (unit-resolution @x1011 @x1125 @x853 $x410) (unit-resolution @x440 @x1120 $x424) @x1123 x40$)))
   1.546 +(let ((@x1129 (unit-resolution @x242 (unit-resolution @x506 @x1127 $x496) @x757 @x756 x18$)))
   1.547 +(let ((@x1132 (unit-resolution @x737 (unit-resolution (asserted (or $x552 $x553)) @x1129 $x553) @x802 @x1118 @x1116 (unit-resolution @x557 @x1129 $x538) $x382)))
   1.548 +(let ((@x1133 (unit-resolution @x1096 (unit-resolution (asserted (or $x552 $x553)) @x1129 $x553) @x802 @x1118 @x1116 (unit-resolution @x557 @x1129 $x538) $x336)))
   1.549 +(let ((@x1137 (unit-resolution @x1013 (unit-resolution @x354 (unit-resolution @x706 @x1133 x1$) $x348) (unit-resolution @x352 (unit-resolution @x706 @x1133 x1$) $x347) @x1120 @x1132 (unit-resolution @x490 @x1116 $x482) false)))
   1.550 +(let ((@x1185 (unit-resolution (lemma @x1137 (or x38$ x23$ x19$ x52$ x47$)) (unit-resolution @x646 (hypothesis x58$) $x623) @x1182 @x756 @x1183 x38$)))
   1.551 +(let ((@x1188 (unit-resolution @x474 @x1185 $x467)))
   1.552 +(let ((@x1140 (unit-resolution @x155 @x966 @x815 @x969 x43$)))
   1.553 +(let (($x534 (or $x525 $x454)))
   1.554 +(let ((@x535 (asserted $x534)))
   1.555 +(let ((@x1142 (hypothesis $x468)))
   1.556 +(let ((@x1144 (unit-resolution @x222 (unit-resolution @x531 @x1140 $x524) @x897 @x1142 x50$)))
   1.557 +(let (($x621 (or $x595 $x539)))
   1.558 +(let ((@x622 (asserted $x621)))
   1.559 +(let ((@x1147 (unit-resolution @x202 (unit-resolution @x537 @x1140 $x516) (unit-resolution (asserted (or $x446 $x375)) @x1047 $x446) x48$)))
   1.560 +(let ((@x1149 (unit-resolution @x269 (unit-resolution @x592 @x1147 $x587) (unit-resolution @x622 @x1144 $x595) (unit-resolution @x535 @x1140 $x525) x55$)))
   1.561 +(let ((@x1152 (unit-resolution @x666 (unit-resolution @x307 (unit-resolution @x594 @x1147 $x588) x25$) @x1149 false)))
   1.562 +(let ((@x1154 (lemma @x1152 (or $x336 x17$ x44$ x11$))))
   1.563 +(let ((@x1190 (unit-resolution @x1154 (unit-resolution @x771 @x1188 @x1183 @x1182 @x756 $x538) (unit-resolution @x478 @x1185 $x468) (unit-resolution @x480 @x1185 $x453) $x336)))
   1.564 +(let ((@x1156 (unit-resolution @x559 (unit-resolution @x1013 @x728 @x1030 @x1031 @x845 x45$) $x552)))
   1.565 +(let ((@x1159 (unit-resolution @x506 (unit-resolution @x128 @x999 @x913 @x922 x40$) (unit-resolution @x242 @x1156 @x757 @x756 x46$) false)))
   1.566 +(let ((@x1163 (unit-resolution (lemma @x1159 (or $x438 x8$ x19$ x52$ x32$ x6$ x2$)) @x913 @x757 @x756 @x1030 @x1031 @x845 $x438)))
   1.567 +(let ((@x1166 (unit-resolution @x242 (unit-resolution @x498 (unit-resolution @x193 @x1163 @x974 x14$) $x496) @x757 @x756 x18$)))
   1.568 +(let ((@x1168 (unit-resolution @x175 (unit-resolution @x559 @x1166 $x482) @x882 (unit-resolution @x1090 @x913 @x974 $x481) x39$)))
   1.569 +(let ((@x1171 (unit-resolution @x368 (unit-resolution @x67 (unit-resolution @x421 @x1168 $x356) @x845 x3$) $x363)))
   1.570 +(let (($x501 (or $x495 $x425)))
   1.571 +(let ((@x502 (asserted $x501)))
   1.572 +(let ((@x1174 (unit-resolution @x370 (unit-resolution @x67 (unit-resolution @x421 @x1168 $x356) @x845 x3$) $x364)))
   1.573 +(let ((@x1175 (unit-resolution @x128 @x1174 @x913 (unit-resolution @x502 (unit-resolution @x193 @x1163 @x974 x14$) $x425) x9$)))
   1.574 +(let ((@x1178 (lemma (unit-resolution @x444 @x1175 (unit-resolution @x77 @x1171 x35$) false) (or x8$ x2$ x12$ x19$ x52$ x47$ x32$ x6$))))
   1.575 +(let ((@x1195 (unit-resolution @x1178 (unit-resolution @x352 (unit-resolution @x706 @x1190 x1$) $x347) @x1188 @x1182 @x756 @x1183 (unit-resolution (asserted (or $x397 $x348)) @x1185 $x348) (unit-resolution (asserted (or $x397 $x382)) @x1185 $x382) x8$)))
   1.576 +(let ((@x1197 (unit-resolution @x67 (unit-resolution @x417 @x1195 $x356) (unit-resolution @x352 (unit-resolution @x706 @x1190 x1$) $x347) x3$)))
   1.577 +(let ((@x1200 (unit-resolution @x442 (unit-resolution @x77 (unit-resolution @x368 @x1197 $x363) x35$) $x438)))
   1.578 +(let ((@x1203 (unit-resolution @x242 (unit-resolution @x498 (unit-resolution @x193 @x1200 @x1183 x14$) $x496) @x1182 @x756 x18$)))
   1.579 +(let ((@x1206 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x1200 @x1183 x14$) $x481) @x1188 (unit-resolution @x413 @x1195 $x411) x45$)))
   1.580 +(let ((@x1215 (unit-resolution (lemma (unit-resolution @x559 @x1206 @x1203 false) (or $x638 x52$)) @x756 $x638)))
   1.581 +(let (($x328 (or x28$ x58$)))
   1.582 +(let ((@x792 (monotonicity (iff-false (asserted (not x29$)) (= x29$ false)) (= (or x29$ x28$ x58$) (or false x28$ x58$)))))
   1.583 +(let ((@x796 (trans @x792 (rewrite (= (or false x28$ x58$) $x328)) (= (or x29$ x28$ x58$) $x328))))
   1.584 +(let (($x337 (or x29$ x28$ x58$)))
   1.585 +(let ((@x340 (mp (asserted (or x29$ $x328)) (rewrite (= (or x29$ $x328) $x337)) $x337)))
   1.586 +(let ((@x797 (mp @x340 @x796 $x328)))
   1.587 +(let (($x674 (not x28$)))
   1.588 +(let (($x675 (or $x674 $x667)))
   1.589 +(let ((@x676 (asserted $x675)))
   1.590 +(let ((@x1224 (unit-resolution @x676 (unit-resolution @x797 @x1215 x28$) $x667)))
   1.591 +(let ((@x1285 (hypothesis $x438)))
   1.592 +(let ((@x708 (hypothesis $x411)))
   1.593 +(let ((@x1210 (hypothesis $x496)))
   1.594 +(let ((@x1213 (unit-resolution @x242 (unit-resolution (asserted (or $x566 $x509)) (hypothesis x47$) $x566) @x1210 @x756 x18$)))
   1.595 +(let (($x554 (or $x552 $x553)))
   1.596 +(let ((@x555 (asserted $x554)))
   1.597 +(let (($x677 (or $x674 $x624)))
   1.598 +(let ((@x678 (asserted $x677)))
   1.599 +(let ((@x1217 (unit-resolution @x678 (unit-resolution @x797 @x1215 x28$) $x624)))
   1.600 +(let ((@x1219 (unit-resolution @x779 (unit-resolution @x584 (hypothesis x47$) $x580) x24$)))
   1.601 +(let (($x641 (or $x637 $x623)))
   1.602 +(let ((@x642 (asserted $x641)))
   1.603 +(let ((@x1221 (unit-resolution @x289 (unit-resolution @x642 @x1219 $x623) @x1217 (unit-resolution @x555 @x1213 $x553) x22$)))
   1.604 +(let ((@x1226 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1221 $x610) @x1224 x26$)))
   1.605 +(let (($x663 (or $x660 $x596)))
   1.606 +(let ((@x664 (asserted $x663)))
   1.607 +(let (($x589 (or $x587 $x588)))
   1.608 +(let ((@x590 (asserted $x589)))
   1.609 +(let ((@x1231 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1226 $x657) x54$) $x587)))
   1.610 +(let ((@x1232 (unit-resolution @x269 @x1231 (unit-resolution (asserted (or $x609 $x595)) @x1221 $x595) (unit-resolution @x664 @x1226 $x596) x49$)))
   1.611 +(let ((@x1234 (unit-resolution @x222 (unit-resolution @x527 @x1232 $x524) (unit-resolution @x557 @x1213 $x538) (unit-resolution @x616 @x1221 $x539) x44$)))
   1.612 +(let (($x475 (or $x468 $x453)))
   1.613 +(let ((@x476 (asserted $x475)))
   1.614 +(let ((@x1237 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1226 $x657) x54$) $x517)))
   1.615 +(let ((@x1239 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1232 $x516) @x1237 x42$)))
   1.616 +(let ((@x1241 (unit-resolution @x155 (unit-resolution @x448 @x1239 $x445) (unit-resolution @x535 @x1232 $x454) (unit-resolution @x476 @x1234 $x453) x37$)))
   1.617 +(let ((@x1243 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1239 $x375) x5$)))
   1.618 +(let (($x390 (or $x383 $x374)))
   1.619 +(let ((@x391 (asserted $x390)))
   1.620 +(let ((@x1246 (lemma (unit-resolution @x391 @x1243 @x1241 false) (or $x509 x46$ x52$))))
   1.621 +(let ((@x1247 (unit-resolution @x1246 @x1210 @x756 $x509)))
   1.622 +(let ((@x1249 (unit-resolution @x175 (unit-resolution @x1090 @x1247 @x913 $x481) @x882 @x708 x45$)))
   1.623 +(let (($x562 (or $x553 $x482)))
   1.624 +(let ((@x563 (asserted $x562)))
   1.625 +(let ((@x1252 (unit-resolution @x242 (unit-resolution @x559 @x1249 $x552) @x1210 @x756 x19$)))
   1.626 +(let ((@x1255 (unit-resolution @x642 (unit-resolution @x779 (unit-resolution @x582 @x1252 $x580) x24$) $x623)))
   1.627 +(let ((@x1256 (unit-resolution @x289 @x1255 @x1217 (unit-resolution @x563 @x1249 $x553) x22$)))
   1.628 +(let ((@x1260 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1256 $x610) @x1224 x26$)))
   1.629 +(let ((@x1265 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1260 $x657) x54$) $x587)))
   1.630 +(let ((@x1266 (unit-resolution @x269 @x1265 (unit-resolution (asserted (or $x609 $x595)) @x1256 $x595) (unit-resolution @x664 @x1260 $x596) x49$)))
   1.631 +(let ((@x1268 (unit-resolution @x222 (unit-resolution @x527 @x1266 $x524) (unit-resolution (asserted (or $x538 $x482)) @x1249 $x538) (unit-resolution @x616 @x1256 $x539) x44$)))
   1.632 +(let ((@x1271 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1260 $x657) x54$) $x517)))
   1.633 +(let ((@x1273 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1266 $x516) @x1271 x42$)))
   1.634 +(let ((@x1275 (unit-resolution @x155 (unit-resolution @x448 @x1273 $x445) (unit-resolution @x535 @x1266 $x454) (unit-resolution @x476 @x1268 $x453) x37$)))
   1.635 +(let ((@x1277 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1273 $x375) x5$)))
   1.636 +(let ((@x1280 (lemma (unit-resolution @x391 @x1277 @x1275 false) (or x46$ x52$ x12$ x39$ x8$))))
   1.637 +(let ((@x1282 (unit-resolution @x504 (unit-resolution @x1280 @x708 @x882 @x756 @x913 x46$) $x481)))
   1.638 +(let ((@x1284 (unit-resolution @x563 (unit-resolution @x175 @x1282 @x882 @x708 x45$) $x553)))
   1.639 +(let ((@x1286 (unit-resolution @x498 (unit-resolution @x1280 @x708 @x882 @x756 @x913 x46$) $x495)))
   1.640 +(let ((@x1289 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x193 @x1286 @x1285 x47$) $x580) x24$)))
   1.641 +(let ((@x1291 (unit-resolution @x289 (unit-resolution @x642 @x1289 $x623) @x1217 @x1284 x22$)))
   1.642 +(let (($x564 (or $x538 $x482)))
   1.643 +(let ((@x565 (asserted $x564)))
   1.644 +(let ((@x1293 (unit-resolution @x565 (unit-resolution @x175 @x1282 @x882 @x708 x45$) $x538)))
   1.645 +(let ((@x1295 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1291 $x610) @x1224 x26$)))
   1.646 +(let ((@x1300 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1295 $x657) x54$) $x587)))
   1.647 +(let ((@x1301 (unit-resolution @x269 @x1300 (unit-resolution (asserted (or $x609 $x595)) @x1291 $x595) (unit-resolution @x664 @x1295 $x596) x49$)))
   1.648 +(let ((@x1303 (unit-resolution @x222 (unit-resolution @x527 @x1301 $x524) @x1293 (unit-resolution @x616 @x1291 $x539) x44$)))
   1.649 +(let ((@x1306 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1295 $x657) x54$) $x517)))
   1.650 +(let ((@x1308 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1301 $x516) @x1306 x42$)))
   1.651 +(let ((@x1310 (unit-resolution @x155 (unit-resolution @x448 @x1308 $x445) (unit-resolution @x535 @x1301 $x454) (unit-resolution @x476 @x1303 $x453) x37$)))
   1.652 +(let ((@x1312 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1308 $x375) x5$)))
   1.653 +(let ((@x1315 (lemma (unit-resolution @x391 @x1312 @x1310 false) (or x39$ x12$ x41$ x52$ x8$))))
   1.654 +(let ((@x1317 (unit-resolution @x421 (unit-resolution @x1315 @x1285 @x882 @x756 @x913 x39$) $x356)))
   1.655 +(let ((@x1321 (unit-resolution @x77 (unit-resolution @x368 (unit-resolution @x67 @x1317 @x845 x3$) $x363) x35$)))
   1.656 +(let ((@x1323 (unit-resolution @x128 (unit-resolution @x444 @x1321 $x424) @x913 (unit-resolution @x370 (unit-resolution @x67 @x1317 @x845 x3$) $x364) x40$)))
   1.657 +(let ((@x1327 (unit-resolution @x1246 (unit-resolution @x193 (unit-resolution @x502 @x1323 $x495) @x1285 x47$) (unit-resolution @x506 @x1323 $x496) @x756 false)))
   1.658 +(let ((@x1330 (unit-resolution (lemma @x1327 (or x41$ x52$ x8$ x2$ x12$)) @x845 @x913 @x756 @x882 x41$)))
   1.659 +(let ((@x1334 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x1330 $x371) x4$) $x364)))
   1.660 +(let ((@x1335 (unit-resolution @x128 @x1334 @x913 (unit-resolution @x440 @x1330 $x424) x40$)))
   1.661 +(let ((@x1337 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x1330 $x371) x4$) $x355)))
   1.662 +(let ((@x1340 (unit-resolution @x1280 (unit-resolution @x421 (unit-resolution @x67 @x1337 @x845 x33$) $x411) (unit-resolution @x506 @x1335 $x496) @x882 @x756 @x913 false)))
   1.663 +(let ((@x1343 (unit-resolution (lemma @x1340 (or x2$ x12$ x52$ x8$)) @x913 @x756 @x882 x2$)))
   1.664 +(let ((@x1345 (unit-resolution @x706 (unit-resolution @x352 @x1343 $x335) x31$)))
   1.665 +(let (($x451 (or $x446 $x375)))
   1.666 +(let ((@x452 (asserted $x451)))
   1.667 +(let ((@x1348 (unit-resolution @x452 (unit-resolution @x725 (unit-resolution @x395 @x1345 $x374) x36$) $x446)))
   1.668 +(let ((@x1349 (unit-resolution @x450 (unit-resolution @x725 (unit-resolution @x395 @x1345 $x374) x36$) $x445)))
   1.669 +(let ((@x1354 (unit-resolution @x419 (unit-resolution @x1280 @x1210 @x882 @x756 @x913 x39$) $x396)))
   1.670 +(let ((@x1355 (unit-resolution @x108 @x1354 (unit-resolution @x350 @x1343 $x348) (unit-resolution @x389 @x1345 $x382) x38$)))
   1.671 +(let ((@x1357 (unit-resolution @x155 (unit-resolution @x480 @x1355 $x453) (unit-resolution @x393 @x1345 $x383) @x1349 x43$)))
   1.672 +(let ((@x1360 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1357 $x516) @x1348 x48$) $x588)))
   1.673 +(let ((@x1364 (unit-resolution @x1154 (unit-resolution @x478 @x1355 $x468) @x1345 (unit-resolution @x480 @x1355 $x453) x17$)))
   1.674 +(let (($x560 (or $x553 $x538)))
   1.675 +(let ((@x561 (asserted $x560)))
   1.676 +(let ((@x1367 (unit-resolution @x582 (unit-resolution @x771 @x1364 @x882 @x1247 @x756 x19$) $x580)))
   1.677 +(let ((@x1370 (unit-resolution @x289 (unit-resolution @x642 (unit-resolution @x779 @x1367 x24$) $x623) @x1217 (unit-resolution @x561 @x1364 $x553) x22$)))
   1.678 +(let (($x611 (or $x609 $x610)))
   1.679 +(let ((@x612 (asserted $x611)))
   1.680 +(let ((@x1372 (unit-resolution @x325 (unit-resolution @x612 @x1370 $x610) (unit-resolution @x662 (unit-resolution @x307 @x1360 x25$) $x660) @x1224 false)))
   1.681 +(let ((@x1384 (unit-resolution (lemma @x1372 (or x46$ x12$ x52$ x8$)) @x913 @x756 @x882 x46$)))
   1.682 +(let ((@x1376 (unit-resolution (lemma @x891 (or $x610 x47$ x19$ x52$)) @x974 (unit-resolution (asserted (or $x566 $x496)) (hypothesis x46$) $x566) @x756 $x610)))
   1.683 +(let ((@x1379 (unit-resolution @x594 (unit-resolution @x844 @x974 (hypothesis x46$) x48$) $x588)))
   1.684 +(let ((@x1381 (unit-resolution @x662 (unit-resolution @x307 @x1379 x25$) (unit-resolution @x325 @x1376 @x1224 x26$) false)))
   1.685 +(let ((@x1383 (lemma @x1381 (or x47$ x52$ $x496))))
   1.686 +(let (($x512 (or $x509 $x438)))
   1.687 +(let ((@x513 (asserted $x512)))
   1.688 +(let ((@x1387 (unit-resolution @x1315 (unit-resolution @x513 (unit-resolution @x1383 @x1384 @x756 x47$) $x438) @x882 @x756 @x913 x39$)))
   1.689 +(let ((@x1389 (unit-resolution @x108 (unit-resolution @x419 @x1387 $x396) (unit-resolution @x350 @x1343 $x348) (unit-resolution @x389 @x1345 $x382) x38$)))
   1.690 +(let ((@x1391 (unit-resolution @x155 (unit-resolution @x480 @x1389 $x453) (unit-resolution @x393 @x1345 $x383) @x1349 x43$)))
   1.691 +(let ((@x1394 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1391 $x516) @x1348 x48$) $x588)))
   1.692 +(let ((@x1397 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x1383 @x1384 @x756 x47$) $x580) x24$)))
   1.693 +(let ((@x1400 (unit-resolution @x1154 (unit-resolution @x480 @x1389 $x453) @x1345 (unit-resolution @x478 @x1389 $x468) x17$)))
   1.694 +(let ((@x1402 (unit-resolution @x289 (unit-resolution @x561 @x1400 $x553) @x1217 (unit-resolution @x642 @x1397 $x623) x22$)))
   1.695 +(let ((@x1405 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1402 $x610) @x1224 x26$) (unit-resolution @x307 @x1394 x25$) false)))
   1.696 +(let ((@x1440 (unit-resolution (lemma @x1405 (or x8$ x12$ x52$)) @x882 @x756 x8$)))
   1.697 +(let ((@x1411 (unit-resolution @x242 (unit-resolution @x559 (hypothesis x45$) $x552) @x1210 @x756 x19$)))
   1.698 +(let ((@x1414 (unit-resolution @x642 (unit-resolution @x779 (unit-resolution @x582 @x1411 $x580) x24$) $x623)))
   1.699 +(let ((@x1415 (unit-resolution @x289 @x1414 @x1217 (unit-resolution @x563 (hypothesis x45$) $x553) x22$)))
   1.700 +(let ((@x1418 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1415 $x610) @x1224 x26$) $x657)))
   1.701 +(let ((@x1421 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x612 @x1415 $x610) @x1224 x26$) $x596)))
   1.702 +(let ((@x1424 (unit-resolution @x269 (unit-resolution @x590 (unit-resolution @x307 @x1418 x54$) $x587) (unit-resolution (asserted (or $x609 $x595)) @x1415 $x595) @x1421 x49$)))
   1.703 +(let (($x532 (or $x525 $x516)))
   1.704 +(let ((@x533 (asserted $x532)))
   1.705 +(let ((@x1426 (unit-resolution @x202 (unit-resolution @x533 @x1424 $x516) (unit-resolution @x594 (unit-resolution @x307 @x1418 x54$) $x517) x42$)))
   1.706 +(let ((@x1432 (unit-resolution @x222 (unit-resolution @x527 @x1424 $x524) (unit-resolution @x565 (hypothesis x45$) $x538) (unit-resolution @x616 @x1415 $x539) x44$)))
   1.707 +(let ((@x1434 (unit-resolution @x155 (unit-resolution @x476 @x1432 $x453) (unit-resolution @x535 @x1424 $x454) (unit-resolution @x448 @x1426 $x445) x37$)))
   1.708 +(let ((@x1437 (unit-resolution @x391 (unit-resolution @x725 (unit-resolution @x452 @x1426 $x375) x5$) @x1434 false)))
   1.709 +(let ((@x1444 (unit-resolution @x175 (unit-resolution (lemma @x1437 (or $x482 x46$ x52$)) @x1210 @x756 $x482) @x882 (unit-resolution @x413 @x1440 $x411) x13$)))
   1.710 +(let ((@x1447 (unit-resolution @x442 (unit-resolution @x193 (unit-resolution @x500 @x1444 $x495) @x1247 x41$) $x371)))
   1.711 +(let ((@x1450 (unit-resolution @x67 (unit-resolution @x368 (unit-resolution @x77 @x1447 x4$) $x355) (unit-resolution @x417 @x1440 $x356) x2$)))
   1.712 +(let ((@x1452 (unit-resolution @x706 (unit-resolution @x352 @x1450 $x335) x31$)))
   1.713 +(let ((@x1455 (unit-resolution @x452 (unit-resolution @x725 (unit-resolution @x395 @x1452 $x374) x36$) $x446)))
   1.714 +(let ((@x1457 (unit-resolution @x1011 (unit-resolution @x368 (unit-resolution @x77 @x1447 x4$) $x355) @x1440 x38$)))
   1.715 +(let ((@x1459 (unit-resolution @x450 (unit-resolution @x725 (unit-resolution @x395 @x1452 $x374) x36$) $x445)))
   1.716 +(let ((@x1460 (unit-resolution @x155 @x1459 (unit-resolution @x480 @x1457 $x453) (unit-resolution @x393 @x1452 $x383) x43$)))
   1.717 +(let ((@x1463 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1460 $x516) @x1455 x48$) $x588)))
   1.718 +(let ((@x1466 (unit-resolution @x1154 @x1452 (unit-resolution @x478 @x1457 $x468) (unit-resolution @x480 @x1457 $x453) x17$)))
   1.719 +(let ((@x1469 (unit-resolution @x582 (unit-resolution @x771 @x1466 @x882 @x1247 @x756 x19$) $x580)))
   1.720 +(let ((@x1472 (unit-resolution @x289 (unit-resolution @x642 (unit-resolution @x779 @x1469 x24$) $x623) @x1217 (unit-resolution @x561 @x1466 $x553) x22$)))
   1.721 +(let ((@x1475 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1472 $x610) @x1224 x26$) (unit-resolution @x307 @x1463 x25$) false)))
   1.722 +(let ((@x1478 (unit-resolution (lemma @x1475 (or x46$ x12$ x52$)) @x882 @x756 x46$)))
   1.723 +(let ((@x1480 (unit-resolution @x175 (unit-resolution @x504 @x1478 $x481) @x882 (unit-resolution @x413 @x1440 $x411) x45$)))
   1.724 +(let ((@x1484 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x1383 @x1478 @x756 x47$) $x580) x24$)))
   1.725 +(let ((@x1486 (unit-resolution @x289 (unit-resolution @x642 @x1484 $x623) @x1217 (unit-resolution @x563 @x1480 $x553) x22$)))
   1.726 +(let ((@x1491 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x612 @x1486 $x610) @x1224 x26$) $x596)))
   1.727 +(let ((@x1493 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1486 $x610) @x1224 x26$) $x657)))
   1.728 +(let ((@x1496 (unit-resolution @x269 (unit-resolution @x590 (unit-resolution @x307 @x1493 x54$) $x587) (unit-resolution (asserted (or $x609 $x595)) @x1486 $x595) @x1491 x49$)))
   1.729 +(let ((@x1498 (unit-resolution @x222 (unit-resolution @x527 @x1496 $x524) (unit-resolution @x565 @x1480 $x538) (unit-resolution @x616 @x1486 $x539) x44$)))
   1.730 +(let ((@x1503 (unit-resolution @x202 (unit-resolution @x533 @x1496 $x516) (unit-resolution @x594 (unit-resolution @x307 @x1493 x54$) $x517) x42$)))
   1.731 +(let ((@x1505 (unit-resolution @x155 (unit-resolution @x448 @x1503 $x445) (unit-resolution @x535 @x1496 $x454) (unit-resolution @x476 @x1498 $x453) x37$)))
   1.732 +(let ((@x1508 (unit-resolution @x391 (unit-resolution @x725 (unit-resolution @x452 @x1503 $x375) x5$) @x1505 false)))
   1.733 +(let ((@x1576 (unit-resolution @x472 (unit-resolution (lemma @x1508 (or x12$ x52$)) @x756 x12$) $x453)))
   1.734 +(let ((@x1547 (hypothesis $x667)))
   1.735 +(let ((@x1557 (unit-resolution @x325 (unit-resolution @x612 (hypothesis x22$) $x610) @x1547 x26$)))
   1.736 +(let ((@x1561 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1557 $x657) x54$) $x587)))
   1.737 +(let ((@x1562 (unit-resolution @x269 @x1561 (unit-resolution @x664 @x1557 $x596) (unit-resolution (asserted (or $x609 $x595)) (hypothesis x22$) $x595) x49$)))
   1.738 +(let ((@x1564 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1557 $x657) x54$) $x517)))
   1.739 +(let ((@x1512 (unit-resolution @x391 @x738 (unit-resolution @x155 @x830 @x832 @x815 x37$) false)))
   1.740 +(let ((@x1514 (lemma @x1512 (or $x446 x43$ x11$))))
   1.741 +(let ((@x1567 (unit-resolution @x1514 (unit-resolution @x202 (unit-resolution @x533 @x1562 $x516) @x1564 x42$) (unit-resolution @x535 @x1562 $x454) @x815 false)))
   1.742 +(let ((@x1569 (lemma @x1567 (or $x609 x11$ x27$))))
   1.743 +(let ((@x1584 (hypothesis $x446)))
   1.744 +(let ((@x1587 (unit-resolution @x307 (unit-resolution @x662 (hypothesis x26$) $x657) x54$)))
   1.745 +(let ((@x1590 (unit-resolution @x529 (unit-resolution @x202 (unit-resolution @x594 @x1587 $x517) @x1584 x15$) $x524)))
   1.746 +(let ((@x1594 (unit-resolution @x533 (unit-resolution @x202 (unit-resolution @x594 @x1587 $x517) @x1584 x15$) $x525)))
   1.747 +(let ((@x1595 (unit-resolution @x269 @x1594 (unit-resolution @x664 (hypothesis x26$) $x596) (unit-resolution @x590 @x1587 $x587) x21$)))
   1.748 +(let ((@x1596 (unit-resolution @x622 @x1595 (unit-resolution @x222 @x1590 @x1142 @x897 x50$) false)))
   1.749 +(let ((@x1599 (unit-resolution (lemma @x1596 (or $x660 x44$ x17$ x42$)) @x1584 @x897 @x1142 $x660)))
   1.750 +(let ((@x1602 (unit-resolution @x222 (unit-resolution @x620 (unit-resolution @x325 @x1599 @x1547 x56$) $x539) @x1142 @x897 x16$)))
   1.751 +(let ((@x1607 (unit-resolution @x592 (unit-resolution @x202 (unit-resolution @x529 @x1602 $x516) @x1584 x48$) $x587)))
   1.752 +(let ((@x1608 (unit-resolution @x269 @x1607 (unit-resolution @x618 (unit-resolution @x325 @x1599 @x1547 x56$) $x595) (unit-resolution @x527 @x1602 $x525) x55$)))
   1.753 +(let ((@x1609 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x529 @x1602 $x516) @x1584 x48$) $x588)))
   1.754 +(let ((@x1613 (lemma (unit-resolution @x666 (unit-resolution @x307 @x1609 x25$) @x1608 false) (or x42$ x44$ x17$ x27$))))
   1.755 +(let ((@x1615 (unit-resolution @x448 (unit-resolution @x1613 @x897 @x1021 @x1547 x42$) $x445)))
   1.756 +(let ((@x1616 (unit-resolution @x1514 (unit-resolution @x1613 @x897 @x1021 @x1547 x42$) @x889 x43$)))
   1.757 +(let (($x463 (or $x454 $x383)))
   1.758 +(let ((@x464 (asserted $x463)))
   1.759 +(let ((@x1618 (unit-resolution @x1075 (unit-resolution @x464 @x1616 $x383) @x1020 @x897 @x1615 x50$)))
   1.760 +(let ((@x1621 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x620 @x1618 $x610) @x1547 x26$) $x657)))
   1.761 +(let ((@x1625 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x620 @x1618 $x610) @x1547 x26$) $x596)))
   1.762 +(let ((@x1626 (unit-resolution @x269 @x1625 (unit-resolution @x622 @x1618 $x595) (unit-resolution @x535 @x1616 $x525) x20$)))
   1.763 +(let ((@x1629 (lemma (unit-resolution @x590 @x1626 (unit-resolution @x307 @x1621 x54$) false) (or x17$ x27$ $x467))))
   1.764 +(let ((@x1630 (unit-resolution @x1629 @x1224 (unit-resolution (lemma @x1508 (or x12$ x52$)) @x756 x12$) x17$)))
   1.765 +(let ((@x1632 (unit-resolution @x289 (unit-resolution @x561 @x1630 $x553) @x1217 (unit-resolution @x1569 @x1576 @x1224 $x609) x23$)))
   1.766 +(let ((@x1635 (unit-resolution @x584 (unit-resolution @x779 (unit-resolution @x642 @x1632 $x637) x53$) $x509)))
   1.767 +(let ((@x1637 (unit-resolution @x582 (unit-resolution @x779 (unit-resolution @x642 @x1632 $x637) x53$) $x566)))
   1.768 +(let ((@x1638 (unit-resolution @x242 @x1637 (unit-resolution @x557 @x1630 $x552) @x756 x46$)))
   1.769 +(let ((@x1640 (lemma (unit-resolution @x1383 @x1638 @x1635 @x756 false) x52$)))
   1.770 +(let (($x647 (or $x638 $x567)))
   1.771 +(let ((@x648 (asserted $x647)))
   1.772 +(let ((@x1665 (unit-resolution @x676 (unit-resolution @x797 (unit-resolution @x648 @x1640 $x638) x28$) $x667)))
   1.773 +(let ((@x1668 (unit-resolution (unit-resolution @x1569 @x1665 (or $x609 x11$)) @x815 $x609)))
   1.774 +(let ((@x1669 (unit-resolution @x678 (unit-resolution @x797 (unit-resolution @x648 @x1640 $x638) x28$) $x624)))
   1.775 +(let ((@x1671 (unit-resolution @x289 (unit-resolution (asserted (or $x623 $x567)) @x1640 $x623) @x1669 (or x22$ x51$))))
   1.776 +(let ((@x1673 (unit-resolution @x563 (unit-resolution @x1671 @x1668 x51$) $x482)))
   1.777 +(let ((@x1676 (unit-resolution (unit-resolution @x1629 @x1665 (or x17$ $x467)) @x897 $x467)))
   1.778 +(let ((@x1650 (unit-resolution @x77 (unit-resolution @x368 (hypothesis x3$) $x363) x35$)))
   1.779 +(let ((@x1579 (unit-resolution @x779 (unit-resolution (asserted (or $x637 $x567)) @x1640 $x637) x53$)))
   1.780 +(let ((@x1580 (unit-resolution @x584 @x1579 $x509)))
   1.781 +(let ((@x1653 (unit-resolution (unit-resolution @x193 @x1580 (or x14$ x41$)) (unit-resolution @x442 @x1650 $x438) x14$)))
   1.782 +(let ((@x1655 (unit-resolution @x175 (unit-resolution @x500 @x1653 $x481) @x882 @x998 x39$)))
   1.783 +(let ((@x1659 (unit-resolution @x128 (unit-resolution @x502 @x1653 $x425) (unit-resolution @x444 @x1650 $x424) (unit-resolution @x370 (hypothesis x3$) $x364) x8$)))
   1.784 +(let ((@x1662 (lemma (unit-resolution @x413 @x1659 @x1655 false) (or $x355 x12$ x45$))))
   1.785 +(let ((@x1574 (unit-resolution (unit-resolution @x1090 @x1580 (or $x481 x8$)) (unit-resolution @x1011 @x942 @x853 $x410) $x481)))
   1.786 +(let ((@x1581 (unit-resolution @x419 (unit-resolution @x175 @x1574 @x882 @x998 x39$) $x396)))
   1.787 +(let ((@x1582 (unit-resolution @x421 (unit-resolution @x175 @x1574 @x882 @x998 x39$) $x356)))
   1.788 +(let ((@x1642 (unit-resolution @x108 (unit-resolution @x350 (unit-resolution @x67 @x1582 @x942 x2$) $x348) @x1581 @x853 x6$)))
   1.789 +(let ((@x1644 (unit-resolution @x706 (unit-resolution @x352 (unit-resolution @x67 @x1582 @x942 x2$) $x335) x31$)))
   1.790 +(let ((@x1647 (lemma (unit-resolution @x389 @x1644 @x1642 false) (or x3$ x38$ x12$ x45$))))
   1.791 +(let ((@x1678 (unit-resolution @x1647 (unit-resolution @x1662 @x1673 @x1676 $x355) @x1676 @x1673 x38$)))
   1.792 +(let ((@x1681 (unit-resolution @x706 (unit-resolution @x1154 (unit-resolution @x478 @x1678 $x468) @x897 @x815 $x336) x1$)))
   1.793 +(let ((@x1683 (unit-resolution @x67 (unit-resolution @x352 @x1681 $x347) (unit-resolution @x1662 @x1673 @x1676 $x355) x33$)))
   1.794 +(let ((@x1686 (unit-resolution (unit-resolution @x1090 @x1580 (or $x481 x8$)) (unit-resolution @x417 @x1683 $x410) $x481)))
   1.795 +(let ((@x1687 (unit-resolution @x175 @x1686 (unit-resolution @x421 @x1683 $x411) @x1676 @x1673 false)))
   1.796 +(let ((@x1691 (unit-resolution @x480 (unit-resolution (lemma @x1687 (or x11$ x17$)) @x897 x11$) $x397)))
   1.797 +(let ((@x1692 (unit-resolution @x476 (unit-resolution (lemma @x1687 (or x11$ x17$)) @x897 x11$) $x468)))
   1.798 +(let ((@x1695 (unit-resolution (unit-resolution @x1613 @x1665 (or x42$ x44$ x17$)) @x1692 @x897 x42$)))
   1.799 +(let ((@x1700 (unit-resolution (unit-resolution @x769 @x1580 (or $x374 x45$ x12$ x38$)) (unit-resolution @x725 (unit-resolution @x452 @x1695 $x375) x5$) @x1676 @x1691 x45$)))
   1.800 +(let ((@x1702 (unit-resolution @x1671 (unit-resolution @x563 @x1700 $x553) x22$)))
   1.801 +(let ((@x1705 (unit-resolution (unit-resolution @x325 @x1665 (or x26$ x56$)) (unit-resolution @x612 @x1702 $x610) x26$)))
   1.802 +(let ((@x1709 (unit-resolution @x222 (unit-resolution @x616 @x1702 $x539) @x897 @x1692 x16$)))
   1.803 +(let ((@x1713 (unit-resolution @x269 (unit-resolution @x664 @x1705 $x596) (unit-resolution (asserted (or $x609 $x595)) @x1702 $x595) (unit-resolution @x527 @x1709 $x525) x20$)))
   1.804 +(let ((@x1714 (unit-resolution @x590 @x1713 (unit-resolution @x307 (unit-resolution @x662 @x1705 $x657) x54$) false)))
   1.805 +(let ((@x1715 (lemma @x1714 x17$)))
   1.806 +(let ((@x1718 (unit-resolution (unit-resolution @x1569 @x1665 (or $x609 x11$)) (unit-resolution @x1671 (unit-resolution @x561 @x1715 $x553) x22$) x11$)))
   1.807 +(let ((@x1722 (unit-resolution @x1662 (unit-resolution @x472 @x1718 $x467) (unit-resolution @x565 @x1715 $x482) $x355)))
   1.808 +(unit-resolution @x1647 @x1722 (unit-resolution @x472 @x1718 $x467) (unit-resolution @x565 @x1715 $x482) (unit-resolution @x480 @x1718 $x397) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
   1.809 +
   1.810 +cc18a32517b61d11530e29950c780e58afa4da51 38 0
   1.811 +unsat
   1.812 +((set-logic AUFLIA)
   1.813 +(declare-fun ?v0!0 () Int)
   1.814 +(declare-fun ?v1!1 () Int)
   1.815 +(proof
   1.816 +(let (($x48 (p$ ?v0!0)))
   1.817 +(let (($x50 (not $x48)))
   1.818 +(let (($x63 (not (or $x48 (p$ ?v1!1)))))
   1.819 +(let ((@x77 (monotonicity (rewrite (= (not $x50) $x48)) (= (and (not $x50) $x63) (and $x48 $x63)))))
   1.820 +(let (($x57 (not $x50)))
   1.821 +(let (($x67 (and $x57 $x63)))
   1.822 +(let (($x41 (forall ((?v0 Int) )(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
   1.823 +(or (p$ ?v0) $x28)))
   1.824 +))
   1.825 +(or (not (p$ ?v0)) $x32)))
   1.826 +))
   1.827 +(let (($x44 (not $x41)))
   1.828 +(let (($x52 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
   1.829 +(let (($x48 (p$ ?v0!0)))
   1.830 +(or $x48 $x28))))
   1.831 +))
   1.832 +(let ((@x69 (nnf-neg (refl (~ $x57 $x57)) (sk (~ (not $x52) $x63)) (~ (not (or $x50 $x52)) $x67))))
   1.833 +(let (($x34 (forall ((?v0 Int) )(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
   1.834 +(or (p$ ?v0) $x28)))
   1.835 +))
   1.836 +(let (($x28 (p$ ?v0)))
   1.837 +(=> $x28 $x32))))
   1.838 +))
   1.839 +(let (($x35 (not $x34)))
   1.840 +(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
   1.841 +(or (p$ ?0) $x28)))
   1.842 +))
   1.843 +(let ((@x43 (quant-intro (rewrite (= (=> (p$ ?0) $x32) (or (not (p$ ?0)) $x32))) (= $x34 $x41))))
   1.844 +(let ((@x72 (mp~ (mp (asserted $x35) (monotonicity @x43 (= $x35 $x44)) $x44) (trans (sk (~ $x44 (not (or $x50 $x52)))) @x69 (~ $x44 $x67)) $x67)))
   1.845 +(let ((@x81 (not-or-elim (and-elim (mp @x72 @x77 (and $x48 $x63)) $x63) $x50)))
   1.846 +(let ((@x79 (and-elim (mp @x72 @x77 (and $x48 $x63)) $x48)))
   1.847 +(unit-resolution @x79 @x81 false))))))))))))))))))))
   1.848 +
   1.849 +f69da5e318af2ccb1aaa30033e9780c0075e7706 53 0
   1.850 +unsat
   1.851 +((set-logic AUFLIA)
   1.852 +(declare-fun ?v0!0 () A$)
   1.853 +(proof
   1.854 +(let (($x517 (forall ((?v0 A$) )(!(let (($x40 (p$ x$ ?v0)))
   1.855 +(not $x40)) :pattern ( (p$ x$ ?v0) )))
   1.856 +))
   1.857 +(let (($x44 (p$ x$ c$)))
   1.858 +(let (($x91 (= $x44 x$)))
   1.859 +(let (($x510 (forall ((?v0 Bool) (?v1 A$) )(!(let (($x29 (p$ ?v0 ?v1)))
   1.860 +(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) )))
   1.861 +))
   1.862 +(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
   1.863 +(= $x29 ?v0)))
   1.864 +))
   1.865 +(let ((@x514 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x510))))
   1.866 +(let ((@x64 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36))))
   1.867 +(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
   1.868 +(= $x29 ?v0)))
   1.869 +))
   1.870 +(let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36))))
   1.871 +(let ((@x515 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x64 $x36) @x514 $x510)))
   1.872 +(let (($x170 (or (not $x510) $x91)))
   1.873 +(let ((@x503 ((_ quant-inst x$ c$) $x170)))
   1.874 +(let (($x73 (p$ x$ ?v0!0)))
   1.875 +(let (($x179 (= $x73 x$)))
   1.876 +(let (($x85 (or $x73 $x44)))
   1.877 +(let (($x81 (not $x44)))
   1.878 +(let (($x69 (forall ((?v0 A$) )(let (($x40 (p$ x$ ?v0)))
   1.879 +(not $x40)))
   1.880 +))
   1.881 +(let (($x84 (or $x69 $x81)))
   1.882 +(let (($x42 (exists ((?v0 A$) )(p$ x$ ?v0))
   1.883 +))
   1.884 +(let (($x54 (not $x42)))
   1.885 +(let (($x55 (= $x54 $x44)))
   1.886 +(let ((@x71 (nnf-neg (refl (~ (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (~ $x54 $x69))))
   1.887 +(let ((@x88 (nnf-pos @x71 (nnf-neg (sk (~ $x42 $x73)) (~ (not $x54) $x73)) (refl (~ $x44 $x44)) (refl (~ $x81 $x81)) (~ $x55 (and $x85 $x84)))))
   1.888 +(let ((@x53 (monotonicity (rewrite (= (= $x42 $x44) (= $x42 $x44))) (= (not (= $x42 $x44)) (not (= $x42 $x44))))))
   1.889 +(let ((@x59 (trans @x53 (rewrite (= (not (= $x42 $x44)) $x55)) (= (not (= $x42 $x44)) $x55))))
   1.890 +(let ((@x89 (mp~ (mp (asserted (not (= $x42 $x44))) @x59 $x55) @x88 (and $x85 $x84))))
   1.891 +(let ((@x92 (and-elim @x89 $x85)))
   1.892 +(let ((@x484 (unit-resolution (def-axiom (or (not $x179) (not $x73) x$)) (unit-resolution @x92 (hypothesis $x81) $x73) (or (not $x179) x$))))
   1.893 +(let ((@x145 (unit-resolution @x484 (unit-resolution ((_ quant-inst x$ ?v0!0) (or (not $x510) $x179)) @x515 $x179) x$)))
   1.894 +(let ((@x147 (unit-resolution (def-axiom (or (not $x91) $x44 (not x$))) (hypothesis $x81) (or (not $x91) (not x$)))))
   1.895 +(let ((@x485 (lemma (unit-resolution @x147 @x145 (unit-resolution @x503 @x515 $x91) false) $x44)))
   1.896 +(let (($x522 (or $x517 $x81)))
   1.897 +(let ((@x521 (quant-intro (refl (= (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (= $x69 $x517))))
   1.898 +(let ((@x525 (mp (and-elim @x89 $x84) (monotonicity @x521 (= $x84 $x522)) $x522)))
   1.899 +(let (($x160 (or (not $x517) $x81)))
   1.900 +(let ((@x161 ((_ quant-inst c$) $x160)))
   1.901 +(unit-resolution @x161 @x485 (unit-resolution @x525 @x485 $x517) false)))))))))))))))))))))))))))))))))))))))
   1.902 +
   1.903 +853b35db7beb7a5b039f102f0403b2d296edcda0 53 0
   1.904 +unsat
   1.905 +((set-logic AUFLIA)
   1.906 +(declare-fun ?v0!3 () A$)
   1.907 +(proof
   1.908 +(let (($x584 (forall ((?v0 A$) )(!(let (($x52 (p$ x$ ?v0)))
   1.909 +(not $x52)) :pattern ( (p$ x$ ?v0) )))
   1.910 +))
   1.911 +(let (($x55 (p$ x$ c$)))
   1.912 +(let (($x230 (= $x55 x$)))
   1.913 +(let (($x561 (forall ((?v0 Bool) (?v1 A$) )(!(let (($x29 (p$ ?v0 ?v1)))
   1.914 +(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) )))
   1.915 +))
   1.916 +(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
   1.917 +(= $x29 ?v0)))
   1.918 +))
   1.919 +(let ((@x565 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x561))))
   1.920 +(let ((@x75 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36))))
   1.921 +(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
   1.922 +(= $x29 ?v0)))
   1.923 +))
   1.924 +(let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36))))
   1.925 +(let ((@x566 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x75 $x36) @x565 $x561)))
   1.926 +(let (($x220 (or (not $x561) $x230)))
   1.927 +(let ((@x221 ((_ quant-inst x$ c$) $x220)))
   1.928 +(let (($x124 (p$ x$ ?v0!3)))
   1.929 +(let (($x141 (= $x124 x$)))
   1.930 +(let (($x136 (or $x124 $x55)))
   1.931 +(let (($x132 (not $x55)))
   1.932 +(let (($x120 (forall ((?v0 A$) )(let (($x52 (p$ x$ ?v0)))
   1.933 +(not $x52)))
   1.934 +))
   1.935 +(let (($x135 (or $x120 $x132)))
   1.936 +(let (($x54 (exists ((?v0 A$) )(p$ x$ ?v0))
   1.937 +))
   1.938 +(let (($x65 (not $x54)))
   1.939 +(let (($x66 (= $x65 $x55)))
   1.940 +(let ((@x122 (nnf-neg (refl (~ (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (~ $x65 $x120))))
   1.941 +(let ((@x139 (nnf-pos @x122 (nnf-neg (sk (~ $x54 $x124)) (~ (not $x65) $x124)) (refl (~ $x55 $x55)) (refl (~ $x132 $x132)) (~ $x66 (and $x136 $x135)))))
   1.942 +(let ((@x64 (monotonicity (rewrite (= (= $x54 $x55) (= $x54 $x55))) (= (not (= $x54 $x55)) (not (= $x54 $x55))))))
   1.943 +(let ((@x70 (trans @x64 (rewrite (= (not (= $x54 $x55)) $x66)) (= (not (= $x54 $x55)) $x66))))
   1.944 +(let ((@x140 (mp~ (mp (asserted (not (= $x54 $x55))) @x70 $x66) @x139 (and $x136 $x135))))
   1.945 +(let ((@x143 (and-elim @x140 $x136)))
   1.946 +(let ((@x193 (unit-resolution (def-axiom (or (not $x141) (not $x124) x$)) (unit-resolution @x143 (hypothesis $x132) $x124) (or (not $x141) x$))))
   1.947 +(let ((@x535 (unit-resolution @x193 (unit-resolution ((_ quant-inst x$ ?v0!3) (or (not $x561) $x141)) @x566 $x141) x$)))
   1.948 +(let ((@x197 (unit-resolution (def-axiom (or (not $x230) $x55 (not x$))) (hypothesis $x132) (or (not $x230) (not x$)))))
   1.949 +(let ((@x199 (lemma (unit-resolution @x197 @x535 (unit-resolution @x221 @x566 $x230) false) $x55)))
   1.950 +(let (($x589 (or $x584 $x132)))
   1.951 +(let ((@x588 (quant-intro (refl (= (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (= $x120 $x584))))
   1.952 +(let ((@x592 (mp (and-elim @x140 $x135) (monotonicity @x588 (= $x135 $x589)) $x589)))
   1.953 +(let (($x549 (or (not $x584) $x132)))
   1.954 +(let ((@x211 ((_ quant-inst c$) $x549)))
   1.955 +(unit-resolution @x211 @x199 (unit-resolution @x592 @x199 $x584) false)))))))))))))))))))))))))))))))))))))))
   1.956 +
   1.957 +ee1b9a27124d1797593a214fc9b1585b73aca864 26 0
   1.958 +unsat
   1.959 +((set-logic AUFLIA)
   1.960 +(proof
   1.961 +(let (($x28 (p$ x$)))
   1.962 +(let ((@x48 (monotonicity (rewrite (= (=> $x28 (p$ y$)) (or (not $x28) (p$ y$)))) (= (not (=> $x28 (p$ y$))) (not (or (not $x28) (p$ y$)))))))
   1.963 +(let ((@x51 (mp (asserted (not (=> $x28 (p$ y$)))) @x48 (not (or (not $x28) (p$ y$))))))
   1.964 +(let ((@x49 (not-or-elim @x51 $x28)))
   1.965 +(let (($x486 (forall ((?v0 A$) )(!(let (($x30 (p$ ?v0)))
   1.966 +(not $x30)) :pattern ( (p$ ?v0) )))
   1.967 +))
   1.968 +(let (($x34 (forall ((?v0 A$) )(let (($x30 (p$ ?v0)))
   1.969 +(not $x30)))
   1.970 +))
   1.971 +(let ((@x490 (quant-intro (refl (= (not (p$ ?0)) (not (p$ ?0)))) (= $x34 $x486))))
   1.972 +(let (($x31 (exists ((?v0 A$) )(p$ ?v0))
   1.973 +))
   1.974 +(let (($x32 (not $x31)))
   1.975 +(let ((@x59 (monotonicity (iff-true @x49 (= $x28 true)) (= (ite $x28 $x32 $x34) (ite true $x32 $x34)))))
   1.976 +(let ((@x63 (trans @x59 (rewrite (= (ite true $x32 $x34) $x32)) (= (ite $x28 $x32 $x34) $x32))))
   1.977 +(let ((@x67 (mp~ (mp (asserted (ite $x28 $x32 $x34)) @x63 $x32) (nnf-neg (refl (~ (not (p$ ?0)) (not (p$ ?0)))) (~ $x32 $x34)) $x34)))
   1.978 +(let ((@x491 (mp @x67 @x490 $x486)))
   1.979 +(let (($x42 (not $x28)))
   1.980 +(let (($x156 (or (not $x486) $x42)))
   1.981 +(let ((@x70 ((_ quant-inst x$) $x156)))
   1.982 +(unit-resolution @x70 @x491 @x49 false)))))))))))))))))))
   1.983 +
   1.984 +1b3bdde0d609ebf7ad7472d1510134c9c367d283 7 0
   1.985 +unsat
   1.986 +((set-logic AUFLIA)
   1.987 +(proof
   1.988 +(let ((@x35 (monotonicity (rewrite (= (= 3 3) true)) (= (not (= 3 3)) (not true)))))
   1.989 +(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3 3)) false))))
   1.990 +(mp (asserted (not (= 3 3))) @x39 false)))))
   1.991 +
   1.992 +a90c5a0ce94c691b0e4756f87e5d5fdbfd876893 7 0
   1.993 +unsat
   1.994 +((set-logic AUFLIRA)
   1.995 +(proof
   1.996 +(let ((@x35 (monotonicity (rewrite (= (= 3.0 3.0) true)) (= (not (= 3.0 3.0)) (not true)))))
   1.997 +(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3.0 3.0)) false))))
   1.998 +(mp (asserted (not (= 3.0 3.0))) @x39 false)))))
   1.999 +
  1.1000 +16d237209133b15bdc9c24699c793f8bdc748cd0 9 0
  1.1001 +unsat
  1.1002 +((set-logic AUFLIA)
  1.1003 +(proof
  1.1004 +(let ((@x37 (monotonicity (rewrite (= (+ 3 1) 4)) (= (= (+ 3 1) 4) (= 4 4)))))
  1.1005 +(let ((@x41 (trans @x37 (rewrite (= (= 4 4) true)) (= (= (+ 3 1) 4) true))))
  1.1006 +(let ((@x44 (monotonicity @x41 (= (not (= (+ 3 1) 4)) (not true)))))
  1.1007 +(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (+ 3 1) 4)) false))))
  1.1008 +(mp (asserted (not (= (+ 3 1) 4))) @x48 false)))))))
  1.1009 +
  1.1010 +bc021898e31cb7c6419a072d70191b97605bee76 16 0
  1.1011 +unsat
  1.1012 +((set-logic AUFLIA)
  1.1013 +(proof
  1.1014 +(let ((?x32 (+ z$ x$)))
  1.1015 +(let ((?x33 (+ y$ ?x32)))
  1.1016 +(let ((?x30 (+ y$ z$)))
  1.1017 +(let ((?x31 (+ x$ ?x30)))
  1.1018 +(let (($x34 (= ?x31 ?x33)))
  1.1019 +(let (($x35 (not $x34)))
  1.1020 +(let ((@x45 (monotonicity (rewrite (= ?x32 (+ x$ z$))) (= ?x33 (+ y$ (+ x$ z$))))))
  1.1021 +(let ((@x49 (trans @x45 (rewrite (= (+ y$ (+ x$ z$)) (+ x$ y$ z$))) (= ?x33 (+ x$ y$ z$)))))
  1.1022 +(let ((@x52 (monotonicity (rewrite (= ?x31 (+ x$ y$ z$))) @x49 (= $x34 (= (+ x$ y$ z$) (+ x$ y$ z$))))))
  1.1023 +(let ((@x56 (trans @x52 (rewrite (= (= (+ x$ y$ z$) (+ x$ y$ z$)) true)) (= $x34 true))))
  1.1024 +(let ((@x63 (trans (monotonicity @x56 (= $x35 (not true))) (rewrite (= (not true) false)) (= $x35 false))))
  1.1025 +(mp (asserted $x35) @x63 false))))))))))))))
  1.1026 +
  1.1027 +31045f736583ed0b58ba51e123c31f8bb6c0267d 11 0
  1.1028 +unsat
  1.1029 +((set-logic AUFLIA)
  1.1030 +(proof
  1.1031 +(let ((@x41 (monotonicity (rewrite (= (<= 3 8) true)) (= (ite (<= 3 8) 8 3) (ite true 8 3)))))
  1.1032 +(let ((@x45 (trans @x41 (rewrite (= (ite true 8 3) 8)) (= (ite (<= 3 8) 8 3) 8))))
  1.1033 +(let ((@x48 (monotonicity @x45 (= (< 5 (ite (<= 3 8) 8 3)) (< 5 8)))))
  1.1034 +(let ((@x52 (trans @x48 (rewrite (= (< 5 8) true)) (= (< 5 (ite (<= 3 8) 8 3)) true))))
  1.1035 +(let ((@x55 (monotonicity @x52 (= (not (< 5 (ite (<= 3 8) 8 3))) (not true)))))
  1.1036 +(let ((@x59 (trans @x55 (rewrite (= (not true) false)) (= (not (< 5 (ite (<= 3 8) 8 3))) false))))
  1.1037 +(mp (asserted (not (< 5 (ite (<= 3 8) 8 3)))) @x59 false)))))))))
  1.1038 +
  1.1039 +6b0b089fbe179e8a27509c818f9a5e6847ac6bf2 88 0
  1.1040 +unsat
  1.1041 +((set-logic AUFLIRA)
  1.1042 +(proof
  1.1043 +(let ((?x44 (* (- 1.0) x$)))
  1.1044 +(let (($x83 (>= x$ 0.0)))
  1.1045 +(let ((?x90 (ite $x83 x$ ?x44)))
  1.1046 +(let ((?x113 (* (- 1.0) ?x90)))
  1.1047 +(let ((?x148 (+ x$ ?x113)))
  1.1048 +(let (($x149 (<= ?x148 0.0)))
  1.1049 +(let (($x133 (= x$ ?x90)))
  1.1050 +(let ((?x45 (* (- 1.0) y$)))
  1.1051 +(let ((?x46 (+ ?x44 ?x45)))
  1.1052 +(let ((?x29 (+ x$ y$)))
  1.1053 +(let (($x71 (>= ?x29 0.0)))
  1.1054 +(let ((?x78 (ite $x71 ?x29 ?x46)))
  1.1055 +(let ((?x151 (* (- 1.0) ?x78)))
  1.1056 +(let ((?x179 (+ ?x46 ?x151)))
  1.1057 +(let (($x181 (>= ?x179 0.0)))
  1.1058 +(let (($x130 (= ?x46 ?x78)))
  1.1059 +(let (($x72 (not $x71)))
  1.1060 +(let (($x95 (>= y$ 0.0)))
  1.1061 +(let (($x96 (not $x95)))
  1.1062 +(let (($x154 (>= (+ ?x29 ?x151) 0.0)))
  1.1063 +(let (($x129 (= ?x29 ?x78)))
  1.1064 +(let (($x190 (not $x181)))
  1.1065 +(let ((@x155 (hypothesis $x95)))
  1.1066 +(let ((?x102 (ite $x95 y$ ?x45)))
  1.1067 +(let ((?x114 (* (- 1.0) ?x102)))
  1.1068 +(let ((?x115 (+ ?x78 ?x113 ?x114)))
  1.1069 +(let (($x116 (<= ?x115 0.0)))
  1.1070 +(let (($x121 (not $x116)))
  1.1071 +(let ((?x39 (+ (ite (< x$ 0.0) (- x$) x$) (ite (< y$ 0.0) (- y$) y$))))
  1.1072 +(let (($x41 (not (<= (ite (< ?x29 0.0) (- ?x29) ?x29) ?x39))))
  1.1073 +(let (($x36 (< y$ 0.0)))
  1.1074 +(let ((?x59 (ite $x36 ?x45 y$)))
  1.1075 +(let (($x33 (< x$ 0.0)))
  1.1076 +(let ((?x54 (ite $x33 ?x44 x$)))
  1.1077 +(let ((?x62 (+ ?x54 ?x59)))
  1.1078 +(let (($x30 (< ?x29 0.0)))
  1.1079 +(let ((?x49 (ite $x30 ?x46 ?x29)))
  1.1080 +(let (($x65 (<= ?x49 ?x62)))
  1.1081 +(let ((@x106 (trans (monotonicity (rewrite (= $x36 $x96)) (= ?x59 (ite $x96 ?x45 y$))) (rewrite (= (ite $x96 ?x45 y$) ?x102)) (= ?x59 ?x102))))
  1.1082 +(let ((@x89 (monotonicity (rewrite (= $x33 (not $x83))) (= ?x54 (ite (not $x83) ?x44 x$)))))
  1.1083 +(let ((@x94 (trans @x89 (rewrite (= (ite (not $x83) ?x44 x$) ?x90)) (= ?x54 ?x90))))
  1.1084 +(let ((@x82 (trans (monotonicity (rewrite (= $x30 $x72)) (= ?x49 (ite $x72 ?x46 ?x29))) (rewrite (= (ite $x72 ?x46 ?x29) ?x78)) (= ?x49 ?x78))))
  1.1085 +(let ((@x112 (monotonicity @x82 (monotonicity @x94 @x106 (= ?x62 (+ ?x90 ?x102))) (= $x65 (<= ?x78 (+ ?x90 ?x102))))))
  1.1086 +(let ((@x120 (trans @x112 (rewrite (= (<= ?x78 (+ ?x90 ?x102)) $x116)) (= $x65 $x116))))
  1.1087 +(let ((@x61 (monotonicity (rewrite (= (- y$) ?x45)) (= (ite $x36 (- y$) y$) ?x59))))
  1.1088 +(let ((@x56 (monotonicity (rewrite (= (- x$) ?x44)) (= (ite $x33 (- x$) x$) ?x54))))
  1.1089 +(let ((@x51 (monotonicity (rewrite (= (- ?x29) ?x46)) (= (ite $x30 (- ?x29) ?x29) ?x49))))
  1.1090 +(let ((@x67 (monotonicity @x51 (monotonicity @x56 @x61 (= ?x39 ?x62)) (= (<= (ite $x30 (- ?x29) ?x29) ?x39) $x65))))
  1.1091 +(let ((@x125 (trans (monotonicity @x67 (= $x41 (not $x65))) (monotonicity @x120 (= (not $x65) $x121)) (= $x41 $x121))))
  1.1092 +(let ((@x126 (mp (asserted $x41) @x125 $x121)))
  1.1093 +(let (($x139 (= y$ ?x102)))
  1.1094 +(let ((@x169 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x139) (<= (+ y$ ?x114) 0.0))) (unit-resolution (def-axiom (or $x96 $x139)) @x155 $x139) (<= (+ y$ ?x114) 0.0))))
  1.1095 +(let ((?x150 (+ ?x44 ?x113)))
  1.1096 +(let (($x153 (<= ?x150 0.0)))
  1.1097 +(let (($x134 (= ?x44 ?x90)))
  1.1098 +(let (($x84 (not $x83)))
  1.1099 +(let ((@x159 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x71 $x84 $x96)) (hypothesis $x83) @x155 $x71)))
  1.1100 +(let ((@x128 (def-axiom (or $x72 $x129))))
  1.1101 +(let ((@x163 ((_ th-lemma arith triangle-eq) (or (not $x129) $x154))))
  1.1102 +(let ((@x173 ((_ th-lemma arith triangle-eq) (or (not $x133) $x149))))
  1.1103 +(let ((@x174 (unit-resolution @x173 (unit-resolution (def-axiom (or $x84 $x133)) (hypothesis $x83) $x133) $x149)))
  1.1104 +(let ((@x175 ((_ th-lemma arith farkas -1 -1 1 1) @x174 @x169 @x126 (unit-resolution @x163 (unit-resolution @x128 @x159 $x129) $x154) false)))
  1.1105 +(let ((@x138 (def-axiom (or $x83 $x134))))
  1.1106 +(let ((@x184 (unit-resolution @x138 (unit-resolution (lemma @x175 (or $x84 $x96)) @x155 $x84) $x134)))
  1.1107 +(let ((@x189 ((_ th-lemma arith farkas 2 -1 -1 1 1) @x155 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x169 @x126 (hypothesis $x181) false)))
  1.1108 +(let ((@x198 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x130) $x181)) (hypothesis $x130) (hypothesis $x190) false)))
  1.1109 +(let ((@x199 (lemma @x198 (or (not $x130) $x181))))
  1.1110 +(let ((@x201 (unit-resolution @x199 (unit-resolution (lemma @x189 (or $x190 $x96)) @x155 $x190) (not $x130))))
  1.1111 +(let ((@x132 (def-axiom (or $x71 $x130))))
  1.1112 +(let ((@x204 (unit-resolution @x163 (unit-resolution @x128 (unit-resolution @x132 @x201 $x71) $x129) $x154)))
  1.1113 +(let ((@x205 ((_ th-lemma arith farkas 2 1 1 1 1) (unit-resolution (lemma @x175 (or $x84 $x96)) @x155 $x84) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x169 @x126 @x204 false)))
  1.1114 +(let ((@x206 (lemma @x205 $x96)))
  1.1115 +(let ((@x212 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x83 $x95 $x72)) (hypothesis $x71) @x206 $x83)))
  1.1116 +(let ((@x136 (def-axiom (or $x84 $x133))))
  1.1117 +(let ((@x216 (unit-resolution @x163 (unit-resolution @x128 (hypothesis $x71) $x129) $x154)))
  1.1118 +(let ((?x147 (+ ?x45 ?x114)))
  1.1119 +(let (($x178 (<= ?x147 0.0)))
  1.1120 +(let (($x140 (= ?x45 ?x102)))
  1.1121 +(let ((@x221 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x140) $x178)) (unit-resolution (def-axiom (or $x95 $x140)) @x206 $x140) $x178)))
  1.1122 +(let ((@x222 ((_ th-lemma arith farkas 2 1 1 1 1) @x206 @x221 @x126 @x216 (unit-resolution @x173 (unit-resolution @x136 @x212 $x133) $x149) false)))
  1.1123 +(let ((@x226 (unit-resolution @x199 (unit-resolution @x132 (lemma @x222 $x72) $x130) $x181)))
  1.1124 +(let ((@x231 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) (hypothesis $x134) (lemma ((_ th-lemma arith farkas 1 -1 -1 1) @x221 @x126 @x226 (hypothesis $x153) false) (not $x153)) false)))
  1.1125 +(let ((@x234 (unit-resolution @x136 (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) $x133)))
  1.1126 +((_ th-lemma arith farkas -2 1 -1 -1 1) (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) @x221 @x126 @x226 (unit-resolution @x173 @x234 $x149) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.1127 +
  1.1128 +bc11d479eb44aa63c2efc812af856ec331477415 16 0
  1.1129 +unsat
  1.1130 +((set-logic AUFLIA)
  1.1131 +(proof
  1.1132 +(let ((?x32 (p$ true)))
  1.1133 +(let (($x29 (< 2 3)))
  1.1134 +(let (($x30 (ite $x29 true false)))
  1.1135 +(let ((?x31 (p$ $x30)))
  1.1136 +(let (($x33 (= ?x31 ?x32)))
  1.1137 +(let (($x34 (not $x33)))
  1.1138 +(let ((@x52 (monotonicity (monotonicity (rewrite (= $x29 true)) (= (p$ $x29) ?x32)) (= (= (p$ $x29) ?x32) (= ?x32 ?x32)))))
  1.1139 +(let ((@x56 (trans @x52 (rewrite (= (= ?x32 ?x32) true)) (= (= (p$ $x29) ?x32) true))))
  1.1140 +(let ((@x63 (trans (monotonicity @x56 (= (not (= (p$ $x29) ?x32)) (not true))) (rewrite (= (not true) false)) (= (not (= (p$ $x29) ?x32)) false))))
  1.1141 +(let ((@x43 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= ?x31 (p$ $x29))) (= $x33 (= (p$ $x29) ?x32)))))
  1.1142 +(let ((@x46 (monotonicity @x43 (= $x34 (not (= (p$ $x29) ?x32))))))
  1.1143 +(mp (asserted $x34) (trans @x46 @x63 (= $x34 false)) false))))))))))))))
  1.1144 +
  1.1145 +d63ee5062f9a1d0a0bd17f51adaa0ac5e8f9ec16 16 0
  1.1146 +unsat
  1.1147 +((set-logic AUFLIA)
  1.1148 +(proof
  1.1149 +(let (($x33 (< x$ 1)))
  1.1150 +(let ((?x37 (+ 3 x$)))
  1.1151 +(let (($x40 (<= 4 ?x37)))
  1.1152 +(let (($x43 (or $x40 $x33)))
  1.1153 +(let (($x46 (not $x43)))
  1.1154 +(let ((@x57 (monotonicity (rewrite (= $x40 (>= x$ 1))) (rewrite (= $x33 (not (>= x$ 1)))) (= $x43 (or (>= x$ 1) (not (>= x$ 1)))))))
  1.1155 +(let ((@x61 (trans @x57 (rewrite (= (or (>= x$ 1) (not (>= x$ 1))) true)) (= $x43 true))))
  1.1156 +(let ((@x68 (trans (monotonicity @x61 (= $x46 (not true))) (rewrite (= (not true) false)) (= $x46 false))))
  1.1157 +(let ((@x42 (monotonicity (rewrite (= (+ x$ 3) ?x37)) (= (<= 4 (+ x$ 3)) $x40))))
  1.1158 +(let ((@x48 (monotonicity (monotonicity @x42 (= (or (<= 4 (+ x$ 3)) $x33) $x43)) (= (not (or (<= 4 (+ x$ 3)) $x33)) $x46))))
  1.1159 +(let ((@x70 (trans @x48 @x68 (= (not (or (<= 4 (+ x$ 3)) $x33)) false))))
  1.1160 +(mp (asserted (not (or (<= 4 (+ x$ 3)) $x33))) @x70 false))))))))))))))
  1.1161 +
  1.1162 +ea0e16fa50db2870878476eccdef4f64568acd55 18 0
  1.1163 +unsat
  1.1164 +((set-logic AUFLIA)
  1.1165 +(proof
  1.1166 +(let (($x51 (= (+ x$ (* (- 1) y$)) (- 4))))
  1.1167 +(let ((@x45 (monotonicity (rewrite (= (+ x$ 4) (+ 4 x$))) (= (= y$ (+ x$ 4)) (= y$ (+ 4 x$))))))
  1.1168 +(let ((@x54 (trans @x45 (rewrite (= (= y$ (+ 4 x$)) $x51)) (= (= y$ (+ x$ 4)) $x51))))
  1.1169 +(let ((@x88 (monotonicity (mp (asserted (= y$ (+ x$ 4))) @x54 $x51) (= (>= (+ x$ (* (- 1) y$)) 0) (>= (- 4) 0)))))
  1.1170 +(let ((@x90 (trans @x88 (rewrite (= (>= (- 4) 0) false)) (= (>= (+ x$ (* (- 1) y$)) 0) false))))
  1.1171 +(let (($x70 (>= (+ x$ (* (- 1) y$)) 0)))
  1.1172 +(let ((@x76 (monotonicity (rewrite (= (< 0 (+ (* (- 1) x$) y$)) (not $x70))) (= (not (< 0 (+ (* (- 1) x$) y$))) (not (not $x70))))))
  1.1173 +(let ((@x80 (trans @x76 (rewrite (= (not (not $x70)) $x70)) (= (not (< 0 (+ (* (- 1) x$) y$))) $x70))))
  1.1174 +(let (($x64 (< 0 (+ (* (- 1) x$) y$))))
  1.1175 +(let (($x67 (not $x64)))
  1.1176 +(let (($x58 (not (< 0 (- y$ x$)))))
  1.1177 +(let ((@x66 (monotonicity (rewrite (= (- y$ x$) (+ (* (- 1) x$) y$))) (= (< 0 (- y$ x$)) $x64))))
  1.1178 +(let ((@x83 (mp (asserted $x58) (trans (monotonicity @x66 (= $x58 $x67)) @x80 (= $x58 $x70)) $x70)))
  1.1179 +(mp @x83 @x90 false))))))))))))))))
  1.1180 +
  1.1181 +2389277f3547499e520f2b3ac28991b30ac7c1a8 11 0
  1.1182 +unsat
  1.1183 +((set-logic AUFLIA)
  1.1184 +(proof
  1.1185 +(let ((@x39 (monotonicity (rewrite (= (+ 2 2) 4)) (= (= (+ 2 2) 5) (= 4 5)))))
  1.1186 +(let ((@x43 (trans @x39 (rewrite (= (= 4 5) false)) (= (= (+ 2 2) 5) false))))
  1.1187 +(let ((@x46 (monotonicity @x43 (= (not (= (+ 2 2) 5)) (not false)))))
  1.1188 +(let ((@x50 (trans @x46 (rewrite (= (not false) true)) (= (not (= (+ 2 2) 5)) true))))
  1.1189 +(let ((@x53 (monotonicity @x50 (= (not (not (= (+ 2 2) 5))) (not true)))))
  1.1190 +(let ((@x57 (trans @x53 (rewrite (= (not true) false)) (= (not (not (= (+ 2 2) 5))) false))))
  1.1191 +(mp (asserted (not (not (= (+ 2 2) 5)))) @x57 false)))))))))
  1.1192 +
  1.1193 +dfbbe6f3879b3c49e6d5f7ecff4f8f81ed746bd4 19 0
  1.1194 +unsat
  1.1195 +((set-logic AUFLIRA)
  1.1196 +(proof
  1.1197 +(let ((?x32 (* 7.0 a$)))
  1.1198 +(let ((?x29 (* 3.0 x$)))
  1.1199 +(let ((?x33 (+ ?x29 ?x32)))
  1.1200 +(let (($x43 (>= ?x33 4.0)))
  1.1201 +(let (($x41 (not $x43)))
  1.1202 +(let ((@x40 (mp (asserted (< ?x33 4.0)) (rewrite (= (< ?x33 4.0) $x41)) $x41)))
  1.1203 +(let ((?x38 (* 2.0 x$)))
  1.1204 +(let (($x48 (<= ?x38 3.0)))
  1.1205 +(let (($x49 (not $x48)))
  1.1206 +(let ((@x52 (mp (asserted (< 3.0 ?x38)) (rewrite (= (< 3.0 ?x38) $x49)) $x49)))
  1.1207 +(let (($x58 (>= a$ 0.0)))
  1.1208 +(let ((@x62 (monotonicity (rewrite (= (< a$ 0.0) (not $x58))) (= (not (< a$ 0.0)) (not (not $x58))))))
  1.1209 +(let ((@x66 (trans @x62 (rewrite (= (not (not $x58)) $x58)) (= (not (< a$ 0.0)) $x58))))
  1.1210 +(let ((@x67 (mp (asserted (not (< a$ 0.0))) @x66 $x58)))
  1.1211 +((_ th-lemma arith farkas 7 3/2 1) @x67 @x52 @x40 false)))))))))))))))))
  1.1212 +
  1.1213 +3a6df2b095b936aac9a1d533e306f2d31b4fb44e 22 0
  1.1214 +unsat
  1.1215 +((set-logic AUFLIA)
  1.1216 +(proof
  1.1217 +(let (($x38 (not false)))
  1.1218 +(let (($x34 (<= 0 x$)))
  1.1219 +(let (($x35 (not $x34)))
  1.1220 +(let (($x36 (or $x35 $x34)))
  1.1221 +(let ((?x29 (- 1)))
  1.1222 +(let ((?x31 (* ?x29 x$)))
  1.1223 +(let ((?x32 (+ y$ ?x31)))
  1.1224 +(let (($x33 (<= 0 ?x32)))
  1.1225 +(let (($x37 (or $x33 $x36)))
  1.1226 +(let (($x39 (= $x37 $x38)))
  1.1227 +(let (($x40 (not $x39)))
  1.1228 +(let ((@x60 (rewrite (= (or (<= 0 (+ y$ (* (- 1) x$))) true) true))))
  1.1229 +(let ((@x50 (monotonicity (monotonicity (rewrite (= ?x29 (- 1))) (= ?x31 (* (- 1) x$))) (= ?x32 (+ y$ (* (- 1) x$))))))
  1.1230 +(let ((@x58 (monotonicity (monotonicity @x50 (= $x33 (<= 0 (+ y$ (* (- 1) x$))))) (rewrite (= $x36 true)) (= $x37 (or (<= 0 (+ y$ (* (- 1) x$))) true)))))
  1.1231 +(let ((@x67 (monotonicity (trans @x58 @x60 (= $x37 true)) (rewrite (= $x38 true)) (= $x39 (= true true)))))
  1.1232 +(let ((@x71 (trans @x67 (rewrite (= (= true true) true)) (= $x39 true))))
  1.1233 +(let ((@x78 (trans (monotonicity @x71 (= $x40 (not true))) (rewrite (= (not true) false)) (= $x40 false))))
  1.1234 +(mp (asserted $x40) @x78 false))))))))))))))))))))
  1.1235 +
  1.1236 +5c29815a1036cbd6b831d4adbe102069cf0d830f 20 0
  1.1237 +unsat
  1.1238 +((set-logic AUFLIRA)
  1.1239 +(proof
  1.1240 +(let ((?x30 (* 2.0 x$)))
  1.1241 +(let ((?x32 (+ ?x30 1.0)))
  1.1242 +(let ((?x28 (+ x$ x$)))
  1.1243 +(let (($x33 (< ?x28 ?x32)))
  1.1244 +(let (($x34 (or false $x33)))
  1.1245 +(let (($x35 (or $x33 $x34)))
  1.1246 +(let (($x36 (not $x35)))
  1.1247 +(let ((@x67 (monotonicity (rewrite (= (< ?x30 (+ 1.0 ?x30)) true)) (= (not (< ?x30 (+ 1.0 ?x30))) (not true)))))
  1.1248 +(let ((@x71 (trans @x67 (rewrite (= (not true) false)) (= (not (< ?x30 (+ 1.0 ?x30))) false))))
  1.1249 +(let ((?x40 (+ 1.0 ?x30)))
  1.1250 +(let (($x43 (< ?x30 ?x40)))
  1.1251 +(let ((@x45 (monotonicity (rewrite (= ?x28 ?x30)) (rewrite (= ?x32 ?x40)) (= $x33 $x43))))
  1.1252 +(let ((@x52 (trans (monotonicity @x45 (= $x34 (or false $x43))) (rewrite (= (or false $x43) $x43)) (= $x34 $x43))))
  1.1253 +(let ((@x59 (trans (monotonicity @x45 @x52 (= $x35 (or $x43 $x43))) (rewrite (= (or $x43 $x43) $x43)) (= $x35 $x43))))
  1.1254 +(let ((@x62 (monotonicity @x59 (= $x36 (not $x43)))))
  1.1255 +(mp (asserted $x36) (trans @x62 @x71 (= $x36 false)) false))))))))))))))))))
  1.1256 +
  1.1257 +7d3773a9d63ce2ada82ac001b84291cdc85d7ab8 159 0
  1.1258 +unsat
  1.1259 +((set-logic AUFLIA)
  1.1260 +(proof
  1.1261 +(let (($x44 (= m$ n$)))
  1.1262 +(let ((@x480 (symm (commutativity (= $x44 (= n$ m$))) (= (= n$ m$) $x44))))
  1.1263 +(let (($x40 (= n$ m$)))
  1.1264 +(let ((?x102 (* (- 1) m$)))
  1.1265 +(let ((?x103 (+ n$ ?x102)))
  1.1266 +(let (($x118 (>= ?x103 0)))
  1.1267 +(let ((?x78 (* (- 1) n$a)))
  1.1268 +(let ((?x96 (+ m$ ?x78)))
  1.1269 +(let (($x127 (<= ?x96 0)))
  1.1270 +(let ((?x79 (+ n$ ?x78)))
  1.1271 +(let (($x88 (>= ?x79 0)))
  1.1272 +(let (($x239 (or $x88 $x127)))
  1.1273 +(let ((@x251 (monotonicity (rewrite (= (and (not $x88) (not $x127)) (not $x239))) (= (not (and (not $x88) (not $x127))) (not (not $x239))))))
  1.1274 +(let ((@x271 (trans @x251 (rewrite (= (not (not $x239)) $x239)) (= (not (and (not $x88) (not $x127))) $x239))))
  1.1275 +(let (($x128 (not $x127)))
  1.1276 +(let (($x87 (not $x88)))
  1.1277 +(let (($x143 (and $x87 $x128)))
  1.1278 +(let (($x210 (not $x143)))
  1.1279 +(let (($x50 (= n$a m$)))
  1.1280 +(let (($x57 (and $x50 $x44)))
  1.1281 +(let (($x80 (<= ?x79 0)))
  1.1282 +(let (($x81 (not $x80)))
  1.1283 +(let (($x33 (= m$ n$a)))
  1.1284 +(let (($x84 (and $x33 $x81)))
  1.1285 +(let (($x91 (and $x44 $x87)))
  1.1286 +(let (($x95 (>= ?x96 0)))
  1.1287 +(let (($x94 (not $x95)))
  1.1288 +(let (($x99 (and $x94 $x81)))
  1.1289 +(let (($x48 (= n$a n$)))
  1.1290 +(let (($x104 (<= ?x103 0)))
  1.1291 +(let (($x105 (not $x104)))
  1.1292 +(let (($x108 (and $x105 $x48)))
  1.1293 +(let (($x111 (and $x105 $x87)))
  1.1294 +(let (($x114 (and $x50 $x105)))
  1.1295 +(let (($x117 (not $x118)))
  1.1296 +(let (($x121 (and $x48 $x117)))
  1.1297 +(let (($x124 (and $x81 $x117)))
  1.1298 +(let (($x131 (and $x128 $x44)))
  1.1299 +(let (($x134 (and $x128 $x105)))
  1.1300 +(let (($x137 (and $x40 $x94)))
  1.1301 +(let (($x38 (= n$ n$a)))
  1.1302 +(let (($x140 (and $x38 $x128)))
  1.1303 +(let (($x146 (and $x117 $x33)))
  1.1304 +(let (($x149 (and $x117 $x94)))
  1.1305 +(let (($x197 (or $x149 $x146 $x143 $x140 $x137 $x134 $x131 $x124 $x121 $x114 $x111 $x108 $x99 $x91 $x84 $x57)))
  1.1306 +(let (($x60 (or (and (< m$ n$a) (< n$a n$)) (or (and $x44 (< n$ n$a)) (or (and $x33 (< n$a n$)) $x57)))))
  1.1307 +(let (($x62 (or (and (< m$ n$) (< n$ n$a)) (or (and (< m$ n$) $x48) $x60))))
  1.1308 +(let (($x65 (or (and (< n$a n$) (< n$ m$)) (or (and $x48 (< n$ m$)) (or (and $x50 (< m$ n$)) $x62)))))
  1.1309 +(let (($x67 (or (and (< n$a m$) (< m$ n$)) (or (and (< n$a m$) $x44) $x65))))
  1.1310 +(let (($x70 (or (and (< n$ n$a) (< n$a m$)) (or (and $x38 (< n$a m$)) (or (and $x40 (< m$ n$a)) $x67)))))
  1.1311 +(let (($x72 (or (and (< n$ m$) (< m$ n$a)) (or (and (< n$ m$) $x33) $x70))))
  1.1312 +(let (($x73 (not $x72)))
  1.1313 +(let (($x170 (or $x121 (or $x114 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
  1.1314 +(let (($x191 (or $x146 (or $x143 (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))))
  1.1315 +(let (($x189 (= $x70 (or $x143 (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))))
  1.1316 +(let (($x186 (= (or (and $x38 (< n$a m$)) (or (and $x40 (< m$ n$a)) $x67)) (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170))))))))
  1.1317 +(let (($x183 (= (or (and $x40 (< m$ n$a)) $x67) (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))
  1.1318 +(let (($x171 (= (or (and $x48 (< n$ m$)) (or (and $x50 (< m$ n$)) $x62)) $x170)))
  1.1319 +(let (($x168 (= (or (and $x50 (< m$ n$)) $x62) (or $x114 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
  1.1320 +(let (($x162 (= (or (and (< m$ n$) $x48) $x60) (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))
  1.1321 +(let (($x156 (= (or (and $x44 (< n$ n$a)) (or (and $x33 (< n$a n$)) $x57)) (or $x91 (or $x84 $x57)))))
  1.1322 +(let ((@x83 (rewrite (= (< n$a n$) $x81))))
  1.1323 +(let ((@x154 (monotonicity (monotonicity @x83 (= (and $x33 (< n$a n$)) $x84)) (= (or (and $x33 (< n$a n$)) $x57) (or $x84 $x57)))))
  1.1324 +(let ((@x90 (rewrite (= (< n$ n$a) $x87))))
  1.1325 +(let ((@x157 (monotonicity (monotonicity @x90 (= (and $x44 (< n$ n$a)) $x91)) @x154 $x156)))
  1.1326 +(let ((@x98 (rewrite (= (< m$ n$a) $x94))))
  1.1327 +(let ((@x101 (monotonicity @x98 @x83 (= (and (< m$ n$a) (< n$a n$)) $x99))))
  1.1328 +(let ((@x160 (monotonicity @x101 @x157 (= $x60 (or $x99 (or $x91 (or $x84 $x57)))))))
  1.1329 +(let ((@x107 (rewrite (= (< m$ n$) $x105))))
  1.1330 +(let ((@x163 (monotonicity (monotonicity @x107 (= (and (< m$ n$) $x48) $x108)) @x160 $x162)))
  1.1331 +(let ((@x113 (monotonicity @x107 @x90 (= (and (< m$ n$) (< n$ n$a)) $x111))))
  1.1332 +(let ((@x166 (monotonicity @x113 @x163 (= $x62 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
  1.1333 +(let ((@x169 (monotonicity (monotonicity @x107 (= (and $x50 (< m$ n$)) $x114)) @x166 $x168)))
  1.1334 +(let ((@x120 (rewrite (= (< n$ m$) $x117))))
  1.1335 +(let ((@x172 (monotonicity (monotonicity @x120 (= (and $x48 (< n$ m$)) $x121)) @x169 $x171)))
  1.1336 +(let ((@x126 (monotonicity @x83 @x120 (= (and (< n$a n$) (< n$ m$)) $x124))))
  1.1337 +(let ((@x130 (rewrite (= (< n$a m$) $x128))))
  1.1338 +(let ((@x178 (monotonicity (monotonicity @x130 (= (and (< n$a m$) $x44) $x131)) (monotonicity @x126 @x172 (= $x65 (or $x124 $x170))) (= (or (and (< n$a m$) $x44) $x65) (or $x131 (or $x124 $x170))))))
  1.1339 +(let ((@x136 (monotonicity @x130 @x107 (= (and (< n$a m$) (< m$ n$)) $x134))))
  1.1340 +(let ((@x181 (monotonicity @x136 @x178 (= $x67 (or $x134 (or $x131 (or $x124 $x170)))))))
  1.1341 +(let ((@x184 (monotonicity (monotonicity @x98 (= (and $x40 (< m$ n$a)) $x137)) @x181 $x183)))
  1.1342 +(let ((@x187 (monotonicity (monotonicity @x130 (= (and $x38 (< n$a m$)) $x140)) @x184 $x186)))
  1.1343 +(let ((@x145 (monotonicity @x90 @x130 (= (and (< n$ n$a) (< n$a m$)) $x143))))
  1.1344 +(let ((@x193 (monotonicity (monotonicity @x120 (= (and (< n$ m$) $x33) $x146)) (monotonicity @x145 @x187 $x189) (= (or (and (< n$ m$) $x33) $x70) $x191))))
  1.1345 +(let ((@x151 (monotonicity @x120 @x98 (= (and (< n$ m$) (< m$ n$a)) $x149))))
  1.1346 +(let ((@x201 (trans (monotonicity @x151 @x193 (= $x72 (or $x149 $x191))) (rewrite (= (or $x149 $x191) $x197)) (= $x72 $x197))))
  1.1347 +(let ((@x205 (mp (asserted $x73) (monotonicity @x201 (= $x73 (not $x197))) (not $x197))))
  1.1348 +(let ((@x272 (mp (not-or-elim @x205 $x210) @x271 $x239)))
  1.1349 +(let (($x273 (not $x38)))
  1.1350 +(let (($x274 (or $x273 $x127)))
  1.1351 +(let ((@x280 (monotonicity (rewrite (= $x140 (not $x274))) (= (not $x140) (not (not $x274))))))
  1.1352 +(let ((@x284 (trans @x280 (rewrite (= (not (not $x274)) $x274)) (= (not $x140) $x274))))
  1.1353 +(let ((@x285 (mp (not-or-elim @x205 (not $x140)) @x284 $x274)))
  1.1354 +(let (($x286 (not $x40)))
  1.1355 +(let (($x311 (not $x44)))
  1.1356 +(let ((@x434 (hypothesis $x81)))
  1.1357 +(let (($x386 (or $x95 $x80)))
  1.1358 +(let ((@x392 (monotonicity (rewrite (= $x99 (not $x386))) (= (not $x99) (not (not $x386))))))
  1.1359 +(let ((@x396 (trans @x392 (rewrite (= (not (not $x386)) $x386)) (= (not $x99) $x386))))
  1.1360 +(let ((@x397 (mp (not-or-elim @x205 (not $x99)) @x396 $x386)))
  1.1361 +(let (($x246 (not $x33)))
  1.1362 +(let (($x410 (or $x246 $x80)))
  1.1363 +(let ((@x416 (monotonicity (rewrite (= $x84 (not $x410))) (= (not $x84) (not (not $x410))))))
  1.1364 +(let ((@x420 (trans @x416 (rewrite (= (not (not $x410)) $x410)) (= (not $x84) $x410))))
  1.1365 +(let ((@x421 (mp (not-or-elim @x205 (not $x84)) @x420 $x410)))
  1.1366 +(let ((@x439 ((_ th-lemma arith triangle-eq) (or $x33 $x128 $x94))))
  1.1367 +(let ((@x440 (unit-resolution @x439 (unit-resolution @x421 @x434 $x246) (unit-resolution @x397 @x434 $x95) $x128)))
  1.1368 +(let (($x312 (or $x127 $x311)))
  1.1369 +(let ((@x318 (monotonicity (rewrite (= $x131 (not $x312))) (= (not $x131) (not (not $x312))))))
  1.1370 +(let ((@x322 (trans @x318 (rewrite (= (not (not $x312)) $x312)) (= (not $x131) $x312))))
  1.1371 +(let ((@x323 (mp (not-or-elim @x205 (not $x131)) @x322 $x312)))
  1.1372 +(let ((@x450 (mp (unit-resolution @x323 @x440 $x311) (monotonicity (commutativity (= $x44 $x40)) (= $x311 $x286)) $x286)))
  1.1373 +(let (($x324 (or $x80 $x118)))
  1.1374 +(let ((@x330 (monotonicity (rewrite (= $x124 (not $x324))) (= (not $x124) (not (not $x324))))))
  1.1375 +(let ((@x334 (trans @x330 (rewrite (= (not (not $x324)) $x324)) (= (not $x124) $x324))))
  1.1376 +(let ((@x335 (mp (not-or-elim @x205 (not $x124)) @x334 $x324)))
  1.1377 +(let (($x299 (or $x127 $x104)))
  1.1378 +(let ((@x305 (monotonicity (rewrite (= $x134 (not $x299))) (= (not $x134) (not (not $x299))))))
  1.1379 +(let ((@x309 (trans @x305 (rewrite (= (not (not $x299)) $x299)) (= (not $x134) $x299))))
  1.1380 +(let ((@x310 (mp (not-or-elim @x205 (not $x134)) @x309 $x299)))
  1.1381 +(let ((@x444 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x40 $x105 $x117)) (unit-resolution @x310 @x440 $x104) (unit-resolution @x335 @x434 $x118) $x40)))
  1.1382 +(let ((@x459 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x38 $x81 $x87)) (lemma (unit-resolution @x444 @x450 false) $x80) (or $x38 $x87))))
  1.1383 +(let ((@x460 (unit-resolution @x459 (unit-resolution @x285 (hypothesis $x128) $x273) (unit-resolution @x272 (hypothesis $x128) $x88) false)))
  1.1384 +(let ((@x461 (lemma @x460 $x127)))
  1.1385 +(let (($x254 (or $x118 $x95)))
  1.1386 +(let ((@x262 (monotonicity (rewrite (= $x149 (not $x254))) (= (not $x149) (not (not $x254))))))
  1.1387 +(let ((@x256 (trans @x262 (rewrite (= (not (not $x254)) $x254)) (= (not $x149) $x254))))
  1.1388 +(let ((@x257 (mp (not-or-elim @x205 (not $x149)) @x256 $x254)))
  1.1389 +(let (($x247 (or $x118 $x246)))
  1.1390 +(let ((@x259 (monotonicity (rewrite (= $x146 (not $x247))) (= (not $x146) (not (not $x247))))))
  1.1391 +(let ((@x245 (trans @x259 (rewrite (= (not (not $x247)) $x247)) (= (not $x146) $x247))))
  1.1392 +(let ((@x238 (mp (not-or-elim @x205 (not $x146)) @x245 $x247)))
  1.1393 +(let ((@x465 (unit-resolution @x439 (unit-resolution @x238 (hypothesis $x117) $x246) (unit-resolution @x257 (hypothesis $x117) $x95) @x461 false)))
  1.1394 +(let (($x336 (not $x48)))
  1.1395 +(let (($x374 (or $x104 $x336)))
  1.1396 +(let ((@x380 (monotonicity (rewrite (= $x108 (not $x374))) (= (not $x108) (not (not $x374))))))
  1.1397 +(let ((@x384 (trans @x380 (rewrite (= (not (not $x374)) $x374)) (= (not $x108) $x374))))
  1.1398 +(let ((@x385 (mp (not-or-elim @x205 (not $x108)) @x384 $x374)))
  1.1399 +(let ((@x475 (mp (unit-resolution @x385 (hypothesis $x105) $x336) (monotonicity (commutativity (= $x48 $x38)) (= $x336 $x273)) $x273)))
  1.1400 +(let (($x362 (or $x104 $x88)))
  1.1401 +(let ((@x368 (monotonicity (rewrite (= $x111 (not $x362))) (= (not $x111) (not (not $x362))))))
  1.1402 +(let ((@x372 (trans @x368 (rewrite (= (not (not $x362)) $x362)) (= (not $x111) $x362))))
  1.1403 +(let ((@x373 (mp (not-or-elim @x205 (not $x111)) @x372 $x362)))
  1.1404 +(let ((@x469 (unit-resolution @x459 (unit-resolution @x373 (hypothesis $x105) $x88) $x38)))
  1.1405 +(let ((@x478 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x40 $x105 $x117)) (lemma (unit-resolution @x469 @x475 false) $x104) (lemma @x465 $x118) $x40)))
  1.1406 +(let (($x287 (or $x286 $x95)))
  1.1407 +(let ((@x293 (monotonicity (rewrite (= $x137 (not $x287))) (= (not $x137) (not (not $x287))))))
  1.1408 +(let ((@x297 (trans @x293 (rewrite (= (not (not $x287)) $x287)) (= (not $x137) $x287))))
  1.1409 +(let ((@x298 (mp (not-or-elim @x205 (not $x137)) @x297 $x287)))
  1.1410 +(let ((@x488 (mp (unit-resolution @x439 (unit-resolution @x298 @x478 $x95) @x461 $x33) (symm (commutativity (= $x50 $x33)) (= $x33 $x50)) $x50)))
  1.1411 +(let (($x422 (or (not $x50) $x311)))
  1.1412 +(let ((@x428 (monotonicity (rewrite (= $x57 (not $x422))) (= (not $x57) (not (not $x422))))))
  1.1413 +(let ((@x432 (trans @x428 (rewrite (= (not (not $x422)) $x422)) (= (not $x57) $x422))))
  1.1414 +(let ((@x433 (mp (not-or-elim @x205 (not $x57)) @x432 $x422)))
  1.1415 +(unit-resolution @x433 @x488 (mp @x478 @x480 $x44) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.1416 +
  1.1417 +32286f9c5e71eb2b15c18f86f04c80931e2e307b 933 0
  1.1418 +unsat
  1.1419 +((set-logic AUFLIA)
  1.1420 +(proof
  1.1421 +(let (($x91 (= x1$ x10$)))
  1.1422 +(let (($x582 (not $x91)))
  1.1423 +(let (($x92 (= x2$ x11$)))
  1.1424 +(let ((?x655 (* (- 1) x11$)))
  1.1425 +(let ((?x656 (+ x2$ ?x655)))
  1.1426 +(let (($x657 (<= ?x656 0)))
  1.1427 +(let ((?x235 (* (- 1) x10$)))
  1.1428 +(let (($x313 (>= x10$ 0)))
  1.1429 +(let ((?x320 (ite $x313 x10$ ?x235)))
  1.1430 +(let ((?x331 (* (- 1) ?x320)))
  1.1431 +(let ((?x662 (+ x10$ ?x331)))
  1.1432 +(let (($x1382 (<= ?x662 0)))
  1.1433 +(let (($x1530 (not $x1382)))
  1.1434 +(let ((?x116 (* (- 1) x3$)))
  1.1435 +(let (($x463 (>= x3$ 0)))
  1.1436 +(let ((?x470 (ite $x463 x3$ ?x116)))
  1.1437 +(let ((?x481 (* (- 1) ?x470)))
  1.1438 +(let ((?x680 (+ x3$ ?x481)))
  1.1439 +(let (($x672 (>= ?x680 0)))
  1.1440 +(let (($x588 (= x3$ ?x470)))
  1.1441 +(let (($x766 (not $x657)))
  1.1442 +(let ((@x1256 (hypothesis $x766)))
  1.1443 +(let ((?x676 (+ ?x116 ?x481)))
  1.1444 +(let (($x1697 (>= ?x676 0)))
  1.1445 +(let (($x589 (= ?x116 ?x470)))
  1.1446 +(let (($x464 (not $x463)))
  1.1447 +(let ((@x688 (hypothesis $x464)))
  1.1448 +(let ((@x593 (def-axiom (or $x463 $x589))))
  1.1449 +(let ((@x1779 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x1697)) (hypothesis $x589) (hypothesis (not $x1697)) false)))
  1.1450 +(let ((@x1780 (lemma @x1779 (or (not $x589) $x1697))))
  1.1451 +(let ((?x133 (* (- 1) x4$)))
  1.1452 +(let (($x438 (>= x4$ 0)))
  1.1453 +(let ((?x445 (ite $x438 x4$ ?x133)))
  1.1454 +(let ((?x456 (* (- 1) ?x445)))
  1.1455 +(let ((?x674 (+ ?x133 ?x456)))
  1.1456 +(let (($x675 (<= ?x674 0)))
  1.1457 +(let ((?x677 (+ x4$ ?x456)))
  1.1458 +(let (($x678 (<= ?x677 0)))
  1.1459 +(let (($x784 (not $x678)))
  1.1460 +(let (($x745 (not $x675)))
  1.1461 +(let ((@x1834 (hypothesis $x745)))
  1.1462 +(let (($x597 (= ?x133 ?x445)))
  1.1463 +(let (($x738 (not $x597)))
  1.1464 +(let ((@x740 ((_ th-lemma arith triangle-eq) (or $x738 $x675))))
  1.1465 +(let ((@x1837 (lemma (unit-resolution @x740 (hypothesis $x597) @x1834 false) (or $x738 $x675))))
  1.1466 +(let ((@x601 (def-axiom (or $x438 $x597))))
  1.1467 +(let ((@x1840 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 (not $x438) $x784)) (unit-resolution @x601 (unit-resolution @x1837 @x1834 $x738) $x438) @x1834 $x784)))
  1.1468 +(let (($x596 (= x4$ ?x445)))
  1.1469 +(let ((@x599 (def-axiom (or (not $x438) $x596))))
  1.1470 +(let ((@x1841 (unit-resolution @x599 (unit-resolution @x601 (unit-resolution @x1837 @x1834 $x738) $x438) $x596)))
  1.1471 +(let ((@x693 ((_ th-lemma arith triangle-eq) (or (not $x596) $x678))))
  1.1472 +(let ((@x1843 (lemma (unit-resolution @x693 @x1841 @x1840 false) $x675)))
  1.1473 +(let ((?x218 (* (- 1) x9$)))
  1.1474 +(let (($x288 (>= x9$ 0)))
  1.1475 +(let ((?x295 (ite $x288 x9$ ?x218)))
  1.1476 +(let ((?x306 (* (- 1) ?x295)))
  1.1477 +(let ((?x659 (+ x9$ ?x306)))
  1.1478 +(let (($x660 (<= ?x659 0)))
  1.1479 +(let (($x636 (= x9$ ?x295)))
  1.1480 +(let (($x338 (>= x8$ 0)))
  1.1481 +(let (($x339 (not $x338)))
  1.1482 +(let (($x661 (>= ?x659 0)))
  1.1483 +(let (($x733 (not $x661)))
  1.1484 +(let ((?x201 (* (- 1) x8$)))
  1.1485 +(let ((?x345 (ite $x338 x8$ ?x201)))
  1.1486 +(let ((?x356 (* (- 1) ?x345)))
  1.1487 +(let ((?x665 (+ x8$ ?x356)))
  1.1488 +(let (($x667 (>= ?x665 0)))
  1.1489 +(let (($x628 (= x8$ ?x345)))
  1.1490 +(let (($x439 (not $x438)))
  1.1491 +(let ((@x763 (hypothesis $x439)))
  1.1492 +(let ((@x1701 (hypothesis $x339)))
  1.1493 +(let (($x289 (not $x288)))
  1.1494 +(let ((@x1371 (hypothesis $x289)))
  1.1495 +(let ((?x666 (+ ?x201 ?x356)))
  1.1496 +(let (($x875 (<= ?x666 0)))
  1.1497 +(let (($x629 (= ?x201 ?x345)))
  1.1498 +(let ((@x633 (def-axiom (or $x338 $x629))))
  1.1499 +(let (($x1626 (not $x875)))
  1.1500 +(let ((@x1635 (hypothesis $x1626)))
  1.1501 +(let ((@x1640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x629) $x875)) (hypothesis $x629) @x1635 false)))
  1.1502 +(let ((@x1641 (lemma @x1640 (or (not $x629) $x875))))
  1.1503 +(let ((@x1738 (unit-resolution @x1641 (unit-resolution @x633 @x1701 $x629) $x875)))
  1.1504 +(let ((?x150 (* (- 1) x5$)))
  1.1505 +(let (($x413 (>= x5$ 0)))
  1.1506 +(let ((?x420 (ite $x413 x5$ ?x150)))
  1.1507 +(let ((?x431 (* (- 1) ?x420)))
  1.1508 +(let ((?x757 (+ x5$ ?x431)))
  1.1509 +(let (($x776 (>= ?x757 0)))
  1.1510 +(let (($x604 (= x5$ ?x420)))
  1.1511 +(let (($x644 (= x10$ ?x320)))
  1.1512 +(let (($x645 (= ?x235 ?x320)))
  1.1513 +(let (($x1136 (not $x645)))
  1.1514 +(let ((?x1104 (+ ?x235 ?x331)))
  1.1515 +(let (($x1250 (<= ?x1104 0)))
  1.1516 +(let (($x1262 (not $x1250)))
  1.1517 +(let ((?x1357 (+ ?x218 ?x306)))
  1.1518 +(let (($x1370 (>= ?x1357 0)))
  1.1519 +(let (($x637 (= ?x218 ?x295)))
  1.1520 +(let (($x414 (not $x413)))
  1.1521 +(let ((@x844 (hypothesis $x414)))
  1.1522 +(let ((?x167 (* (- 1) x6$)))
  1.1523 +(let (($x388 (>= x6$ 0)))
  1.1524 +(let ((?x395 (ite $x388 x6$ ?x167)))
  1.1525 +(let ((?x406 (* (- 1) ?x395)))
  1.1526 +(let ((?x671 (+ x6$ ?x406)))
  1.1527 +(let (($x673 (>= ?x671 0)))
  1.1528 +(let (($x612 (= x6$ ?x395)))
  1.1529 +(let ((@x1079 (hypothesis $x288)))
  1.1530 +(let (($x860 (not $x667)))
  1.1531 +(let ((?x931 (+ ?x150 ?x431)))
  1.1532 +(let (($x933 (<= ?x931 0)))
  1.1533 +(let (($x605 (= ?x150 ?x420)))
  1.1534 +(let ((@x1000 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x933)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x933)))
  1.1535 +(let ((?x432 (+ x4$ x6$ ?x431)))
  1.1536 +(let (($x611 (>= ?x432 0)))
  1.1537 +(let (($x433 (= ?x432 0)))
  1.1538 +(let ((?x332 (+ x9$ x11$ ?x331)))
  1.1539 +(let (($x333 (= ?x332 0)))
  1.1540 +(let ((?x307 (+ x8$ x10$ ?x306)))
  1.1541 +(let (($x308 (= ?x307 0)))
  1.1542 +(let ((?x357 (+ x7$ x9$ ?x356)))
  1.1543 +(let (($x358 (= ?x357 0)))
  1.1544 +(let ((?x184 (* (- 1) x7$)))
  1.1545 +(let (($x363 (>= x7$ 0)))
  1.1546 +(let ((?x370 (ite $x363 x7$ ?x184)))
  1.1547 +(let ((?x381 (* (- 1) ?x370)))
  1.1548 +(let ((?x382 (+ x6$ x8$ ?x381)))
  1.1549 +(let (($x383 (= ?x382 0)))
  1.1550 +(let ((?x407 (+ x5$ x7$ ?x406)))
  1.1551 +(let (($x408 (= ?x407 0)))
  1.1552 +(let ((?x457 (+ x3$ x5$ ?x456)))
  1.1553 +(let (($x458 (= ?x457 0)))
  1.1554 +(let ((?x482 (+ x2$ x4$ ?x481)))
  1.1555 +(let (($x483 (= ?x482 0)))
  1.1556 +(let ((?x98 (* (- 1) x2$)))
  1.1557 +(let (($x488 (>= x2$ 0)))
  1.1558 +(let ((?x495 (ite $x488 x2$ ?x98)))
  1.1559 +(let ((?x506 (* (- 1) ?x495)))
  1.1560 +(let ((?x507 (+ x3$ x1$ ?x506)))
  1.1561 +(let (($x508 (= ?x507 0)))
  1.1562 +(let (($x537 (and $x508 $x483 $x458 $x433 $x408 $x383 $x358 $x308 $x333)))
  1.1563 +(let (($x548 (not (or (not $x537) (and $x91 $x92)))))
  1.1564 +(let (($x93 (and $x91 $x92)))
  1.1565 +(let (($x83 (and (= x10$ (- (ite (< x9$ 0) (- x9$) x9$) x8$)) (= x11$ (- (ite (< x10$ 0) (- x10$) x10$) x9$)))))
  1.1566 +(let (($x85 (and (= x8$ (- (ite (< x7$ 0) (- x7$) x7$) x6$)) (and (= x9$ (- (ite (< x8$ 0) (- x8$) x8$) x7$)) $x83))))
  1.1567 +(let (($x87 (and (= x6$ (- (ite (< x5$ 0) (- x5$) x5$) x4$)) (and (= x7$ (- (ite (< x6$ 0) (- x6$) x6$) x5$)) $x85))))
  1.1568 +(let (($x89 (and (= x4$ (- (ite (< x3$ 0) (- x3$) x3$) x2$)) (and (= x5$ (- (ite (< x4$ 0) (- x4$) x4$) x3$)) $x87))))
  1.1569 +(let (($x94 (=> (and (= x3$ (- (ite (< x2$ 0) (- x2$) x2$) x1$)) $x89) $x93)))
  1.1570 +(let (($x95 (not $x94)))
  1.1571 +(let (($x78 (< x10$ 0)))
  1.1572 +(let ((?x238 (ite $x78 ?x235 x10$)))
  1.1573 +(let ((?x244 (+ ?x218 ?x238)))
  1.1574 +(let (($x249 (= x11$ ?x244)))
  1.1575 +(let (($x72 (< x9$ 0)))
  1.1576 +(let ((?x221 (ite $x72 ?x218 x9$)))
  1.1577 +(let ((?x227 (+ ?x201 ?x221)))
  1.1578 +(let (($x232 (= x10$ ?x227)))
  1.1579 +(let (($x252 (and $x232 $x249)))
  1.1580 +(let (($x66 (< x8$ 0)))
  1.1581 +(let ((?x204 (ite $x66 ?x201 x8$)))
  1.1582 +(let ((?x210 (+ ?x184 ?x204)))
  1.1583 +(let (($x215 (= x9$ ?x210)))
  1.1584 +(let (($x255 (and $x215 $x252)))
  1.1585 +(let (($x60 (< x7$ 0)))
  1.1586 +(let ((?x187 (ite $x60 ?x184 x7$)))
  1.1587 +(let ((?x193 (+ ?x167 ?x187)))
  1.1588 +(let (($x198 (= x8$ ?x193)))
  1.1589 +(let (($x258 (and $x198 $x255)))
  1.1590 +(let (($x54 (< x6$ 0)))
  1.1591 +(let ((?x170 (ite $x54 ?x167 x6$)))
  1.1592 +(let ((?x176 (+ ?x150 ?x170)))
  1.1593 +(let (($x181 (= x7$ ?x176)))
  1.1594 +(let (($x261 (and $x181 $x258)))
  1.1595 +(let (($x48 (< x5$ 0)))
  1.1596 +(let ((?x153 (ite $x48 ?x150 x5$)))
  1.1597 +(let ((?x159 (+ ?x133 ?x153)))
  1.1598 +(let (($x164 (= x6$ ?x159)))
  1.1599 +(let (($x264 (and $x164 $x261)))
  1.1600 +(let (($x42 (< x4$ 0)))
  1.1601 +(let ((?x136 (ite $x42 ?x133 x4$)))
  1.1602 +(let ((?x142 (+ ?x116 ?x136)))
  1.1603 +(let (($x147 (= x5$ ?x142)))
  1.1604 +(let (($x267 (and $x147 $x264)))
  1.1605 +(let (($x36 (< x3$ 0)))
  1.1606 +(let ((?x119 (ite $x36 ?x116 x3$)))
  1.1607 +(let ((?x125 (+ ?x98 ?x119)))
  1.1608 +(let (($x130 (= x4$ ?x125)))
  1.1609 +(let (($x270 (and $x130 $x267)))
  1.1610 +(let (($x29 (< x2$ 0)))
  1.1611 +(let ((?x101 (ite $x29 ?x98 x2$)))
  1.1612 +(let ((?x108 (+ (* (- 1) x1$) ?x101)))
  1.1613 +(let (($x113 (= x3$ ?x108)))
  1.1614 +(let (($x273 (and $x113 $x270)))
  1.1615 +(let (($x280 (or (not $x273) $x93)))
  1.1616 +(let (($x528 (and $x458 (and $x433 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
  1.1617 +(let (($x526 (= $x264 (and $x433 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
  1.1618 +(let ((@x319 (monotonicity (rewrite (= $x78 (not $x313))) (= ?x238 (ite (not $x313) ?x235 x10$)))))
  1.1619 +(let ((@x324 (trans @x319 (rewrite (= (ite (not $x313) ?x235 x10$) ?x320)) (= ?x238 ?x320))))
  1.1620 +(let ((@x330 (monotonicity (monotonicity @x324 (= ?x244 (+ ?x218 ?x320))) (= $x249 (= x11$ (+ ?x218 ?x320))))))
  1.1621 +(let ((@x337 (trans @x330 (rewrite (= (= x11$ (+ ?x218 ?x320)) $x333)) (= $x249 $x333))))
  1.1622 +(let ((@x294 (monotonicity (rewrite (= $x72 $x289)) (= ?x221 (ite $x289 ?x218 x9$)))))
  1.1623 +(let ((@x302 (monotonicity (trans @x294 (rewrite (= (ite $x289 ?x218 x9$) ?x295)) (= ?x221 ?x295)) (= ?x227 (+ ?x201 ?x295)))))
  1.1624 +(let ((@x312 (trans (monotonicity @x302 (= $x232 (= x10$ (+ ?x201 ?x295)))) (rewrite (= (= x10$ (+ ?x201 ?x295)) $x308)) (= $x232 $x308))))
  1.1625 +(let ((@x344 (monotonicity (rewrite (= $x66 $x339)) (= ?x204 (ite $x339 ?x201 x8$)))))
  1.1626 +(let ((@x352 (monotonicity (trans @x344 (rewrite (= (ite $x339 ?x201 x8$) ?x345)) (= ?x204 ?x345)) (= ?x210 (+ ?x184 ?x345)))))
  1.1627 +(let ((@x362 (trans (monotonicity @x352 (= $x215 (= x9$ (+ ?x184 ?x345)))) (rewrite (= (= x9$ (+ ?x184 ?x345)) $x358)) (= $x215 $x358))))
  1.1628 +(let ((@x518 (monotonicity @x362 (monotonicity @x312 @x337 (= $x252 (and $x308 $x333))) (= $x255 (and $x358 (and $x308 $x333))))))
  1.1629 +(let ((@x369 (monotonicity (rewrite (= $x60 (not $x363))) (= ?x187 (ite (not $x363) ?x184 x7$)))))
  1.1630 +(let ((@x374 (trans @x369 (rewrite (= (ite (not $x363) ?x184 x7$) ?x370)) (= ?x187 ?x370))))
  1.1631 +(let ((@x380 (monotonicity (monotonicity @x374 (= ?x193 (+ ?x167 ?x370))) (= $x198 (= x8$ (+ ?x167 ?x370))))))
  1.1632 +(let ((@x387 (trans @x380 (rewrite (= (= x8$ (+ ?x167 ?x370)) $x383)) (= $x198 $x383))))
  1.1633 +(let ((@x521 (monotonicity @x387 @x518 (= $x258 (and $x383 (and $x358 (and $x308 $x333)))))))
  1.1634 +(let ((@x394 (monotonicity (rewrite (= $x54 (not $x388))) (= ?x170 (ite (not $x388) ?x167 x6$)))))
  1.1635 +(let ((@x399 (trans @x394 (rewrite (= (ite (not $x388) ?x167 x6$) ?x395)) (= ?x170 ?x395))))
  1.1636 +(let ((@x405 (monotonicity (monotonicity @x399 (= ?x176 (+ ?x150 ?x395))) (= $x181 (= x7$ (+ ?x150 ?x395))))))
  1.1637 +(let ((@x412 (trans @x405 (rewrite (= (= x7$ (+ ?x150 ?x395)) $x408)) (= $x181 $x408))))
  1.1638 +(let ((@x524 (monotonicity @x412 @x521 (= $x261 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
  1.1639 +(let ((@x419 (monotonicity (rewrite (= $x48 $x414)) (= ?x153 (ite $x414 ?x150 x5$)))))
  1.1640 +(let ((@x427 (monotonicity (trans @x419 (rewrite (= (ite $x414 ?x150 x5$) ?x420)) (= ?x153 ?x420)) (= ?x159 (+ ?x133 ?x420)))))
  1.1641 +(let ((@x437 (trans (monotonicity @x427 (= $x164 (= x6$ (+ ?x133 ?x420)))) (rewrite (= (= x6$ (+ ?x133 ?x420)) $x433)) (= $x164 $x433))))
  1.1642 +(let ((@x444 (monotonicity (rewrite (= $x42 $x439)) (= ?x136 (ite $x439 ?x133 x4$)))))
  1.1643 +(let ((@x452 (monotonicity (trans @x444 (rewrite (= (ite $x439 ?x133 x4$) ?x445)) (= ?x136 ?x445)) (= ?x142 (+ ?x116 ?x445)))))
  1.1644 +(let ((@x462 (trans (monotonicity @x452 (= $x147 (= x5$ (+ ?x116 ?x445)))) (rewrite (= (= x5$ (+ ?x116 ?x445)) $x458)) (= $x147 $x458))))
  1.1645 +(let ((@x469 (monotonicity (rewrite (= $x36 $x464)) (= ?x119 (ite $x464 ?x116 x3$)))))
  1.1646 +(let ((@x477 (monotonicity (trans @x469 (rewrite (= (ite $x464 ?x116 x3$) ?x470)) (= ?x119 ?x470)) (= ?x125 (+ ?x98 ?x470)))))
  1.1647 +(let ((@x487 (trans (monotonicity @x477 (= $x130 (= x4$ (+ ?x98 ?x470)))) (rewrite (= (= x4$ (+ ?x98 ?x470)) $x483)) (= $x130 $x483))))
  1.1648 +(let ((@x533 (monotonicity @x487 (monotonicity @x462 (monotonicity @x437 @x524 $x526) (= $x267 $x528)) (= $x270 (and $x483 $x528)))))
  1.1649 +(let ((@x494 (monotonicity (rewrite (= $x29 (not $x488))) (= ?x101 (ite (not $x488) ?x98 x2$)))))
  1.1650 +(let ((@x499 (trans @x494 (rewrite (= (ite (not $x488) ?x98 x2$) ?x495)) (= ?x101 ?x495))))
  1.1651 +(let ((@x505 (monotonicity (monotonicity @x499 (= ?x108 (+ (* (- 1) x1$) ?x495))) (= $x113 (= x3$ (+ (* (- 1) x1$) ?x495))))))
  1.1652 +(let ((@x512 (trans @x505 (rewrite (= (= x3$ (+ (* (- 1) x1$) ?x495)) $x508)) (= $x113 $x508))))
  1.1653 +(let ((@x541 (trans (monotonicity @x512 @x533 (= $x273 (and $x508 (and $x483 $x528)))) (rewrite (= (and $x508 (and $x483 $x528)) $x537)) (= $x273 $x537))))
  1.1654 +(let ((@x547 (monotonicity (monotonicity @x541 (= (not $x273) (not $x537))) (= $x280 (or (not $x537) $x93)))))
  1.1655 +(let ((@x240 (monotonicity (rewrite (= (- x10$) ?x235)) (= (ite $x78 (- x10$) x10$) ?x238))))
  1.1656 +(let ((@x243 (monotonicity @x240 (= (- (ite $x78 (- x10$) x10$) x9$) (- ?x238 x9$)))))
  1.1657 +(let ((@x248 (trans @x243 (rewrite (= (- ?x238 x9$) ?x244)) (= (- (ite $x78 (- x10$) x10$) x9$) ?x244))))
  1.1658 +(let ((@x251 (monotonicity @x248 (= (= x11$ (- (ite $x78 (- x10$) x10$) x9$)) $x249))))
  1.1659 +(let ((@x223 (monotonicity (rewrite (= (- x9$) ?x218)) (= (ite $x72 (- x9$) x9$) ?x221))))
  1.1660 +(let ((@x226 (monotonicity @x223 (= (- (ite $x72 (- x9$) x9$) x8$) (- ?x221 x8$)))))
  1.1661 +(let ((@x231 (trans @x226 (rewrite (= (- ?x221 x8$) ?x227)) (= (- (ite $x72 (- x9$) x9$) x8$) ?x227))))
  1.1662 +(let ((@x234 (monotonicity @x231 (= (= x10$ (- (ite $x72 (- x9$) x9$) x8$)) $x232))))
  1.1663 +(let ((@x206 (monotonicity (rewrite (= (- x8$) ?x201)) (= (ite $x66 (- x8$) x8$) ?x204))))
  1.1664 +(let ((@x209 (monotonicity @x206 (= (- (ite $x66 (- x8$) x8$) x7$) (- ?x204 x7$)))))
  1.1665 +(let ((@x214 (trans @x209 (rewrite (= (- ?x204 x7$) ?x210)) (= (- (ite $x66 (- x8$) x8$) x7$) ?x210))))
  1.1666 +(let ((@x217 (monotonicity @x214 (= (= x9$ (- (ite $x66 (- x8$) x8$) x7$)) $x215))))
  1.1667 +(let ((@x257 (monotonicity @x217 (monotonicity @x234 @x251 (= $x83 $x252)) (= (and (= x9$ (- (ite $x66 (- x8$) x8$) x7$)) $x83) $x255))))
  1.1668 +(let ((@x189 (monotonicity (rewrite (= (- x7$) ?x184)) (= (ite $x60 (- x7$) x7$) ?x187))))
  1.1669 +(let ((@x192 (monotonicity @x189 (= (- (ite $x60 (- x7$) x7$) x6$) (- ?x187 x6$)))))
  1.1670 +(let ((@x197 (trans @x192 (rewrite (= (- ?x187 x6$) ?x193)) (= (- (ite $x60 (- x7$) x7$) x6$) ?x193))))
  1.1671 +(let ((@x200 (monotonicity @x197 (= (= x8$ (- (ite $x60 (- x7$) x7$) x6$)) $x198))))
  1.1672 +(let ((@x172 (monotonicity (rewrite (= (- x6$) ?x167)) (= (ite $x54 (- x6$) x6$) ?x170))))
  1.1673 +(let ((@x175 (monotonicity @x172 (= (- (ite $x54 (- x6$) x6$) x5$) (- ?x170 x5$)))))
  1.1674 +(let ((@x180 (trans @x175 (rewrite (= (- ?x170 x5$) ?x176)) (= (- (ite $x54 (- x6$) x6$) x5$) ?x176))))
  1.1675 +(let ((@x183 (monotonicity @x180 (= (= x7$ (- (ite $x54 (- x6$) x6$) x5$)) $x181))))
  1.1676 +(let ((@x263 (monotonicity @x183 (monotonicity @x200 @x257 (= $x85 $x258)) (= (and (= x7$ (- (ite $x54 (- x6$) x6$) x5$)) $x85) $x261))))
  1.1677 +(let ((@x155 (monotonicity (rewrite (= (- x5$) ?x150)) (= (ite $x48 (- x5$) x5$) ?x153))))
  1.1678 +(let ((@x158 (monotonicity @x155 (= (- (ite $x48 (- x5$) x5$) x4$) (- ?x153 x4$)))))
  1.1679 +(let ((@x163 (trans @x158 (rewrite (= (- ?x153 x4$) ?x159)) (= (- (ite $x48 (- x5$) x5$) x4$) ?x159))))
  1.1680 +(let ((@x166 (monotonicity @x163 (= (= x6$ (- (ite $x48 (- x5$) x5$) x4$)) $x164))))
  1.1681 +(let ((@x138 (monotonicity (rewrite (= (- x4$) ?x133)) (= (ite $x42 (- x4$) x4$) ?x136))))
  1.1682 +(let ((@x141 (monotonicity @x138 (= (- (ite $x42 (- x4$) x4$) x3$) (- ?x136 x3$)))))
  1.1683 +(let ((@x146 (trans @x141 (rewrite (= (- ?x136 x3$) ?x142)) (= (- (ite $x42 (- x4$) x4$) x3$) ?x142))))
  1.1684 +(let ((@x149 (monotonicity @x146 (= (= x5$ (- (ite $x42 (- x4$) x4$) x3$)) $x147))))
  1.1685 +(let ((@x269 (monotonicity @x149 (monotonicity @x166 @x263 (= $x87 $x264)) (= (and (= x5$ (- (ite $x42 (- x4$) x4$) x3$)) $x87) $x267))))
  1.1686 +(let ((@x121 (monotonicity (rewrite (= (- x3$) ?x116)) (= (ite $x36 (- x3$) x3$) ?x119))))
  1.1687 +(let ((@x124 (monotonicity @x121 (= (- (ite $x36 (- x3$) x3$) x2$) (- ?x119 x2$)))))
  1.1688 +(let ((@x129 (trans @x124 (rewrite (= (- ?x119 x2$) ?x125)) (= (- (ite $x36 (- x3$) x3$) x2$) ?x125))))
  1.1689 +(let ((@x132 (monotonicity @x129 (= (= x4$ (- (ite $x36 (- x3$) x3$) x2$)) $x130))))
  1.1690 +(let ((@x103 (monotonicity (rewrite (= (- x2$) ?x98)) (= (ite $x29 (- x2$) x2$) ?x101))))
  1.1691 +(let ((@x106 (monotonicity @x103 (= (- (ite $x29 (- x2$) x2$) x1$) (- ?x101 x1$)))))
  1.1692 +(let ((@x112 (trans @x106 (rewrite (= (- ?x101 x1$) ?x108)) (= (- (ite $x29 (- x2$) x2$) x1$) ?x108))))
  1.1693 +(let ((@x115 (monotonicity @x112 (= (= x3$ (- (ite $x29 (- x2$) x2$) x1$)) $x113))))
  1.1694 +(let ((@x275 (monotonicity @x115 (monotonicity @x132 @x269 (= $x89 $x270)) (= (and (= x3$ (- (ite $x29 (- x2$) x2$) x1$)) $x89) $x273))))
  1.1695 +(let ((@x284 (trans (monotonicity @x275 (= $x94 (=> $x273 $x93))) (rewrite (= (=> $x273 $x93) $x280)) (= $x94 $x280))))
  1.1696 +(let ((@x552 (trans (monotonicity @x284 (= $x95 (not $x280))) (monotonicity @x547 (= (not $x280) $x548)) (= $x95 $x548))))
  1.1697 +(let ((@x554 (not-or-elim (mp (asserted $x95) @x552 $x548) $x537)))
  1.1698 +(let ((@x558 (and-elim @x554 $x433)))
  1.1699 +(let ((@x799 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x611)) @x558 $x611)))
  1.1700 +(let (($x626 (<= ?x382 0)))
  1.1701 +(let ((@x560 (and-elim @x554 $x383)))
  1.1702 +(let ((@x703 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x626)) @x560 $x626)))
  1.1703 +(let ((?x668 (+ x7$ ?x381)))
  1.1704 +(let (($x670 (>= ?x668 0)))
  1.1705 +(let (($x620 (= x7$ ?x370)))
  1.1706 +(let ((?x777 (+ ?x167 ?x406)))
  1.1707 +(let (($x780 (<= ?x777 0)))
  1.1708 +(let (($x613 (= ?x167 ?x395)))
  1.1709 +(let (($x389 (not $x388)))
  1.1710 +(let (($x364 (not $x363)))
  1.1711 +(let ((@x1027 (hypothesis $x364)))
  1.1712 +(let ((@x1026 (hypothesis $x388)))
  1.1713 +(let (($x619 (>= ?x407 0)))
  1.1714 +(let ((@x559 (and-elim @x554 $x408)))
  1.1715 +(let ((@x853 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x408) $x619)) @x559 $x619)))
  1.1716 +(let (($x936 (<= ?x671 0)))
  1.1717 +(let ((@x950 ((_ th-lemma arith triangle-eq) (or (not $x612) $x936))))
  1.1718 +(let ((@x1029 (unit-resolution @x950 (unit-resolution (def-axiom (or $x389 $x612)) @x1026 $x612) $x936)))
  1.1719 +(let ((@x1032 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1029 @x853 @x1027 @x844 @x1026 false) (or $x363 $x413 $x389))))
  1.1720 +(let ((@x617 (def-axiom (or $x388 $x613))))
  1.1721 +(let ((@x1064 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x613) $x780)) (unit-resolution @x617 (unit-resolution @x1032 @x1027 @x844 $x389) $x613) $x780)))
  1.1722 +(let ((@x1065 ((_ th-lemma arith farkas 1 1 1 1 1) (unit-resolution @x1032 @x1027 @x844 $x389) @x853 @x1027 @x844 @x1064 false)))
  1.1723 +(let ((@x623 (def-axiom (or $x364 $x620))))
  1.1724 +(let ((@x1088 (unit-resolution @x623 (unit-resolution (lemma @x1065 (or $x363 $x413)) @x844 $x363) $x620)))
  1.1725 +(let ((@x926 ((_ th-lemma arith triangle-eq) (or (not $x620) $x670))))
  1.1726 +(let ((@x1089 (unit-resolution @x926 @x1088 $x670)))
  1.1727 +(let ((@x858 (hypothesis $x667)))
  1.1728 +(let (($x634 (<= ?x357 0)))
  1.1729 +(let ((@x561 (and-elim @x554 $x358)))
  1.1730 +(let ((@x857 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x634)) @x561 $x634)))
  1.1731 +(let ((@x1105 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x857 @x858 @x1089 @x703 @x763 @x799 @x1000 @x844 @x1079 false) (or $x438 $x860 $x413 $x289))))
  1.1732 +(let (($x840 (<= ?x668 0)))
  1.1733 +(let ((@x865 ((_ th-lemma arith triangle-eq) (or (not $x620) $x840))))
  1.1734 +(let ((@x1090 (unit-resolution @x865 @x1088 $x840)))
  1.1735 +(let (($x627 (>= ?x382 0)))
  1.1736 +(let ((@x835 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x627)) @x560 $x627)))
  1.1737 +(let ((@x1242 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x611) $x388 (not $x933) $x413)) @x763 @x799 @x1000 @x844 $x388)))
  1.1738 +(let ((@x615 (def-axiom (or $x389 $x612))))
  1.1739 +(let ((@x1095 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x338 (not $x840) (not $x627) (not $x936) (not $x619) $x413))))
  1.1740 +(let ((@x1245 (unit-resolution @x1095 (unit-resolution @x950 (unit-resolution @x615 @x1242 $x612) $x936) @x835 @x844 @x1090 @x853 $x338)))
  1.1741 +(let ((@x631 (def-axiom (or $x339 $x628))))
  1.1742 +(let ((@x1132 ((_ th-lemma arith triangle-eq) (or (not $x628) $x667))))
  1.1743 +(let ((@x1247 (unit-resolution @x1132 (unit-resolution @x631 @x1245 $x628) (unit-resolution @x1105 @x763 @x844 @x1079 $x860) false)))
  1.1744 +(let ((@x1328 (unit-resolution @x599 (unit-resolution (lemma @x1247 (or $x438 $x413 $x289)) @x844 @x1079 $x438) $x596)))
  1.1745 +(let ((@x1147 ((_ th-lemma arith triangle-eq) (or (not $x636) $x661))))
  1.1746 +(let ((@x1148 (unit-resolution @x1147 (unit-resolution (def-axiom (or $x289 $x636)) @x1079 $x636) $x661)))
  1.1747 +(let ((@x1152 ((_ th-lemma arith triangle-eq) (or (not $x636) $x660))))
  1.1748 +(let ((@x1153 (unit-resolution @x1152 (unit-resolution (def-axiom (or $x289 $x636)) @x1079 $x636) $x660)))
  1.1749 +(let (($x658 (>= ?x656 0)))
  1.1750 +(let (($x706 (not $x673)))
  1.1751 +(let (($x663 (<= ?x665 0)))
  1.1752 +(let (($x643 (>= ?x307 0)))
  1.1753 +(let ((@x562 (and-elim @x554 $x308)))
  1.1754 +(let ((@x1126 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x643)) @x562 $x643)))
  1.1755 +(let (($x314 (not $x313)))
  1.1756 +(let (($x1165 (not $x644)))
  1.1757 +(let (($x664 (>= ?x662 0)))
  1.1758 +(let (($x734 (not $x664)))
  1.1759 +(let (($x710 (not $x658)))
  1.1760 +(let ((@x711 (hypothesis $x710)))
  1.1761 +(let ((@x731 (hypothesis $x661)))
  1.1762 +(let ((@x716 (hypothesis $x664)))
  1.1763 +(let (($x847 (not $x613)))
  1.1764 +(let (($x839 (>= ?x777 0)))
  1.1765 +(let (($x872 (not $x839)))
  1.1766 +(let (($x681 (<= ?x680 0)))
  1.1767 +(let (($x621 (= ?x184 ?x370)))
  1.1768 +(let (($x823 (not $x621)))
  1.1769 +(let ((?x778 (+ ?x184 ?x381)))
  1.1770 +(let (($x779 (<= ?x778 0)))
  1.1771 +(let (($x902 (not $x779)))
  1.1772 +(let (($x669 (>= ?x677 0)))
  1.1773 +(let (($x679 (<= ?x676 0)))
  1.1774 +(let ((@x762 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x679)) (unit-resolution @x593 @x688 $x589) $x679)))
  1.1775 +(let ((@x941 (unit-resolution @x740 (unit-resolution @x601 @x763 $x597) $x675)))
  1.1776 +(let ((@x869 (hypothesis $x681)))
  1.1777 +(let ((@x868 (hypothesis $x678)))
  1.1778 +(let ((@x867 (hypothesis $x839)))
  1.1779 +(let ((@x866 (unit-resolution @x865 (unit-resolution @x623 (hypothesis $x363) $x620) $x840)))
  1.1780 +(let ((@x841 (hypothesis $x363)))
  1.1781 +(let (($x618 (<= ?x407 0)))
  1.1782 +(let ((@x698 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x408) $x618)) @x559 $x618)))
  1.1783 +(let (($x603 (>= ?x457 0)))
  1.1784 +(let ((@x557 (and-elim @x554 $x458)))
  1.1785 +(let ((@x687 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x458) $x603)) @x557 $x603)))
  1.1786 +(let (($x650 (<= ?x332 0)))
  1.1787 +(let ((@x563 (and-elim @x554 $x333)))
  1.1788 +(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x650)) @x563 $x650)))
  1.1789 +(let (($x595 (>= ?x482 0)))
  1.1790 +(let ((@x556 (and-elim @x554 $x483)))
  1.1791 +(let ((@x720 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x595)) @x556 $x595)))
  1.1792 +(let (($x642 (<= ?x307 0)))
  1.1793 +(let ((@x730 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x642)) @x562 $x642)))
  1.1794 +(let ((@x870 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -2 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 @x841 @x866 false)))
  1.1795 +(let ((@x879 (unit-resolution (lemma @x870 (or $x364 (not $x681) $x733 $x734 $x658 $x784 $x872)) @x867 @x731 @x716 @x711 @x868 @x869 $x364)))
  1.1796 +(let ((@x625 (def-axiom (or $x363 $x621))))
  1.1797 +(let ((@x825 ((_ th-lemma arith triangle-eq) (or $x823 $x779))))
  1.1798 +(let ((@x882 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 (unit-resolution @x825 (unit-resolution @x625 @x879 $x621) $x779) false)))
  1.1799 +(let ((@x884 (lemma @x882 (or $x872 (not $x681) $x733 $x734 $x658 $x784))))
  1.1800 +(let ((@x945 (unit-resolution @x884 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 $x745)) @x941 @x763 $x678) @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872)))
  1.1801 +(let ((@x892 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x839)) (hypothesis $x613) (hypothesis $x872) false)))
  1.1802 +(let ((@x893 (lemma @x892 (or $x847 $x839))))
  1.1803 +(let ((@x948 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x945 $x847) $x388) $x612)))
  1.1804 +(let (($x775 (<= ?x757 0)))
  1.1805 +(let ((@x954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 $x745 (not $x603) $x463 $x438)) @x763 @x687 @x688 @x941 $x413)))
  1.1806 +(let ((@x607 (def-axiom (or $x414 $x604))))
  1.1807 +(let ((@x794 ((_ th-lemma arith triangle-eq) (or (not $x604) $x775))))
  1.1808 +(let ((@x960 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 (not $x936) (not $x619) $x438 (not $x775) (not $x611)))))
  1.1809 +(let ((@x961 (unit-resolution @x960 @x763 @x853 @x799 (unit-resolution @x794 (unit-resolution @x607 @x954 $x604) $x775) (unit-resolution @x950 @x948 $x936) $x363)))
  1.1810 +(let (($x602 (<= ?x457 0)))
  1.1811 +(let ((@x832 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x458) $x602)) @x557 $x602)))
  1.1812 +(let (($x932 (>= ?x674 0)))
  1.1813 +(let ((@x966 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x738 $x932)) (unit-resolution @x601 @x763 $x597) $x932)))
  1.1814 +(let ((@x967 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x950 @x948 $x936) @x853 @x966 @x832 (unit-resolution @x865 (unit-resolution @x623 @x961 $x620) $x840) false)))
  1.1815 +(let ((@x974 (unit-resolution (lemma @x967 (or $x438 $x733 $x734 $x658 $x463)) @x688 @x716 @x711 @x731 $x438)))
  1.1816 +(let ((@x828 ((_ th-lemma arith triangle-eq) (or (not $x596) $x669))))
  1.1817 +(let ((@x978 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x687 @x688 @x974 $x413)))
  1.1818 +(let ((@x791 ((_ th-lemma arith triangle-eq) (or (not $x604) $x776))))
  1.1819 +(let ((@x981 (unit-resolution @x884 (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872)))
  1.1820 +(let ((@x984 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x981 $x847) $x388) $x612)))
  1.1821 +(let ((@x808 ((_ th-lemma arith triangle-eq) (or (not $x612) $x673))))
  1.1822 +(let ((@x900 (hypothesis $x669)))
  1.1823 +(let (($x610 (<= ?x432 0)))
  1.1824 +(let ((@x812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x610)) @x558 $x610)))
  1.1825 +(let ((@x699 (hypothesis $x673)))
  1.1826 +(let ((@x935 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -1 1 1) @x835 @x731 @x730 (hypothesis $x679) @x720 @x716 @x715 @x711 @x699 @x698 (hypothesis $x776) @x812 @x900 @x832 (hypothesis $x779) false)))
  1.1827 +(let ((@x971 (lemma @x935 (or $x902 $x733 (not $x679) $x734 $x658 $x706 (not $x776) (not $x669)))))
  1.1828 +(let ((@x986 (unit-resolution @x971 @x762 @x731 @x716 @x711 (unit-resolution @x808 @x984 $x673) (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) $x902)))
  1.1829 +(let ((@x909 (lemma (unit-resolution @x825 (hypothesis $x621) (hypothesis $x902) false) (or $x823 $x779))))
  1.1830 +(let ((@x989 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) $x620)))
  1.1831 +(let ((@x991 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -2 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x808 @x984 $x673) @x698 (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) @x812 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) @x832 (unit-resolution @x865 @x989 $x840) false)))
  1.1832 +(let ((@x972 (unit-resolution (lemma @x991 (or $x463 $x733 $x734 $x658)) @x716 @x731 @x711 $x463)))
  1.1833 +(let ((@x591 (def-axiom (or $x464 $x588))))
  1.1834 +(let ((@x725 ((_ th-lemma arith triangle-eq) (or (not $x588) $x681))))
  1.1835 +(let ((@x994 (unit-resolution @x725 (unit-resolution @x591 @x972 $x588) $x681)))
  1.1836 +(let ((@x995 (unit-resolution @x884 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 $x745)) @x941 @x763 $x678) @x731 @x716 @x711 @x994 $x872)))
  1.1837 +(let ((@x1013 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x995 $x847) $x388) $x612)))
  1.1838 +(let ((@x1014 (unit-resolution @x950 @x1013 $x936)))
  1.1839 +(let ((@x753 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x658 $x657)) @x711 $x657)))
  1.1840 +(let ((@x1001 (hypothesis $x936)))
  1.1841 +(let ((@x1004 ((_ th-lemma arith assign-bounds 1 1 1 1 1 2) (or $x363 (not $x936) (not $x619) $x438 (not $x611) (not $x933) $x413))))
  1.1842 +(let ((@x1006 (unit-resolution @x623 (unit-resolution @x1004 @x844 @x799 @x853 @x763 @x1001 @x1000 $x363) $x620)))
  1.1843 +(let ((@x764 (hypothesis $x657)))
  1.1844 +(let ((@x1008 ((_ th-lemma arith farkas 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1) @x835 @x1001 @x853 @x844 @x731 @x730 @x720 @x716 @x715 @x764 @x687 @x941 @x869 @x763 (unit-resolution @x865 @x1006 $x840) false)))
  1.1845 +(let ((@x1015 (unit-resolution (lemma @x1008 (or $x413 (not $x936) $x733 $x734 $x766 (not $x681) $x438)) @x1014 @x731 @x716 @x753 @x994 @x763 $x413)))
  1.1846 +(let ((@x1018 (unit-resolution @x960 (unit-resolution @x794 (unit-resolution @x607 @x1015 $x604) $x775) @x853 @x763 @x1014 @x799 $x363)))
  1.1847 +(let ((@x1021 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) @x832 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1018 $x620) $x840) @x835 @x1014 @x853 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x972 false)))
  1.1848 +(let ((@x1025 (unit-resolution (lemma @x1021 (or $x438 $x733 $x734 $x658)) @x716 @x731 @x711 $x438)))
  1.1849 +(let ((@x1035 (unit-resolution @x884 (unit-resolution @x693 (unit-resolution @x599 @x1025 $x596) $x678) @x731 @x716 @x711 @x994 $x872)))
  1.1850 +(let ((@x1037 (unit-resolution @x617 (unit-resolution @x893 @x1035 $x847) $x388)))
  1.1851 +(let (($x1024 (>= ?x931 0)))
  1.1852 +(let ((@x1040 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x1024)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x1024)))
  1.1853 +(let ((@x1043 (unit-resolution @x865 (unit-resolution @x623 (unit-resolution @x1032 @x844 @x1037 $x363) $x620) $x840)))
  1.1854 +(let ((@x1046 ((_ th-lemma arith farkas -1 1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1) (unit-resolution @x950 (unit-resolution @x615 @x1037 $x612) $x936) @x853 @x1043 @x835 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x1040 @x812 @x972 @x1037 false)))
  1.1855 +(let ((@x1049 (unit-resolution (lemma @x1046 (or $x413 $x733 $x734 $x658)) @x716 @x731 @x711 $x413)))
  1.1856 +(let ((@x895 (hypothesis $x463)))
  1.1857 +(let ((@x897 (unit-resolution @x725 (unit-resolution @x591 @x895 $x588) $x681)))
  1.1858 +(let ((@x901 ((_ th-lemma arith farkas -1/2 1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1) @x832 @x900 (hypothesis $x776) @x812 (hypothesis $x779) @x835 @x897 @x731 @x730 @x720 @x716 @x715 @x711 @x698 @x699 @x895 false)))
  1.1859 +(let ((@x905 (lemma @x901 (or $x902 (not $x669) (not $x776) $x733 $x734 $x658 $x706 $x464))))
  1.1860 +(let ((@x1054 (unit-resolution @x905 (unit-resolution @x791 (unit-resolution @x607 @x1049 $x604) $x776) @x972 @x731 @x716 @x711 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) (unit-resolution @x808 (unit-resolution @x615 @x1037 $x612) $x673) $x902)))
  1.1861 +(let ((@x1057 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) $x620)))
  1.1862 +(let (($x707 (not $x670)))
  1.1863 +(let ((@x704 (hypothesis $x338)))
  1.1864 +(let ((@x768 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1) @x731 @x704 @x730 @x720 @x716 @x715 @x764 @x763 @x688 @x762 false) (or $x463 $x733 $x339 $x734 $x766 $x438))))
  1.1865 +(let ((@x770 (unit-resolution @x591 (unit-resolution @x768 @x763 @x704 @x716 @x764 @x731 $x463) $x588)))
  1.1866 +(let ((@x772 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1) (unit-resolution @x768 @x763 @x704 @x716 @x764 @x731 $x463) @x731 @x704 @x730 @x720 @x716 @x715 @x764 @x763 (unit-resolution @x725 @x770 $x681) false)))
  1.1867 +(let ((@x774 (lemma @x772 (or $x438 $x733 $x339 $x734 $x766))))
  1.1868 +(let ((@x782 (unit-resolution @x599 (unit-resolution @x774 @x704 @x731 @x716 @x753 $x438) $x596)))
  1.1869 +(let ((@x783 (unit-resolution @x693 @x782 $x678)))
  1.1870 +(let ((@x787 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 $x784)) @x688 @x687 (unit-resolution @x774 @x704 @x731 @x716 @x753 $x438) @x783 $x413)))
  1.1871 +(let ((@x803 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x388 (not $x775) (not $x603) $x463 $x784 (not $x611)))))
  1.1872 +(let ((@x804 (unit-resolution @x803 @x688 @x799 @x687 @x783 (unit-resolution @x794 (unit-resolution @x607 @x787 $x604) $x775) $x388)))
  1.1873 +(let (($x818 (not $x610)))
  1.1874 +(let (($x817 (not $x776)))
  1.1875 +(let (($x816 (not $x650)))
  1.1876 +(let (($x815 (not $x595)))
  1.1877 +(let (($x814 (not $x642)))
  1.1878 +(let (($x813 (not $x679)))
  1.1879 +(let (($x743 (not $x618)))
  1.1880 +(let (($x819 (or $x364 $x706 $x743 $x463 $x813 $x733 $x339 $x814 $x815 $x734 $x816 $x766 $x817 $x818)))
  1.1881 +(let ((@x821 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1 1 1 1 -1) $x819) @x688 @x812 @x698 @x720 @x704 @x730 @x715 @x753 @x731 @x716 (unit-resolution @x808 (unit-resolution @x615 @x804 $x612) $x673) @x762 (unit-resolution @x791 (unit-resolution @x607 @x787 $x604) $x776) $x364)))
  1.1882 +(let ((@x836 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 1 -2 2 -1 1 -1 1) (unit-resolution @x808 (unit-resolution @x615 @x804 $x612) $x673) @x698 @x762 @x731 @x730 @x720 @x716 @x715 @x711 (unit-resolution @x791 (unit-resolution @x607 @x787 $x604) $x776) @x812 @x835 @x832 (unit-resolution @x828 @x782 $x669) (unit-resolution @x825 (unit-resolution @x625 @x821 $x621) $x779) false)))
  1.1883 +(let ((@x894 (unit-resolution (lemma @x836 (or $x463 $x733 $x734 $x658 $x339)) @x704 @x716 @x711 @x731 $x463)))
  1.1884 +(let ((@x912 (unit-resolution @x884 (unit-resolution @x725 (unit-resolution @x591 @x894 $x588) $x681) @x731 @x716 @x711 @x783 $x872)))
  1.1885 +(let ((@x915 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x912 $x847) $x388) $x612)))
  1.1886 +(let ((@x683 (hypothesis $x670)))
  1.1887 +(let ((@x689 (hypothesis $x438)))
  1.1888 +(let ((@x694 (unit-resolution @x693 (unit-resolution @x599 @x689 $x596) $x678)))
  1.1889 +(let ((@x709 (lemma ((_ th-lemma arith farkas 1 -1 1 -1 1 -1 -1 1 1) @x704 @x703 @x699 @x698 @x689 @x694 @x688 @x687 @x683 false) (or $x463 $x339 $x706 $x439 $x707))))
  1.1890 +(let ((@x722 (unit-resolution @x591 (unit-resolution @x709 @x689 @x699 @x704 @x683 $x463) $x588)))
  1.1891 +(let ((@x732 ((_ th-lemma arith farkas 2 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1) @x704 @x703 @x699 @x698 @x694 @x687 @x731 @x730 (unit-resolution @x725 @x722 $x681) @x720 @x716 @x715 @x711 @x683 false)))
  1.1892 +(let ((@x682 (unit-resolution (lemma @x732 (or $x439 $x339 $x706 $x733 $x734 $x658 $x707)) @x699 @x704 @x731 @x716 @x711 @x683 $x439)))
  1.1893 +(let ((@x747 ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x463 $x707 $x339 (not $x626) $x706 $x743 (not $x603) $x745 $x438))))
  1.1894 +(let ((@x748 (unit-resolution @x747 @x682 @x687 @x698 @x703 @x704 @x683 @x699 (unit-resolution @x740 (unit-resolution @x601 @x682 $x597) $x675) $x463)))
  1.1895 +(let ((@x754 ((_ th-lemma arith farkas 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1) @x683 @x704 @x703 @x699 @x698 @x687 (unit-resolution @x740 (unit-resolution @x601 @x682 $x597) $x675) @x682 @x731 @x730 @x720 @x716 @x715 @x753 (unit-resolution @x725 (unit-resolution @x591 @x748 $x588) $x681) false)))
  1.1896 +(let ((@x917 (unit-resolution (lemma @x754 (or $x706 $x707 $x339 $x733 $x734 $x658)) (unit-resolution @x808 @x915 $x673) @x704 @x731 @x716 @x711 $x707)))
  1.1897 +(let ((@x887 (unit-resolution @x599 (unit-resolution @x774 @x704 @x731 @x716 @x764 $x438) $x596)))
  1.1898 +(let ((@x889 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 -1 1) @x844 @x869 @x731 @x730 @x720 @x716 @x715 @x764 @x687 (unit-resolution @x693 @x887 $x678) @x704 false)))
  1.1899 +(let ((@x918 (unit-resolution (lemma @x889 (or $x413 (not $x681) $x733 $x734 $x766 $x339)) (unit-resolution @x725 (unit-resolution @x591 @x894 $x588) $x681) @x731 @x716 @x753 @x704 $x413)))
  1.1900 +(let ((@x921 (unit-resolution @x905 (unit-resolution @x828 @x782 $x669) (unit-resolution @x791 (unit-resolution @x607 @x918 $x604) $x776) @x731 @x716 @x711 (unit-resolution @x808 @x915 $x673) @x894 $x902)))
  1.1901 +(let ((@x924 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x921 $x823) $x363) $x620)))
  1.1902 +(let ((@x929 (lemma (unit-resolution @x926 @x924 @x917 false) (or $x339 $x733 $x734 $x658))))
  1.1903 +(let ((@x1060 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 1) @x812 @x972 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) @x832 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) (unit-resolution @x929 @x716 @x731 @x711 $x339) (unit-resolution @x865 @x1057 $x840) @x835 (unit-resolution @x791 (unit-resolution @x607 @x1049 $x604) $x776) false)))
  1.1904 +(let ((@x1164 (hypothesis $x644)))
  1.1905 +(let ((@x1168 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1165 $x664)) @x1164 (hypothesis $x734) false)))
  1.1906 +(let ((@x1169 (lemma @x1168 (or $x1165 $x664))))
  1.1907 +(let ((@x1171 (unit-resolution @x1169 (unit-resolution (lemma @x1060 (or $x734 $x733 $x658)) @x711 @x1148 $x734) $x1165)))
  1.1908 +(let ((@x647 (def-axiom (or $x314 $x644))))
  1.1909 +(let ((@x1172 (unit-resolution @x647 @x1171 $x314)))
  1.1910 +(let ((@x1194 ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x313 (not $x660) (not $x643) $x289))))
  1.1911 +(let ((@x1219 (unit-resolution @x631 (unit-resolution @x1194 @x1172 @x1126 @x1079 @x1153 $x338) $x628)))
  1.1912 +(let ((@x1118 ((_ th-lemma arith triangle-eq) (or (not $x628) $x663))))
  1.1913 +(let ((@x1220 (unit-resolution @x1118 @x1219 $x663)))
  1.1914 +(let ((@x845 (hypothesis $x389)))
  1.1915 +(let ((@x1071 (unit-resolution @x803 @x845 @x799 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x775 (not $x933) $x413)) @x1000 @x844 $x775) @x688 @x687 $x784)))
  1.1916 +(let ((@x1074 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x611) $x388 (not $x933) $x413)) @x845 @x799 @x844 @x1000 $x438)))
  1.1917 +(let ((@x1078 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1074 $x596) @x1071 false) (or $x388 $x463 $x413))))
  1.1918 +(let ((@x1084 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1) (or $x745 $x818 $x389 $x463 (not $x603) (not $x1024))) (unit-resolution @x1078 @x688 @x844 $x388) @x812 @x687 @x688 @x1040 $x745)))
  1.1919 +(let ((@x1086 (unit-resolution @x808 (unit-resolution @x615 (unit-resolution @x1078 @x688 @x844 $x388) $x612) $x673)))
  1.1920 +(let ((@x1091 (unit-resolution @x950 (unit-resolution @x615 (unit-resolution @x1078 @x688 @x844 $x388) $x612) $x936)))
  1.1921 +(let ((@x1097 (unit-resolution @x709 (unit-resolution @x1095 @x1091 @x835 @x844 @x853 @x1090 $x338) @x1089 @x688 @x1086 $x439)))
  1.1922 +(let ((@x1101 (lemma (unit-resolution @x740 (unit-resolution @x601 @x1097 $x597) @x1084 false) (or $x463 $x413))))
  1.1923 +(let ((@x1122 (unit-resolution @x725 (unit-resolution @x591 (unit-resolution @x1101 @x844 $x463) $x588) $x681)))
  1.1924 +(let (($x1106 (>= ?x1104 0)))
  1.1925 +(let ((@x1161 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1106)) (hypothesis $x645) (hypothesis (not $x1106)) false)))
  1.1926 +(let ((@x1162 (lemma @x1161 (or $x1136 $x1106))))
  1.1927 +(let ((@x1174 (unit-resolution @x1162 (unit-resolution (def-axiom (or $x313 $x645)) @x1172 $x645) $x1106)))
  1.1928 +(let ((@x850 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x780)) (unit-resolution @x617 @x845 $x613) $x780)))
  1.1929 +(let ((@x1113 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x936 $x673)) (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x706 (not $x780) $x388)) @x850 @x845 $x706) $x936)))
  1.1930 +(let ((@x1115 (unit-resolution @x631 (unit-resolution @x1095 @x1113 @x835 @x853 @x844 @x1090 $x338) $x628)))
  1.1931 +(let ((@x1127 (hypothesis $x660)))
  1.1932 +(let (($x635 (>= ?x357 0)))
  1.1933 +(let ((@x1130 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x635)) @x561 $x635)))
  1.1934 +(let ((@x859 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x858 @x857 @x853 @x845 @x731 @x730 @x850 @x844 (hypothesis $x313) false)))
  1.1935 +(let ((@x1134 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1132 @x1115 $x667) @x844 @x731 @x845 $x314)))
  1.1936 +(let ((@x649 (def-axiom (or $x313 $x645))))
  1.1937 +(let ((@x1139 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1106)) (unit-resolution @x649 @x1134 $x645) $x1106)))
  1.1938 +(let ((@x1140 (unit-resolution @x893 (unit-resolution @x617 @x845 $x613) $x839)))
  1.1939 +(let ((@x1141 ((_ th-lemma arith farkas 1/2 -1/2 1/2 -1/2 -1/2 -1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2 1/2 1) @x1090 @x835 @x698 @x1140 @x1139 @x1130 @x1127 @x1126 @x720 @x715 @x711 (unit-resolution @x693 (unit-resolution @x599 @x1074 $x596) $x678) @x687 @x1122 (unit-resolution @x1118 @x1115 $x663) false)))
  1.1940 +(let ((@x1175 (unit-resolution (lemma @x1141 (or $x388 (not $x660) $x658 $x413 $x733)) @x844 @x711 @x1153 @x1148 $x388)))
  1.1941 +(let ((@x1154 (hypothesis $x1106)))
  1.1942 +(let ((@x1155 ((_ th-lemma arith farkas 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 -1/2 1) @x683 @x703 @x699 @x698 @x1154 @x1153 @x1126 @x720 @x715 @x711 @x868 @x687 @x869 @x1079 false)))
  1.1943 +(let ((@x1178 (unit-resolution (lemma @x1155 (or (not $x1106) $x707 $x706 $x658 $x784 (not $x681) $x289)) (unit-resolution @x808 (unit-resolution @x615 @x1175 $x612) $x673) @x1174 @x711 @x1122 @x1089 @x1079 $x784)))
  1.1944 +(let ((@x1180 (unit-resolution @x1095 @x1090 @x835 @x844 (unit-resolution @x950 (unit-resolution @x615 @x1175 $x612) $x936) @x853 $x338)))
  1.1945 +(let ((@x1183 (unit-resolution @x1105 (unit-resolution @x1132 (unit-resolution @x631 @x1180 $x628) $x667) @x844 @x1079 $x438)))
  1.1946 +(let ((@x1187 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1183 $x596) @x1178 false) (or $x413 $x289 $x658))))
  1.1947 +(let ((@x1223 (unit-resolution @x791 (unit-resolution @x607 (unit-resolution @x1187 @x711 @x1079 $x413) $x604) $x776)))
  1.1948 +(let ((@x1190 (unit-resolution @x794 (unit-resolution @x607 (hypothesis $x413) $x604) $x775)))
  1.1949 +(let ((@x1196 (unit-resolution @x631 (unit-resolution @x1194 (hypothesis $x314) @x1126 @x1079 @x1153 $x338) $x628)))
  1.1950 +(let ((@x1191 (hypothesis $x314)))
  1.1951 +(let ((@x1202 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 $x313 (not $x635) (not $x663) (not $x660) (not $x643)))))
  1.1952 +(let ((@x1203 (unit-resolution @x1202 (unit-resolution @x1118 @x1196 $x663) @x1126 @x1191 @x1153 @x1130 $x363)))
  1.1953 +(let ((@x1188 (hypothesis $x413)))
  1.1954 +(let ((@x1206 ((_ th-lemma arith farkas -1 -1 -1 1 1 -1 1 -1 1) @x1188 @x1079 (unit-resolution @x926 (unit-resolution @x623 @x1203 $x620) $x670) @x703 @x857 (unit-resolution @x1132 @x1196 $x667) @x763 @x799 @x1190 false)))
  1.1955 +(let ((@x1208 (lemma @x1206 (or $x438 $x414 $x289 $x313))))
  1.1956 +(let ((@x1224 (unit-resolution @x1208 (unit-resolution @x1187 @x711 @x1079 $x413) @x1079 @x1172 $x438)))
  1.1957 +(let (($x1200 (not $x663)))
  1.1958 +(let (($x1199 (not $x635)))
  1.1959 +(let (($x1192 (not $x643)))
  1.1960 +(let (($x1142 (not $x660)))
  1.1961 +(let ((@x1227 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 1 -1 1 -1) (or $x706 $x743 $x313 $x1142 $x1192 $x817 $x1199 $x1200 $x439 $x818)) @x1172 @x698 @x1130 @x1126 @x812 @x1153 @x1224 @x1223 @x1220 $x706)))
  1.1962 +(let ((@x1228 (unit-resolution @x794 (unit-resolution @x607 (unit-resolution @x1187 @x711 @x1079 $x413) $x604) $x775)))
  1.1963 +(let ((@x1232 (unit-resolution @x623 (unit-resolution @x1202 @x1220 @x1126 @x1172 @x1153 @x1130 $x363) $x620)))
  1.1964 +(let ((@x1209 (hypothesis $x840)))
  1.1965 +(let ((@x1212 (unit-resolution @x591 (unit-resolution @x803 @x845 @x799 (hypothesis $x775) @x868 @x687 $x463) $x588)))
  1.1966 +(let ((@x1214 (hypothesis $x663)))
  1.1967 +(let ((@x1215 ((_ th-lemma arith farkas -1 2 -2 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1) @x698 @x1130 @x1214 @x1127 @x1126 @x1154 @x720 @x715 @x711 (unit-resolution @x725 @x1212 $x681) @x1209 @x835 @x868 @x687 @x1140 false)))
  1.1968 +(let ((@x1217 (lemma @x1215 (or $x388 $x1200 $x1142 (not $x1106) $x658 (not $x840) $x784 (not $x775)))))
  1.1969 +(let ((@x1234 (unit-resolution @x1217 @x1220 @x1153 @x1174 @x711 (unit-resolution @x865 @x1232 $x840) (unit-resolution @x693 (unit-resolution @x599 @x1224 $x596) $x678) @x1228 $x388)))
  1.1970 +(let ((@x1238 (lemma (unit-resolution @x808 (unit-resolution @x615 @x1234 $x612) @x1227 false) (or $x658 $x289))))
  1.1971 +(let ((@x1268 (unit-resolution @x631 (unit-resolution @x1095 @x1113 @x835 @x844 @x1090 @x853 $x338) $x628)))
  1.1972 +(let ((@x1271 ((_ th-lemma arith triangle-eq) (or (not $x588) $x672))))
  1.1973 +(let ((@x1272 (unit-resolution @x1271 (unit-resolution @x591 (unit-resolution @x1101 @x844 $x463) $x588) $x672)))
  1.1974 +(let ((@x1273 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1132 @x1268 $x667) @x844 @x731 @x845 $x314)))
  1.1975 +(let ((@x1277 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1250)) (unit-resolution @x649 @x1273 $x645) $x1250)))
  1.1976 +(let ((@x1251 (hypothesis $x780)))
  1.1977 +(let ((@x1252 (hypothesis $x672)))
  1.1978 +(let (($x594 (<= ?x482 0)))
  1.1979 +(let ((@x1255 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x594)) @x556 $x594)))
  1.1980 +(let (($x651 (>= ?x332 0)))
  1.1981 +(let ((@x1259 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x651)) @x563 $x651)))
  1.1982 +(let ((@x1261 ((_ th-lemma arith farkas 1/2 -1 -1/2 -1/2 1/2 1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 1) @x683 @x857 @x703 (hypothesis $x1250) @x1259 @x1256 @x731 @x730 @x900 @x832 @x1255 @x1252 @x1251 @x853 @x858 false)))
  1.1983 +(let ((@x1265 (lemma @x1261 (or $x657 $x707 $x1262 $x733 (not $x669) (not $x672) (not $x780) $x860))))
  1.1984 +(let ((@x1278 (unit-resolution @x1265 @x1277 @x1089 @x731 @x900 @x1272 @x850 (unit-resolution @x1132 @x1268 $x667) $x657)))
  1.1985 +(let ((@x1280 ((_ th-lemma arith triangle-eq) (or $x92 $x766 $x710))))
  1.1986 +(let (($x583 (not $x92)))
  1.1987 +(let (($x570 (or $x582 $x583)))
  1.1988 +(let ((@x578 (monotonicity (rewrite (= $x93 (not $x570))) (= (not $x93) (not (not $x570))))))
  1.1989 +(let ((@x568 (trans @x578 (rewrite (= (not (not $x570)) $x570)) (= (not $x93) $x570))))
  1.1990 +(let ((@x569 (mp (not-or-elim (mp (asserted $x95) @x552 $x548) (not $x93)) @x568 $x570)))
  1.1991 +(let ((@x1282 (unit-resolution @x569 (unit-resolution @x1280 @x1278 (hypothesis $x658) $x92) $x582)))
  1.1992 +(let ((?x652 (+ x1$ ?x235)))
  1.1993 +(let (($x654 (>= ?x652 0)))
  1.1994 +(let (($x587 (>= ?x507 0)))
  1.1995 +(let ((@x555 (and-elim @x554 $x508)))
  1.1996 +(let ((@x1287 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x587)) @x555 $x587)))
  1.1997 +(let ((?x1145 (+ x2$ ?x506)))
  1.1998 +(let (($x1239 (<= ?x1145 0)))
  1.1999 +(let (($x584 (= x2$ ?x495)))
  1.2000 +(let ((@x1289 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x488 $x815 $x413 $x784 (not $x603) (not $x681)))))
  1.2001 +(let ((@x573 (def-axiom (or (not $x488) $x584))))
  1.2002 +(let ((@x1291 (unit-resolution @x573 (unit-resolution @x1289 @x868 @x687 @x844 @x1122 @x720 $x488) $x584)))
  1.2003 +(let ((@x1294 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1239))))
  1.2004 +(let ((@x1296 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2) (unit-resolution @x1294 @x1291 $x1239) @x720 @x1122 @x1287 @x1090 @x731 @x730 @x835 @x1040 @x812 @x850 @x853 (unit-resolution @x1162 (unit-resolution @x649 @x1273 $x645) $x1106) @x715 @x1278 @x868 @x687 $x654)))
  1.2005 +(let (($x653 (<= ?x652 0)))
  1.2006 +(let (($x586 (<= ?x507 0)))
  1.2007 +(let ((@x1299 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x586)) @x555 $x586)))
  1.2008 +(let (($x1240 (>= ?x1145 0)))
  1.2009 +(let ((@x1301 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1240))))
  1.2010 +(let ((@x1303 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2) (unit-resolution @x1301 @x1291 $x1240) @x1255 @x1272 @x1299 @x1089 @x1127 @x1126 @x703 @x1000 @x799 @x1140 @x698 @x1277 @x1259 (hypothesis $x658) @x900 @x832 $x653)))
  1.2011 +(let ((@x1307 ((_ th-lemma arith triangle-eq) (or $x91 (not $x653) (not $x654)))))
  1.2012 +(let ((@x1310 (lemma (unit-resolution @x1307 @x1303 @x1296 @x1282 false) (or $x388 $x1142 $x710 (not $x669) $x733 $x784 $x413))))
  1.2013 +(let ((@x1332 (unit-resolution @x1310 (unit-resolution @x828 @x1328 $x669) (unit-resolution @x1238 @x1079 $x658) @x1153 @x1148 (unit-resolution @x693 @x1328 $x678) @x844 $x388)))
  1.2014 +(let (($x1304 (not $x653)))
  1.2015 +(let ((@x1338 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 (not $x936))) (unit-resolution @x950 (unit-resolution @x615 @x1332 $x612) $x936) @x1332 $x780)))
  1.2016 +(let ((@x1339 (unit-resolution @x1095 (unit-resolution @x950 (unit-resolution @x615 @x1332 $x612) $x936) @x835 @x844 @x1090 @x853 $x338)))
  1.2017 +(let ((@x1341 (unit-resolution @x1132 (unit-resolution @x631 @x1339 $x628) $x667)))
  1.2018 +(let ((@x1316 (unit-resolution @x631 (unit-resolution @x1095 @x1029 @x835 @x844 @x1090 @x853 $x338) $x628)))
  1.2019 +(let ((@x1318 ((_ th-lemma arith farkas -1 -1 -1 1 -1 1 -1 1 1) @x1026 (hypothesis $x313) @x731 @x730 @x853 @x844 (unit-resolution @x1132 @x1316 $x667) @x857 @x1029 false)))
  1.2020 +(let ((@x1342 (unit-resolution (lemma @x1318 (or $x314 $x389 $x733 $x413)) @x1332 @x1148 @x844 $x314)))
  1.2021 +(let ((@x1312 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1250)) (hypothesis $x645) (hypothesis $x1262) false)))
  1.2022 +(let ((@x1313 (lemma @x1312 (or $x1136 $x1250))))
  1.2023 +(let ((@x1345 (unit-resolution @x1265 (unit-resolution @x1313 (unit-resolution @x649 @x1342 $x645) $x1250) @x1341 @x1148 (unit-resolution @x828 @x1328 $x669) @x1272 @x1338 @x1089 $x657)))
  1.2024 +(let ((@x1347 (unit-resolution @x569 (unit-resolution @x1280 @x1345 (unit-resolution @x1238 @x1079 $x658) $x92) $x582)))
  1.2025 +(let ((@x1348 (unit-resolution @x1289 (unit-resolution @x693 @x1328 $x678) @x687 @x844 @x1122 @x720 $x488)))
  1.2026 +(let ((@x1314 (hypothesis $x1024)))
  1.2027 +(let (($x1305 (not $x654)))
  1.2028 +(let ((@x1321 (hypothesis $x1305)))
  1.2029 +(let ((@x1322 (hypothesis $x1239)))
  1.2030 +(let ((@x1323 ((_ th-lemma arith farkas -2 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1) @x1026 @x731 @x730 @x853 @x858 @x857 @x1322 @x720 @x869 @x1287 @x1321 @x1314 @x812 @x1029 false)))
  1.2031 +(let ((@x1326 (lemma @x1323 (or $x654 $x389 $x733 $x860 (not $x1239) (not $x681) (not $x1024)))))
  1.2032 +(let ((@x1351 (unit-resolution @x1326 @x1332 @x1148 @x1341 (unit-resolution @x1294 (unit-resolution @x573 @x1348 $x584) $x1239) @x1122 @x1040 $x654)))
  1.2033 +(let ((@x1354 ((_ th-lemma arith farkas -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 2 2 -2 1) @x1153 @x1126 @x698 @x1341 @x857 (unit-resolution @x1301 (unit-resolution @x573 @x1348 $x584) $x1240) @x1255 @x1272 @x1299 (unit-resolution @x1307 @x1351 @x1347 $x1304) @x1000 @x799 @x1079 @x1089 @x703 (unit-resolution @x808 (unit-resolution @x615 @x1332 $x612) $x673) false)))
  1.2034 +(let ((@x641 (def-axiom (or $x288 $x637))))
  1.2035 +(let ((@x1435 (unit-resolution @x641 (unit-resolution (lemma @x1354 (or $x413 $x289)) @x844 $x289) $x637)))
  1.2036 +(let ((@x1438 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1370))))
  1.2037 +(let ((@x1439 (unit-resolution @x1438 @x1435 $x1370)))
  1.2038 +(let ((@x1374 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x1200 $x1199 $x288 (not $x840) $x388 (not $x627))) @x845 @x1130 @x1371 @x866 @x835 $x1200)))
  1.2039 +(let ((@x1377 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x364 (not $x840) $x388 (not $x627))) @x845 @x835 @x841 @x866 $x338)))
  1.2040 +(let ((@x1381 (lemma (unit-resolution @x1118 (unit-resolution @x631 @x1377 $x628) @x1374 false) (or $x388 $x288 $x364))))
  1.2041 +(let ((@x1440 (unit-resolution @x1381 (unit-resolution (lemma @x1354 (or $x413 $x289)) @x844 $x289) (unit-resolution (lemma @x1065 (or $x363 $x413)) @x844 $x363) $x388)))
  1.2042 +(let ((@x1442 (unit-resolution @x950 (unit-resolution @x615 @x1440 $x612) $x936)))
  1.2043 +(let ((@x1445 (unit-resolution (unit-resolution @x1095 @x835 @x853 (or $x338 (not $x840) (not $x936) $x413)) @x1442 @x844 @x1090 $x338)))
  1.2044 +(let ((@x1448 (unit-resolution @x808 (unit-resolution @x615 @x1440 $x612) $x673)))
  1.2045 +(let (($x1361 (<= ?x1357 0)))
  1.2046 +(let ((@x1450 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1361))))
  1.2047 +(let ((@x1451 (unit-resolution @x1450 @x1435 $x1361)))
  1.2048 +(let ((@x1452 (unit-resolution @x1118 (unit-resolution @x631 @x1445 $x628) $x663)))
  1.2049 +(let (($x1403 (not $x1361)))
  1.2050 +(let (($x1002 (not $x933)))
  1.2051 +(let (($x957 (not $x936)))
  1.2052 +(let (($x1092 (not $x840)))
  1.2053 +(let (($x1392 (not $x1370)))
  1.2054 +(let (($x1081 (not $x1024)))
  1.2055 +(let ((@x1383 (hypothesis $x1370)))
  1.2056 +(let ((@x1387 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x815 $x464 (not $x681) $x438)) @x720 (or $x488 $x464 (not $x681) $x438))))
  1.2057 +(let ((@x1390 (unit-resolution @x1294 (unit-resolution @x573 (unit-resolution @x1387 @x763 @x897 @x895 $x488) $x584) $x1239)))
  1.2058 +(let (($x958 (not $x619)))
  1.2059 +(let (($x1093 (not $x627)))
  1.2060 +(let (($x871 (not $x681)))
  1.2061 +(let (($x1391 (not $x587)))
  1.2062 +(let (($x1324 (not $x1239)))
  1.2063 +(let (($x1393 (or $x654 $x1324 $x1391 $x871 $x815 $x1081 $x818 $x1392 $x814 $x1092 $x1093 $x957 $x958 $x1200 $x1199)))
  1.2064 +(let ((@x1395 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1393) @x1390 @x812 @x853 @x835 @x1130 @x730 @x1287 @x897 @x1001 @x1209 @x1314 @x1214 @x720 @x1383 $x654)))
  1.2065 +(let ((@x1396 (hypothesis $x1361)))
  1.2066 +(let ((@x1397 (hypothesis $x933)))
  1.2067 +(let ((@x1399 (unit-resolution @x1301 (unit-resolution @x573 (unit-resolution @x1387 @x763 @x897 @x895 $x488) $x584) $x1240)))
  1.2068 +(let (($x1404 (not $x634)))
  1.2069 +(let (($x742 (not $x626)))
  1.2070 +(let (($x801 (not $x611)))
  1.2071 +(let (($x1402 (not $x594)))
  1.2072 +(let (($x1263 (not $x672)))
  1.2073 +(let (($x1401 (not $x586)))
  1.2074 +(let (($x1400 (not $x1240)))
  1.2075 +(let (($x1405 (or $x653 $x1400 $x1401 $x1263 $x1402 $x1002 $x801 $x1403 $x1192 $x707 $x742 $x706 $x743 $x860 $x1404)))
  1.2076 +(let ((@x1407 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1405) @x1399 @x799 @x698 @x703 @x857 @x1126 @x1299 @x699 @x683 @x858 (unit-resolution @x1271 (unit-resolution @x591 @x895 $x588) $x672) @x1397 @x1396 @x1255 $x653)))
  1.2077 +(let ((@x1411 ((_ th-lemma arith assign-bounds 1 1 2 2 1 1 1 1 1 1 1) (or $x313 $x1403 $x1192 $x707 $x742 $x706 $x743 $x1002 $x438 $x801 $x860 $x1404))))
  1.2078 +(let ((@x1412 (unit-resolution @x1411 @x763 @x698 @x703 @x857 @x1126 @x799 @x699 @x683 @x858 @x1397 @x1396 $x313)))
  1.2079 +(let ((@x1415 ((_ th-lemma arith triangle-eq) (or $x1165 $x1382))))
  1.2080 +(let ((@x1417 ((_ th-lemma arith assign-bounds 1 -1 -1 1 2 -2 1 -1 -3 3 -1 1 -2 2 -1 1) (unit-resolution @x1415 (unit-resolution @x647 @x1412 $x644) $x1382) @x1259 (unit-resolution @x1271 (unit-resolution @x591 @x895 $x588) $x672) @x1255 @x1397 @x799 @x1396 @x1126 @x683 @x703 @x699 @x698 @x858 @x857 @x966 @x832 $x657)))
  1.2081 +(let ((@x1419 ((_ th-lemma arith assign-bounds 1 -1 -1 1 2 -2 1 -1 -3 3 -1 1 -2 2 -1 1) (unit-resolution @x1169 (unit-resolution @x647 @x1412 $x644) $x664) @x715 @x897 @x720 @x1314 @x812 @x1383 @x730 @x1209 @x835 @x1001 @x853 @x1214 @x1130 @x941 @x687 $x658)))
  1.2082 +(let ((@x1420 (unit-resolution @x1280 @x1419 @x1417 (unit-resolution @x569 (unit-resolution @x1307 @x1407 @x1395 $x91) $x583) false)))
  1.2083 +(let ((@x1422 (lemma @x1420 (or $x438 $x1081 $x1392 $x1092 $x957 $x1200 $x1002 $x1403 $x707 $x706 $x860 $x464))))
  1.2084 +(let ((@x1453 (unit-resolution @x1422 @x1040 @x1439 @x1090 @x1442 @x1452 @x1000 @x1451 @x1089 @x1448 (unit-resolution @x1132 (unit-resolution @x631 @x1445 $x628) $x667) (unit-resolution @x1101 @x844 $x463) $x438)))
  1.2085 +(let ((@x1459 (unit-resolution (unit-resolution @x1289 @x687 @x720 (or $x488 $x413 $x784 $x871)) (unit-resolution @x693 (unit-resolution @x599 @x1453 $x596) $x678) @x844 @x1122 $x488)))
  1.2086 +(let ((@x1462 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1393) (unit-resolution @x1294 (unit-resolution @x573 @x1459 $x584) $x1239) @x812 @x853 @x835 @x1130 @x730 @x720 @x1122 @x1442 @x1090 @x1040 @x1452 @x1287 @x1439 $x654)))
  1.2087 +(let ((@x1464 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1405) (unit-resolution @x1301 (unit-resolution @x573 @x1459 $x584) $x1240) @x799 @x698 @x703 @x857 @x1126 @x1255 @x1448 @x1089 (unit-resolution @x1132 (unit-resolution @x631 @x1445 $x628) $x667) @x1272 @x1000 @x1451 @x1299 $x653)))
  1.2088 +(let (($x1156 (not $x1106)))
  1.2089 +(let ((@x1423 ((_ th-lemma arith farkas -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 1) @x715 @x711 @x868 @x869 @x720 @x687 @x683 @x703 @x1396 @x1126 @x699 @x698 @x1154 false)))
  1.2090 +(let ((@x1426 (unit-resolution (lemma @x1423 (or $x1156 $x658 $x784 $x871 $x707 $x1403 $x706)) @x711 @x694 @x869 @x683 @x1396 @x699 $x1156)))
  1.2091 +(let ((@x1429 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1162 @x1426 $x1136) $x313) $x644)))
  1.2092 +(let ((@x1431 ((_ th-lemma arith farkas 1/2 -1/2 -3/2 3/2 -1/2 1/2 1 -1 -1 1 1/2 -1/2 -1/2 -1/2 -1/2 1/2 1/2 1) @x1383 @x730 @x1209 @x835 @x1001 @x853 @x1314 @x812 @x1214 @x1130 (unit-resolution @x1169 @x1429 $x664) @x715 @x711 @x694 @x869 @x720 @x687 @x689 false)))
  1.2093 +(let ((@x1433 (lemma @x1431 (or $x658 $x1392 $x1092 $x957 $x1081 $x1200 $x871 $x439 $x707 $x1403 $x706))))
  1.2094 +(let ((@x1467 (unit-resolution @x1433 @x1439 @x1090 @x1442 @x1040 @x1452 @x1122 @x1453 @x1089 @x1451 @x1448 $x658)))
  1.2095 +(let ((@x1468 (unit-resolution @x1280 @x1467 (unit-resolution @x569 (unit-resolution @x1307 @x1464 @x1462 $x91) $x583) $x766)))
  1.2096 +(let (($x1470 (not $x602)))
  1.2097 +(let (($x903 (not $x669)))
  1.2098 +(let (($x1469 (not $x651)))
  1.2099 +(let (($x1471 (or $x1262 $x1469 $x657 $x903 $x1263 $x1402 $x1470 $x1092 $x1093 $x1392 $x814 $x957 $x958)))
  1.2100 +(let ((@x1473 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1) $x1471) @x1468 @x853 @x835 @x730 @x1259 @x832 (unit-resolution @x828 (unit-resolution @x599 @x1453 $x596) $x669) @x1272 @x1442 @x1090 @x1255 @x1439 $x1262)))
  1.2101 +(let ((@x1476 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1313 @x1473 $x1136) $x313) $x644)))
  1.2102 +(let ((@x1478 ((_ th-lemma arith farkas -1 -1 -2 -1 -1 1 1 1 -1 -1 1 1 -1 1) @x1259 @x1468 (unit-resolution @x649 (unit-resolution @x1313 @x1473 $x1136) $x313) (unit-resolution @x828 (unit-resolution @x599 @x1453 $x596) $x669) @x1272 @x1255 @x832 @x1090 @x835 @x1439 @x730 @x1442 @x853 (unit-resolution @x1415 @x1476 $x1382) false)))
  1.2103 +(let ((@x1479 (lemma @x1478 $x413)))
  1.2104 +(let ((@x1536 (unit-resolution @x791 (unit-resolution @x607 @x1479 $x604) $x776)))
  1.2105 +(let ((@x1515 (unit-resolution @x794 (unit-resolution @x607 @x1479 $x604) $x775)))
  1.2106 +(let ((@x1360 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1188 @x763 @x799 @x845 @x1190 false) (or $x438 $x414 $x388))))
  1.2107 +(let ((@x1518 (unit-resolution @x693 (unit-resolution @x599 (unit-resolution @x1360 @x845 @x1479 $x438) $x596) $x678)))
  1.2108 +(let ((@x1521 (unit-resolution (unit-resolution @x803 @x799 @x687 (or $x388 (not $x775) $x463 $x784)) @x1518 @x1515 @x845 $x463)))
  1.2109 +(let ((@x1523 (unit-resolution @x1271 (unit-resolution @x591 @x1521 $x588) $x672)))
  1.2110 +(let ((@x1524 (unit-resolution @x828 (unit-resolution @x599 (unit-resolution @x1360 @x845 @x1479 $x438) $x596) $x669)))
  1.2111 +(let ((@x906 (hypothesis $x902)))
  1.2112 +(let ((@x1366 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x779 $x364 $x1092)) (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) @x906 $x1092)))
  1.2113 +(let ((@x1367 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) $x620)))
  1.2114 +(let ((@x1369 (lemma (unit-resolution @x865 @x1367 @x1366 false) $x779)))
  1.2115 +(let ((@x1483 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1) (or $x902 $x338 $x1093 $x872 $x743 $x414)) @x835 @x1369 @x698 (or $x338 $x872 $x414))))
  1.2116 +(let ((@x1486 (unit-resolution @x1118 (unit-resolution @x631 (unit-resolution @x1483 @x1140 @x1479 $x338) $x628) $x663)))
  1.2117 +(let ((@x1489 (unit-resolution ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1200 $x1199 $x288 $x1092 $x1093)) @x1371 @x1130 @x835 @x1140 @x1113 @x1486 $x1092)))
  1.2118 +(let ((@x1495 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1369 (or $x707 $x363)) (unit-resolution @x1381 @x1371 @x845 $x364) $x707)))
  1.2119 +(let ((@x1500 (lemma (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) @x1495 @x1489 false) (or $x288 $x388))))
  1.2120 +(let ((@x639 (def-axiom (or $x289 $x636))))
  1.2121 +(let ((@x1508 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x1500 @x845 $x288) $x636) $x660)))
  1.2122 +(let ((@x1535 (unit-resolution @x1132 (unit-resolution @x631 (unit-resolution @x1483 @x1140 @x1479 $x338) $x628) $x667)))
  1.2123 +(let ((@x1537 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x1500 @x845 $x288) $x636) $x661)))
  1.2124 +(let (($x585 (= ?x98 ?x495)))
  1.2125 +(let (($x1544 (not $x585)))
  1.2126 +(let ((?x1502 (+ ?x98 ?x506)))
  1.2127 +(let (($x1503 (<= ?x1502 0)))
  1.2128 +(let (($x1548 (not $x1503)))
  1.2129 +(let (($x1107 (not $x780)))
  1.2130 +(let (($x1549 (or $x654 $x1548 $x903 $x1263 $x1402 $x1470 $x1391 $x817 $x818 $x733 $x814 $x1107 $x860 $x1404 $x958)))
  1.2131 +(let ((@x1568 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1549) @x1321 @x832 @x812 @x853 @x857 @x730 @x1255 @x731 @x1536 @x858 @x1251 @x900 @x1252 @x1287 $x1548)))
  1.2132 +(let ((@x1566 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1503)) (hypothesis $x585) (hypothesis $x1548) false)))
  1.2133 +(let ((@x1567 (lemma @x1566 (or $x1544 $x1503))))
  1.2134 +(let ((@x575 (def-axiom (or $x488 $x585))))
  1.2135 +(let ((@x1571 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1567 @x1568 $x1544) $x488) $x584)))
  1.2136 +(let ((@x1573 ((_ th-lemma arith farkas -1/2 1/2 1 1/2 -1/2 -1 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1251 @x853 @x900 @x1252 @x1255 @x832 @x731 @x730 @x858 @x857 (unit-resolution @x1294 @x1571 $x1239) @x1287 @x1321 @x1536 @x812 (unit-resolution @x575 (unit-resolution @x1567 @x1568 $x1544) $x488) false)))
  1.2137 +(let ((@x1575 (lemma @x1573 (or $x654 $x1107 $x903 $x1263 $x733 $x860))))
  1.2138 +(let ((@x1581 (unit-resolution @x1118 (unit-resolution @x631 (unit-resolution @x1483 @x867 @x1479 $x338) $x628) $x663)))
  1.2139 +(let (($x800 (not $x775)))
  1.2140 +(let (($x1583 (or $x1400 $x414 $x872 $x743 $x1142 $x1192 $x1200 $x1199 $x1401 $x653 $x1263 $x1402 $x800 $x801)))
  1.2141 +(let ((@x1585 (unit-resolution ((_ th-lemma arith assign-bounds 2 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1) $x1583) (hypothesis $x1304) @x1479 @x799 @x698 @x1130 @x1126 @x1255 @x1127 @x1515 @x867 @x1252 @x1581 @x1299 $x1400)))
  1.2142 +(let (($x1504 (>= ?x1502 0)))
  1.2143 +(let (($x1556 (not $x1504)))
  1.2144 +(let (($x744 (not $x603)))
  1.2145 +(let (($x1557 (or $x653 $x1556 $x784 $x871 $x815 $x744 $x1401 $x800 $x801 $x1142 $x1192 $x872 $x1200 $x1199 $x743)))
  1.2146 +(let ((@x1586 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1557) (hypothesis $x1304) @x687 @x799 @x698 @x1130 @x1126 @x720 @x1127 @x868 @x1515 @x869 @x867 @x1581 @x1299 $x1556)))
  1.2147 +(let ((@x1577 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1504)) (hypothesis $x585) (hypothesis $x1556) false)))
  1.2148 +(let ((@x1578 (lemma @x1577 (or $x1544 $x1504))))
  1.2149 +(let ((@x1589 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1578 @x1586 $x1544) $x488) $x584)))
  1.2150 +(let ((@x1592 (lemma (unit-resolution @x1301 @x1589 @x1585 false) (or $x653 $x1142 $x872 $x1263 $x784 $x871))))
  1.2151 +(let ((@x1594 (unit-resolution @x1592 @x1508 @x1140 @x1523 @x1518 (unit-resolution @x725 (unit-resolution @x591 @x1521 $x588) $x681) $x653)))
  1.2152 +(let ((@x1595 (unit-resolution @x1307 @x1594 (unit-resolution @x1575 @x850 @x1524 @x1523 @x1537 @x1535 $x654) $x91)))
  1.2153 +(let ((@x1597 (unit-resolution @x1280 (unit-resolution @x569 @x1595 $x583) (unit-resolution @x1238 (unit-resolution @x1500 @x845 $x288) $x658) $x766)))
  1.2154 +(let ((@x1511 (unit-resolution (unit-resolution @x1202 @x1126 @x1130 (or $x363 $x313 $x1200 $x1142)) @x1027 @x1486 @x1508 $x313)))
  1.2155 +(let (($x1501 (>= ?x778 0)))
  1.2156 +(let ((@x1528 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x1501)) (unit-resolution @x625 @x1027 $x621) $x1501)))
  1.2157 +(let (($x1529 (not $x1501)))
  1.2158 +(let (($x1531 (or $x657 $x1529 $x742 $x1530 $x1469 $x1142 $x1192 $x1107 $x958 $x903 $x1263 $x1402 $x1470)))
  1.2159 +(let ((@x1532 ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 1 1 -1 -1) $x1531)))
  1.2160 +(let ((@x1533 (unit-resolution @x1532 @x1528 @x853 @x703 @x1126 @x1259 @x1255 @x1508 @x850 @x1524 @x1523 @x832 (unit-resolution @x1415 (unit-resolution @x647 @x1511 $x644) $x1382) $x657)))
  1.2161 +(let ((@x1534 (unit-resolution @x1280 @x1533 (unit-resolution @x1238 (unit-resolution @x1500 @x845 $x288) $x658) $x92)))
  1.2162 +(let (($x489 (not $x488)))
  1.2163 +(let ((@x1541 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x489 $x1263 $x1402 $x1470 $x903 $x363 $x958 $x388 $x1107)) @x832 @x853 @x1255 (or $x489 $x1263 $x903 $x363 $x388 $x1107))))
  1.2164 +(let ((@x1543 (unit-resolution @x575 (unit-resolution @x1541 @x1027 @x845 @x850 @x1524 @x1523 $x489) $x585)))
  1.2165 +(let ((@x1551 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1549) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1503)) @x1543 $x1503) @x832 @x812 @x853 @x857 @x730 @x1287 @x1537 @x1536 @x1535 @x850 @x1524 @x1523 @x1255 $x654)))
  1.2166 +(let ((@x1559 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1557) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1504)) @x1543 $x1504) @x687 @x799 @x698 @x1130 @x1126 @x1299 @x1508 @x1518 @x1515 (unit-resolution @x725 (unit-resolution @x591 @x1521 $x588) $x681) @x1140 @x1486 @x720 $x653)))
  1.2167 +(let ((@x1561 (unit-resolution @x569 (unit-resolution @x1307 @x1559 @x1551 $x91) @x1534 false)))
  1.2168 +(let ((@x1599 (unit-resolution @x623 (unit-resolution (lemma @x1561 (or $x363 $x388)) @x845 $x363) $x620)))
  1.2169 +(let ((@x1601 (unit-resolution @x1265 @x1597 @x1535 @x1537 @x1524 @x1523 @x850 (unit-resolution @x926 @x1599 $x670) $x1262)))
  1.2170 +(let ((@x1604 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1313 @x1601 $x1136) $x313) $x644)))
  1.2171 +(let ((@x1608 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -2 -1) (or $x1501 $x733 $x814 $x860 $x1404 $x314 $x707)) (unit-resolution @x649 (unit-resolution @x1313 @x1601 $x1136) $x313) @x730 @x1537 (unit-resolution @x926 @x1599 $x670) @x1535 @x857 $x1501)))
  1.2172 +(let ((@x1609 (unit-resolution @x1532 @x1608 (unit-resolution @x1415 @x1604 $x1382) @x853 @x703 @x1126 @x1259 @x1597 @x1508 @x850 @x1524 @x1523 @x832 @x1255 false)))
  1.2173 +(let ((@x1610 (lemma @x1609 $x388)))
  1.2174 +(let ((@x1615 (unit-resolution @x808 (unit-resolution @x615 @x1610 $x612) $x673)))
  1.2175 +(let ((@x1808 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x439 $x706 $x817 $x818 $x743 $x1199 $x288 $x1626 $x338)) @x1371 @x698 @x1701 @x1130 @x812 @x1615 @x1536 @x1738 $x439)))
  1.2176 +(let ((@x1781 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1369 (or $x707 $x363)) @x1027 $x707)))
  1.2177 +(let (($x1637 (not $x629)))
  1.2178 +(let ((@x1667 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 -1 1) (or $x1626 $x1199 $x288 $x1529 $x389 $x742)) @x1528 @x1130 @x1371 @x1610 @x703 $x1626)))
  1.2179 +(let ((@x1670 (unit-resolution @x631 (unit-resolution @x633 (unit-resolution @x1641 @x1667 $x1637) $x338) $x628)))
  1.2180 +(let ((@x1672 ((_ th-lemma arith farkas 1 1 1 1 1) @x1027 (unit-resolution @x1118 @x1670 $x663) @x1130 @x1371 (unit-resolution @x633 (unit-resolution @x1641 @x1667 $x1637) $x338) false)))
  1.2181 +(let ((@x1711 (unit-resolution @x639 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1027 $x288) $x636)))
  1.2182 +(let ((@x1712 (unit-resolution @x1152 @x1711 $x660)))
  1.2183 +(let ((@x1618 (unit-resolution @x1438 (unit-resolution @x641 (unit-resolution @x1238 @x711 $x289) $x637) $x1370)))
  1.2184 +(let ((@x1619 (unit-resolution @x1450 (unit-resolution @x641 (unit-resolution @x1238 @x711 $x289) $x637) $x1361)))
  1.2185 +(let ((@x1616 (unit-resolution @x1238 @x711 $x289)))
  1.2186 +(let ((@x1676 (unit-resolution @x623 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1616 $x363) $x620)))
  1.2187 +(let ((@x1677 (unit-resolution @x926 @x1676 $x670)))
  1.2188 +(let ((@x1611 (unit-resolution @x950 (unit-resolution @x615 @x1610 $x612) $x936)))
  1.2189 +(let ((@x1643 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x763 @x1611 @x1515 $x363)))
  1.2190 +(let ((@x1645 (unit-resolution @x926 (unit-resolution @x623 @x1643 $x620) $x670)))
  1.2191 +(let ((@x1612 (hypothesis $x875)))
  1.2192 +(let ((@x1613 (hypothesis $x675)))
  1.2193 +(let ((@x1622 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x707 $x742 $x288 $x1192 $x414 $x1403 $x706 $x743)) @x683 @x703 @x1616 @x1126 @x1479 @x1615 @x698 @x1619 $x313)))
  1.2194 +(let ((@x1625 ((_ th-lemma arith assign-bounds -1 1 1 -1 -1 -1 1 1 -1 -3 3 1 2 -2 -2 2) (unit-resolution @x1169 (unit-resolution @x647 @x1622 $x644) $x664) @x715 @x711 @x720 @x687 @x683 @x703 @x730 @x1618 @x1615 @x698 @x1613 @x1612 @x1130 @x1536 @x812 $x871)))
  1.2195 +(let ((@x1628 ((_ th-lemma arith assign-bounds 1 1 1 1 2 2 1 1 1 1 1) (or $x463 $x744 $x745 $x707 $x742 $x706 $x743 $x1626 $x1199 $x817 $x818 $x288))))
  1.2196 +(let ((@x1629 (unit-resolution @x1628 @x1612 @x812 @x698 @x703 @x1130 @x1616 @x1615 @x683 @x1613 @x1536 @x687 $x463)))
  1.2197 +(let ((@x1633 (lemma (unit-resolution @x725 (unit-resolution @x591 @x1629 $x588) @x1625 false) (or $x1626 $x658 $x707 $x745))))
  1.2198 +(let ((@x1648 (unit-resolution @x633 (unit-resolution @x1641 (unit-resolution @x1633 @x1645 @x711 @x941 $x1626) $x1637) $x338)))
  1.2199 +(let ((@x1650 ((_ th-lemma arith assign-bounds -1 -2 -2 2 -2 2) (or $x1024 $x817 $x339 $x707 $x742 $x706 $x743))))
  1.2200 +(let ((@x1653 (unit-resolution @x747 @x687 @x698 @x703 (or $x463 $x707 $x339 $x706 $x745 $x438))))
  1.2201 +(let ((@x1662 (unit-resolution @x1422 (unit-resolution @x1132 (unit-resolution @x631 @x1648 $x628) $x667) (unit-resolution @x1118 (unit-resolution @x631 @x1648 $x628) $x663) @x1618 @x763 @x1611 (unit-resolution @x865 (unit-resolution @x623 @x1643 $x620) $x840) (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1515 @x1479 $x933) @x1619 @x1645 @x1615 (unit-resolution @x1653 @x1648 @x941 @x1645 @x1615 @x763 $x463) (unit-resolution @x1650 @x1648 @x703 @x1615 @x1645 @x1536 @x698 $x1024) false)))
  1.2202 +(let ((@x1678 (unit-resolution (lemma @x1662 (or $x438 $x658)) @x711 $x438)))
  1.2203 +(let ((@x1683 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x1678 $x596) $x678) @x1678 $x675)))
  1.2204 +(let ((@x1686 (unit-resolution @x633 (unit-resolution @x1641 (unit-resolution @x1633 @x1677 @x711 @x1683 $x1626) $x1637) $x338)))
  1.2205 +(let ((@x1692 (unit-resolution @x591 (unit-resolution @x709 @x1686 @x1615 @x1678 @x1677 $x463) $x588)))
  1.2206 +(let ((@x1694 (unit-resolution @x1433 (unit-resolution @x725 @x1692 $x681) (unit-resolution @x1118 (unit-resolution @x631 @x1686 $x628) $x663) @x1615 @x1611 @x711 @x1678 (unit-resolution @x865 @x1676 $x840) (unit-resolution @x1650 @x1686 @x703 @x1615 @x1677 @x1536 @x698 $x1024) @x1677 @x1619 @x1618 false)))
  1.2207 +(let ((@x1695 (lemma @x1694 $x658)))
  1.2208 +(let ((@x1698 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x1027 @x1611 @x1515 $x438)))
  1.2209 +(let ((@x1700 (unit-resolution @x828 (unit-resolution @x599 @x1698 $x596) $x669)))
  1.2210 +(let ((@x1704 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x464 $x1470 $x817 $x818 $x903 $x338 $x1093 $x363 $x902)) @x1701 @x812 @x1027 @x835 @x832 @x1536 @x1700 @x1369 $x464)))
  1.2211 +(let ((@x1708 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x1697)) (unit-resolution @x593 @x1704 $x589) $x1697)))
  1.2212 +(let ((@x1709 (unit-resolution @x693 (unit-resolution @x599 @x1698 $x596) $x678)))
  1.2213 +(let ((@x1714 (unit-resolution @x1194 @x1126 (or $x338 $x313 $x1142 $x289))))
  1.2214 +(let ((@x1715 (unit-resolution @x1714 @x1701 @x1712 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1027 $x288) $x313)))
  1.2215 +(let ((@x1717 (unit-resolution @x1415 (unit-resolution @x647 @x1715 $x644) $x1382)))
  1.2216 +(let (($x1718 (not $x1697)))
  1.2217 +(let (($x1719 (or $x657 $x1718 $x744 $x1530 $x1469 $x1402 $x957 $x958 $x784 $x800 $x801 $x742 $x1529 $x1142 $x1192)))
  1.2218 +(let ((@x1721 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 -1 1 -1 -2 2 -1 1 -1 1) $x1719) @x1717 @x799 @x853 @x703 @x1126 @x1259 @x1255 @x1712 @x1709 @x1515 @x1611 @x1528 @x687 @x1708 $x657)))
  1.2219 +(let (($x1696 (>= ?x666 0)))
  1.2220 +(let ((@x1726 ((_ th-lemma arith triangle-eq) (or $x1637 $x1696))))
  1.2221 +(let ((@x1727 (unit-resolution @x1726 (unit-resolution @x633 @x1701 $x629) $x1696)))
  1.2222 +(let ((@x1730 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x1530 $x1469 $x710 $x338 $x1142 $x1192)) @x1701 @x1126 @x1259 @x1695 @x1712 @x1717 $x488)))
  1.2223 +(let (($x1733 (not $x1696)))
  1.2224 +(let (($x1734 (or $x654 $x1324 $x1391 $x1530 $x1469 $x710 $x1470 $x817 $x818 $x903 $x1093 $x902 $x1733 $x1404)))
  1.2225 +(let ((@x1736 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1734) (unit-resolution @x1294 (unit-resolution @x573 @x1730 $x584) $x1239) @x812 @x835 @x857 @x1259 @x1287 @x1695 @x1536 @x1700 @x1369 @x832 @x1717 @x1727 $x654)))
  1.2226 +(let (($x1740 (or $x653 $x1400 $x1401 $x734 $x816 $x766 $x744 $x800 $x801 $x784 $x742 $x1529 $x1626 $x1199)))
  1.2227 +(let ((@x1742 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1740) @x1721 @x799 @x703 @x1130 @x715 @x1299 @x687 (unit-resolution @x1169 (unit-resolution @x647 @x1715 $x644) $x664) @x1709 @x1515 @x1738 (unit-resolution @x1301 (unit-resolution @x573 @x1730 $x584) $x1240) @x1528 $x653)))
  1.2228 +(let ((@x1743 (unit-resolution @x1307 @x1742 @x1736 (unit-resolution @x569 (unit-resolution @x1280 @x1721 @x1695 $x92) $x582) false)))
  1.2229 +(let ((@x1784 (unit-resolution @x631 (unit-resolution (lemma @x1743 (or $x338 $x363)) @x1027 $x338) $x628)))
  1.2230 +(let ((@x1785 (unit-resolution @x1118 @x1784 $x663)))
  1.2231 +(let ((@x1788 (unit-resolution ((_ th-lemma arith assign-bounds 2 2 2 2 2 1) (or $x1529 $x1142 $x1192 $x1200 $x1199 $x313 $x1092)) @x1785 @x1528 @x1712 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) @x1781 $x840) @x1126 @x1130 $x313)))
  1.2232 +(let ((@x1790 (unit-resolution @x1415 (unit-resolution @x647 @x1788 $x644) $x1382)))
  1.2233 +(let ((@x1791 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 $x957)) @x1611 @x1610 $x780)))
  1.2234 +(let ((@x1796 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1200 $x339)) (unit-resolution (lemma @x1743 (or $x338 $x363)) @x1027 $x338) @x1785 $x875)))
  1.2235 +(let ((@x1750 (hypothesis $x1382)))
  1.2236 +(let ((@x1747 ((_ th-lemma arith farkas 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -2 2 1) @x832 @x1287 @x1321 @x716 @x715 @x764 @x1536 @x812 @x900 @x835 @x1369 @x857 @x858 @x731 @x730 (hypothesis $x1503) false)))
  1.2237 +(let ((@x1751 (unit-resolution (lemma @x1747 (or $x1548 $x654 $x734 $x766 $x903 $x860 $x733)) @x1321 @x716 @x764 @x900 @x858 @x731 $x1548)))
  1.2238 +(let ((@x1754 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1567 @x1751 $x1544) $x488) $x584)))
  1.2239 +(let ((@x1758 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2 2) (or $x1696 $x860 $x489 $x734 $x816 $x766 $x733 $x814)) (unit-resolution @x575 (unit-resolution @x1567 @x1751 $x1544) $x488) @x715 @x764 @x731 @x716 @x858 @x730 $x1696)))
  1.2240 +(let ((@x1759 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1734) @x1758 (unit-resolution @x1294 @x1754 $x1239) @x812 @x835 @x857 @x1259 @x1750 @x1695 @x1536 @x900 @x1369 @x1321 @x832 @x1287 false)))
  1.2241 +(let ((@x1765 (unit-resolution (lemma @x1759 (or $x654 $x1530 $x903 $x766 $x733 $x734 $x860)) @x764 @x900 @x1750 @x731 @x716 @x858 $x654)))
  1.2242 +(let ((@x1766 (unit-resolution @x1307 @x1765 (unit-resolution @x569 (unit-resolution @x1280 @x764 @x1695 $x92) $x582) $x1304)))
  1.2243 +(let ((@x1767 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1740) @x1766 @x799 @x703 @x1130 @x715 @x1299 @x687 @x716 @x868 @x1515 @x1612 @x764 (hypothesis $x1501) $x1400)))
  1.2244 +(let (($x1768 (or $x1556 $x744 $x1401 $x653 $x1530 $x1469 $x710 $x800 $x801 $x784 $x742 $x1529 $x1199 $x1200 $x1142 $x1192)))
  1.2245 +(let ((@x1770 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -2 2) $x1768) @x1766 @x799 @x703 @x1130 @x1126 @x1259 @x687 @x1695 @x1127 @x868 @x1515 @x1214 (hypothesis $x1501) @x1750 @x1299 $x1556)))
  1.2246 +(let ((@x1773 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1578 @x1770 $x1544) $x488) $x584)))
  1.2247 +(let ((@x1776 (lemma (unit-resolution @x1301 @x1773 @x1767 false) (or $x766 $x1142 $x784 $x1200 $x1529 $x1530 $x734 $x1626 $x903 $x733 $x860))))
  1.2248 +(let ((@x1798 (unit-resolution @x1776 @x1712 @x1709 @x1785 @x1528 @x1790 (unit-resolution @x1169 (unit-resolution @x647 @x1788 $x644) $x664) @x1796 @x1700 (unit-resolution @x1147 @x1711 $x661) (unit-resolution @x1132 @x1784 $x667) $x766)))
  1.2249 +(let ((@x1799 (unit-resolution @x1532 @x1798 @x853 @x703 @x1126 @x1259 @x1528 @x1712 @x1791 @x1700 @x1790 @x832 @x1255 $x1263)))
  1.2250 +(let (($x759 (not $x589)))
  1.2251 +(let ((@x1800 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 -1 1 -1 -2 2 -1 1 -1 1) $x1719) @x1798 @x799 @x853 @x703 @x1126 @x1259 @x1790 @x1712 @x1709 @x1515 @x1611 @x1528 @x687 @x1255 $x1718)))
  1.2252 +(let ((@x1803 (unit-resolution @x591 (unit-resolution @x593 (unit-resolution @x1780 @x1800 $x759) $x463) $x588)))
  1.2253 +(let ((@x1805 (lemma (unit-resolution @x1271 @x1803 @x1799 false) $x363)))
  1.2254 +(let ((@x1812 (unit-resolution @x926 (unit-resolution @x623 @x1805 $x620) $x670)))
  1.2255 +(let ((@x1814 (unit-resolution @x1628 @x812 @x698 @x703 @x1130 @x1615 @x1812 @x1536 @x687 (or $x463 $x745 $x1626 $x288))))
  1.2256 +(let ((@x1815 (unit-resolution @x1814 (unit-resolution @x740 (unit-resolution @x601 @x1808 $x597) $x675) @x1738 @x1371 $x463)))
  1.2257 +(let ((@x1818 (unit-resolution @x865 (unit-resolution @x623 @x1805 $x620) $x840)))
  1.2258 +(let ((@x1819 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x738 $x932)) (unit-resolution @x601 @x1808 $x597) $x932)))
  1.2259 +(let ((@x1823 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x707 $x742 $x288 $x1192 $x414 $x1403 $x706 $x743)) @x703 @x1812 @x1126 @x1479 @x1615 @x698 (or $x313 $x288 $x1403))))
  1.2260 +(let ((@x1824 (unit-resolution @x1823 (unit-resolution @x1450 (unit-resolution @x641 @x1371 $x637) $x1361) @x1371 $x313)))
  1.2261 +(let ((@x1827 ((_ th-lemma arith farkas -1 -3 3 -2 2 -2 2 -1 1 1 1 -1 1 -1 -1 1 1) @x1255 @x1611 @x853 @x1515 @x799 @x857 @x1727 (unit-resolution @x1415 (unit-resolution @x647 @x1824 $x644) $x1382) @x1259 @x1256 @x1126 (unit-resolution @x1450 (unit-resolution @x641 @x1371 $x637) $x1361) @x1819 @x1818 @x832 @x835 (unit-resolution @x1271 (unit-resolution @x591 @x1815 $x588) $x672) false)))
  1.2262 +(let ((@x1829 (lemma @x1827 (or $x288 $x657 $x338))))
  1.2263 +(let ((@x1844 (unit-resolution @x1829 @x1701 @x1256 $x288)))
  1.2264 +(let ((@x1848 (unit-resolution @x1208 @x1479 (or $x438 $x289 $x313))))
  1.2265 +(let ((@x1851 (unit-resolution @x1415 (unit-resolution @x647 (unit-resolution @x1848 @x1844 @x763 $x313) $x644) $x1382)))
  1.2266 +(let ((@x1831 ((_ th-lemma arith farkas -1 1 -1 -1 1 1 1 -1 1 1 -1 -1 1) @x1255 @x1615 @x698 @x1750 @x1259 @x1256 @x1126 @x1613 @x1812 @x687 @x703 @x1127 (hypothesis $x1697) false)))
  1.2267 +(let ((@x1833 (lemma @x1831 (or $x745 $x1530 $x657 $x1142 $x1718))))
  1.2268 +(let ((@x1852 (unit-resolution @x1833 (unit-resolution @x1152 (unit-resolution @x639 @x1844 $x636) $x660) @x1843 @x1256 @x1851 $x1718)))
  1.2269 +(let ((@x1855 (unit-resolution @x591 (unit-resolution @x593 (unit-resolution @x1780 @x1852 $x759) $x463) $x588)))
  1.2270 +(let ((@x1857 ((_ th-lemma arith farkas 1/2 -3/2 -1 1 3/2 -1 -1/2 -1/2 1/2 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2 1) @x966 @x1611 @x1515 @x799 @x853 @x857 @x1818 @x832 @x835 @x1727 (unit-resolution @x1271 @x1855 $x672) @x1255 @x1851 @x1259 @x1256 @x1126 (unit-resolution @x1152 (unit-resolution @x639 @x1844 $x636) $x660) @x1844 false)))
  1.2271 +(let ((@x1868 (unit-resolution (lemma @x1857 (or $x338 $x657 $x438)) @x763 @x1256 $x338)))
  1.2272 +(let ((@x1874 (unit-resolution ((_ th-lemma arith assign-bounds 2 2 2 2 2 1) (or $x1529 $x438 $x800 $x801 $x957 $x958 $x1092)) @x853 @x1515 @x1611 @x799 @x1818 (or $x1529 $x438))))
  1.2273 +(let (($x1436 (not $x637)))
  1.2274 +(let ((@x1878 (unit-resolution (unit-resolution @x1650 @x703 @x1615 @x1812 @x1536 @x698 (or $x1024 $x339)) @x1868 $x1024)))
  1.2275 +(let ((@x1881 (unit-resolution (unit-resolution @x1653 @x1812 @x1615 (or $x463 $x339 $x745 $x438)) @x1868 @x1843 @x763 $x463)))
  1.2276 +(let ((@x1864 (unit-resolution @x1422 @x1611 @x1818 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1515 @x1479 $x933) @x1812 @x1615 (or $x438 $x1081 $x1392 $x1200 $x1403 $x860 $x464))))
  1.2277 +(let ((@x1865 (unit-resolution @x1864 (unit-resolution @x1438 (hypothesis $x637) $x1370) (unit-resolution @x1450 (hypothesis $x637) $x1361) @x763 @x1214 @x858 @x895 @x1314 false)))
  1.2278 +(let ((@x1883 (unit-resolution (lemma @x1865 (or $x1436 $x438 $x1200 $x860 $x464 $x1081)) @x763 (unit-resolution @x1118 (unit-resolution @x631 @x1868 $x628) $x663) (unit-resolution @x1132 (unit-resolution @x631 @x1868 $x628) $x667) @x1881 @x1878 $x1436)))
  1.2279 +(let ((@x1887 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -2 -1) (or $x1501 $x733 $x814 $x860 $x1404 $x314 $x707)) @x1812 @x730 @x857 (or $x1501 $x733 $x860 $x314))))
  1.2280 +(let ((@x1888 (unit-resolution @x1887 (unit-resolution @x1848 (unit-resolution @x641 @x1883 $x288) @x763 $x313) (unit-resolution @x1874 @x763 $x1529) (unit-resolution @x1132 (unit-resolution @x631 @x1868 $x628) $x667) $x733)))
  1.2281 +(let ((@x1890 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x641 @x1883 $x288) $x636) @x1888 false)))
  1.2282 +(let ((@x1894 (unit-resolution (lemma @x1890 (or $x438 $x657)) @x1256 $x438)))
  1.2283 +(let ((@x1897 (unit-resolution (unit-resolution @x709 @x1615 @x1812 (or $x463 $x339 $x439)) @x688 @x1894 $x339)))
  1.2284 +(let ((@x1900 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x1829 @x1897 @x1256 $x288) $x636) $x660)))
  1.2285 +(let ((@x1901 (unit-resolution @x1833 @x1900 @x1843 @x1256 (unit-resolution @x1780 (unit-resolution @x593 @x688 $x589) $x1697) $x1530)))
  1.2286 +(let ((@x1902 (unit-resolution @x1714 @x1900 @x1897 (unit-resolution @x1829 @x1897 @x1256 $x288) $x313)))
  1.2287 +(let ((@x1906 (lemma (unit-resolution @x1415 (unit-resolution @x647 @x1902 $x644) @x1901 false) (or $x463 $x657))))
  1.2288 +(let ((@x1909 (unit-resolution @x1271 (unit-resolution @x591 (unit-resolution @x1906 @x1256 $x463) $x588) $x672)))
  1.2289 +(let ((@x1914 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2) (or $x1501 $x707 $x706 $x817 $x818 $x743 $x439)) @x1894 @x698 @x1615 @x1812 @x1536 @x812 $x1501)))
  1.2290 +(let ((@x1917 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 2 -2) (or $x839 $x706 $x817 $x818 $x903 $x1470 $x464)) (unit-resolution @x1906 @x1256 $x463) @x812 @x1615 @x1536 @x832 (unit-resolution @x828 (unit-resolution @x599 @x1894 $x596) $x669) $x839)))
  1.2291 +(let ((@x1921 (unit-resolution @x631 (unit-resolution (unit-resolution @x1483 @x1479 (or $x338 $x872)) @x1917 $x338) $x628)))
  1.2292 +(let ((@x1924 (unit-resolution ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1200 $x1199 $x288 $x1092 $x1093)) @x1130 @x835 @x1611 @x1818 (or $x872 $x1200 $x288))))
  1.2293 +(let ((@x1926 (unit-resolution @x639 (unit-resolution @x1924 (unit-resolution @x1118 @x1921 $x663) @x1917 $x288) $x636)))
  1.2294 +(let ((@x1929 (unit-resolution @x1532 @x853 @x703 @x1126 @x1259 @x1791 @x832 @x1255 (or $x657 $x1529 $x1530 $x1142 $x903 $x1263))))
  1.2295 +(let ((@x1930 (unit-resolution @x1929 (unit-resolution @x1152 @x1926 $x660) @x1256 @x1914 (unit-resolution @x828 (unit-resolution @x599 @x1894 $x596) $x669) @x1909 $x1530)))
  1.2296 +(let ((@x1932 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 1 -1 1 -1) (or $x706 $x743 $x313 $x1142 $x1192 $x817 $x1199 $x1200 $x439 $x818)) @x698 @x1130 @x1126 @x812 (or $x706 $x313 $x1142 $x817 $x1200 $x439))))
  1.2297 +(let ((@x1935 (unit-resolution (unit-resolution @x1932 @x1536 @x1615 (or $x313 $x1142 $x1200 $x439)) (unit-resolution @x1152 @x1926 $x660) (unit-resolution @x1118 @x1921 $x663) @x1894 $x313)))
  1.2298 +(let ((@x1938 (lemma (unit-resolution @x1415 (unit-resolution @x647 @x1935 $x644) @x1930 false) $x657)))
  1.2299 +(let ((@x1942 (unit-resolution @x569 (unit-resolution (unit-resolution @x1280 @x1695 (or $x92 $x766)) @x1938 $x92) $x582)))
  1.2300 +(let ((@x1943 (unit-resolution (unit-resolution @x1653 @x1812 @x1615 (or $x463 $x339 $x745 $x438)) @x688 @x1843 @x763 $x339)))
  1.2301 +(let ((@x1947 (unit-resolution @x1814 (unit-resolution @x1641 (unit-resolution @x633 @x1943 $x629) $x875) @x1843 @x688 $x288)))
  1.2302 +(let ((@x1950 (unit-resolution @x1415 (unit-resolution @x647 (unit-resolution @x1848 @x1947 @x763 $x313) $x644) $x1382)))
  1.2303 +(let ((@x1954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x463 $x813 $x815 $x438)) @x720 (or $x488 $x463 $x813 $x438))))
  1.2304 +(let ((@x1957 (unit-resolution @x1294 (unit-resolution @x573 (unit-resolution @x1954 @x762 @x763 @x688 $x488) $x584) $x1239)))
  1.2305 +(let (($x1958 (not $x932)))
  1.2306 +(let (($x1959 (or $x654 $x1324 $x1391 $x957 $x800 $x801 $x958 $x1404 $x1733 $x1092 $x1093 $x1958 $x1470 $x1530 $x1469 $x710)))
  1.2307 +(let ((@x1961 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1959) @x1957 @x799 @x853 @x835 @x857 @x1259 @x1287 @x1695 @x1515 @x1611 @x966 @x1818 @x832 @x1950 (unit-resolution @x1726 (unit-resolution @x633 @x1943 $x629) $x1696) $x654)))
  1.2308 +(let ((@x1962 (unit-resolution @x1301 (unit-resolution @x573 (unit-resolution @x1954 @x762 @x763 @x688 $x488) $x584) $x1240)))
  1.2309 +(let ((@x1963 (unit-resolution @x1169 (unit-resolution @x647 (unit-resolution @x1848 @x1947 @x763 $x313) $x644) $x664)))
  1.2310 +(let (($x1964 (or $x653 $x1400 $x1401 $x706 $x817 $x818 $x743 $x1199 $x1626 $x707 $x742 $x745 $x744 $x734 $x816 $x766)))
  1.2311 +(let ((@x1966 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1964) @x1963 @x812 @x698 @x703 @x1130 @x715 @x1299 @x1938 @x687 @x1615 @x1812 @x1843 @x1536 (unit-resolution @x1641 (unit-resolution @x633 @x1943 $x629) $x875) @x1962 $x653)))
  1.2312 +(let ((@x1992 (unit-resolution (lemma (unit-resolution @x1307 @x1966 @x1961 @x1942 false) (or $x463 $x438)) @x763 $x463)))
  1.2313 +(let ((@x1995 (unit-resolution @x1387 (unit-resolution @x725 (unit-resolution @x591 @x1992 $x588) $x681) @x763 @x1992 $x488)))
  1.2314 +(let ((@x1983 (unit-resolution @x1450 (unit-resolution @x641 (unit-resolution @x1848 @x1191 @x763 $x289) $x637) (unit-resolution @x1823 @x1191 (unit-resolution @x1848 @x1191 @x763 $x289) $x1403) false)))
  1.2315 +(let ((@x1999 (unit-resolution @x647 (unit-resolution (lemma @x1983 (or $x313 $x438)) @x763 $x313) $x644)))
  1.2316 +(let ((@x1971 (hypothesis $x932)))
  1.2317 +(let ((@x1987 ((_ th-lemma arith assign-bounds 1 -1 1 1 -1 -1 -1 3 -3 1 -1 -1 1 2 -2 2) (unit-resolution @x1450 (hypothesis $x637) $x1361) @x1252 @x1255 (unit-resolution @x1415 @x1164 $x1382) @x1259 @x1695 @x1126 @x1611 @x853 @x1818 @x835 @x1971 @x832 @x1515 @x799 @x857 $x875)))
  1.2318 +(let ((@x1988 ((_ th-lemma arith assign-bounds 1 -1 1 1 -1 -1 -1 3 -3 1 -1 -1 1 2 -2 2) (unit-resolution @x1438 (hypothesis $x637) $x1370) @x869 @x720 (unit-resolution @x1169 @x1164 $x664) @x715 @x1938 @x730 @x1615 @x698 @x1812 @x703 @x1843 @x687 @x1536 @x812 @x1130 $x1696)))
  1.2319 +(let ((@x1974 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1964) (unit-resolution @x1169 @x1164 $x664) @x812 @x698 @x703 @x1130 @x715 @x1299 @x1938 @x687 @x1615 @x1812 @x1843 @x1536 @x1612 (hypothesis $x1240) $x653)))
  1.2320 +(let ((@x1976 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1959) (unit-resolution @x1307 @x1974 @x1942 $x1305) @x799 @x853 @x835 @x857 @x1259 @x1287 @x1695 @x1515 @x1611 @x1971 @x1818 @x832 @x1322 (hypothesis $x1696) $x1530)))
  1.2321 +(let ((@x1979 (lemma (unit-resolution @x1415 @x1164 @x1976 false) (or $x1165 $x1958 $x1324 $x1733 $x1626 $x1400))))
  1.2322 +(let ((@x1989 (unit-resolution @x1979 @x1988 @x1987 @x1322 @x1971 @x1164 (hypothesis $x1240) false)))
  1.2323 +(let ((@x2002 (unit-resolution (lemma @x1989 (or $x1436 $x1324 $x1958 $x1165 $x1400 $x871 $x1263)) (unit-resolution @x1294 (unit-resolution @x573 @x1995 $x584) $x1239) @x966 @x1999 (unit-resolution @x1301 (unit-resolution @x573 @x1995 $x584) $x1240) (unit-resolution @x725 (unit-resolution @x591 @x1992 $x588) $x681) (unit-resolution @x1271 (unit-resolution @x591 @x1992 $x588) $x672) $x1436)))
  1.2324 +(let ((@x2005 ((_ th-lemma arith assign-bounds -2 -1 1 2 -1 1 -1 1 1 -1 1) (or $x875 $x957 $x800 $x801 $x958 $x1404 $x289 $x1092 $x1093 $x1958 $x1470 $x464))))
  1.2325 +(let ((@x2006 (unit-resolution @x2005 (unit-resolution @x641 @x2002 $x288) @x799 @x853 @x835 @x857 @x832 @x1515 @x1992 @x1611 @x966 @x1818 $x875)))
  1.2326 +(let ((@x2007 (unit-resolution @x1979 @x2006 (unit-resolution @x1294 (unit-resolution @x573 @x1995 $x584) $x1239) @x966 @x1999 (unit-resolution @x1301 (unit-resolution @x573 @x1995 $x584) $x1240) $x1733)))
  1.2327 +(let ((@x2010 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x641 @x2002 $x288) $x636) $x661)))
  1.2328 +(let ((@x2011 (unit-resolution @x774 @x2010 @x1938 @x763 (unit-resolution @x1169 @x1999 $x664) $x339)))
  1.2329 +(let ((@x2014 (lemma (unit-resolution @x1726 (unit-resolution @x633 @x2011 $x629) @x2007 false) $x438)))
  1.2330 +(let ((@x2021 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2) (or $x1501 $x707 $x706 $x817 $x818 $x743 $x439)) @x2014 @x698 @x1615 @x1812 @x1536 @x812 $x1501)))
  1.2331 +(let ((@x2017 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1200 $x339)) (unit-resolution @x633 (unit-resolution @x1641 @x1635 $x1637) $x338) @x1635 $x1200)))
  1.2332 +(let ((@x2018 (unit-resolution @x631 (unit-resolution @x633 (unit-resolution @x1641 @x1635 $x1637) $x338) $x628)))
  1.2333 +(let ((@x2020 (lemma (unit-resolution @x1118 @x2018 @x2017 false) $x875)))
  1.2334 +(let ((@x2023 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 -1 1) (or $x1626 $x1199 $x288 $x1529 $x389 $x742)) @x1130 @x1610 @x703 (or $x1626 $x288 $x1529))))
  1.2335 +(let ((@x2026 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x2023 @x2020 @x2021 $x288) $x636) $x660)))
  1.2336 +(let ((@x2027 (unit-resolution @x1714 @x1701 (unit-resolution @x2023 @x2020 @x2021 $x288) @x2026 $x313)))
  1.2337 +(let ((@x2030 (unit-resolution @x828 (unit-resolution @x599 @x2014 $x596) $x669)))
  1.2338 +(let ((@x2034 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 -2 2 -1) (or $x932 $x817 $x818 $x706 $x364 $x743 $x903)) @x698 @x812 (or $x932 $x817 $x706 $x364 $x903))))
  1.2339 +(let ((@x2037 (unit-resolution (unit-resolution @x2034 @x1536 @x1615 @x1805 (or $x932 $x903)) @x2030 $x932)))
  1.2340 +(let ((@x2040 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x1530 $x1469 $x710 $x338 $x1142 $x1192)) @x1126 @x1259 @x1695 (or $x488 $x1530 $x338 $x1142))))
  1.2341 +(let ((@x2041 (unit-resolution @x2040 (unit-resolution @x1415 (unit-resolution @x647 @x2027 $x644) $x1382) @x1701 @x2026 $x488)))
  1.2342 +(let ((@x2045 (unit-resolution @x1979 (unit-resolution @x1301 (unit-resolution @x573 @x2041 $x584) $x1240) (unit-resolution @x1294 (unit-resolution @x573 @x2041 $x584) $x1239) @x2020 @x2037 (unit-resolution @x647 @x2027 $x644) @x1727 false)))
  1.2343 +(let ((@x2046 (lemma @x2045 $x338)))
  1.2344 +(let ((@x2049 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x2023 @x2020 @x2021 $x288) $x636) $x661)))
  1.2345 +(let ((@x2050 (unit-resolution (unit-resolution @x709 @x1615 @x1812 (or $x463 $x339 $x439)) @x2046 @x2014 $x463)))
  1.2346 +(let ((@x2055 (unit-resolution (unit-resolution @x1575 @x1791 (or $x654 $x903 $x1263 $x733 $x860)) (unit-resolution @x1271 (unit-resolution @x591 @x2050 $x588) $x672) @x2030 @x2049 (unit-resolution @x1132 (unit-resolution @x631 @x2046 $x628) $x667) $x654)))
  1.2347 +(let ((@x2058 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 2 -2) (or $x839 $x706 $x817 $x818 $x903 $x1470 $x464)) @x2050 @x812 @x1615 @x1536 @x832 @x2030 $x839)))
  1.2348 +(let ((@x2059 (unit-resolution @x1592 (unit-resolution @x1271 (unit-resolution @x591 @x2050 $x588) $x672) @x2026 @x2058 (unit-resolution @x693 (unit-resolution @x599 @x2014 $x596) $x678) (unit-resolution @x725 (unit-resolution @x591 @x2050 $x588) $x681) $x653)))
  1.2349 +(unit-resolution @x1307 @x2059 @x2055 @x1942 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.2350 +
  1.2351 +faae12ee7efe4347f92e42776a0e0e57a624319c 113 0
  1.2352 +unsat
  1.2353 +((set-logic <null>)
  1.2354 +(proof
  1.2355 +(let ((?x228 (mod x$ 2)))
  1.2356 +(let ((?x262 (* (- 1) ?x228)))
  1.2357 +(let ((?x31 (mod$ x$ 2)))
  1.2358 +(let ((?x263 (+ ?x31 ?x262)))
  1.2359 +(let (($x280 (>= ?x263 0)))
  1.2360 +(let (($x264 (= ?x263 0)))
  1.2361 +(let (($x205 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x136 (mod ?v0 ?v1)))
  1.2362 +(let ((?x93 (* (- 1) ?v1)))
  1.2363 +(let ((?x90 (* (- 1) ?v0)))
  1.2364 +(let ((?x144 (mod ?x90 ?x93)))
  1.2365 +(let ((?x150 (* (- 1) ?x144)))
  1.2366 +(let (($x111 (<= ?v1 0)))
  1.2367 +(let ((?x170 (ite $x111 ?x150 ?x136)))
  1.2368 +(let (($x78 (= ?v1 0)))
  1.2369 +(let ((?x175 (ite $x78 ?v0 ?x170)))
  1.2370 +(let ((?x135 (mod$ ?v0 ?v1)))
  1.2371 +(= ?x135 ?x175))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
  1.2372 +))
  1.2373 +(let (($x181 (forall ((?v0 Int) (?v1 Int) )(let ((?x136 (mod ?v0 ?v1)))
  1.2374 +(let ((?x93 (* (- 1) ?v1)))
  1.2375 +(let ((?x90 (* (- 1) ?v0)))
  1.2376 +(let ((?x144 (mod ?x90 ?x93)))
  1.2377 +(let ((?x150 (* (- 1) ?x144)))
  1.2378 +(let (($x111 (<= ?v1 0)))
  1.2379 +(let ((?x170 (ite $x111 ?x150 ?x136)))
  1.2380 +(let (($x78 (= ?v1 0)))
  1.2381 +(let ((?x175 (ite $x78 ?v0 ?x170)))
  1.2382 +(let ((?x135 (mod$ ?v0 ?v1)))
  1.2383 +(= ?x135 ?x175))))))))))))
  1.2384 +))
  1.2385 +(let ((?x136 (mod ?1 ?0)))
  1.2386 +(let ((?x93 (* (- 1) ?0)))
  1.2387 +(let ((?x90 (* (- 1) ?1)))
  1.2388 +(let ((?x144 (mod ?x90 ?x93)))
  1.2389 +(let ((?x150 (* (- 1) ?x144)))
  1.2390 +(let (($x111 (<= ?0 0)))
  1.2391 +(let ((?x170 (ite $x111 ?x150 ?x136)))
  1.2392 +(let (($x78 (= ?0 0)))
  1.2393 +(let ((?x175 (ite $x78 ?1 ?x170)))
  1.2394 +(let ((?x135 (mod$ ?1 ?0)))
  1.2395 +(let (($x178 (= ?x135 ?x175)))
  1.2396 +(let (($x142 (forall ((?v0 Int) (?v1 Int) )(let (($x78 (= ?v1 0)))
  1.2397 +(let ((?x140 (ite $x78 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
  1.2398 +(let ((?x135 (mod$ ?v0 ?v1)))
  1.2399 +(= ?x135 ?x140)))))
  1.2400 +))
  1.2401 +(let (($x164 (forall ((?v0 Int) (?v1 Int) )(let ((?x93 (* (- 1) ?v1)))
  1.2402 +(let ((?x90 (* (- 1) ?v0)))
  1.2403 +(let ((?x144 (mod ?x90 ?x93)))
  1.2404 +(let ((?x150 (* (- 1) ?x144)))
  1.2405 +(let ((?x136 (mod ?v0 ?v1)))
  1.2406 +(let (($x79 (< 0 ?v1)))
  1.2407 +(let ((?x155 (ite $x79 ?x136 ?x150)))
  1.2408 +(let (($x78 (= ?v1 0)))
  1.2409 +(let ((?x158 (ite $x78 ?v0 ?x155)))
  1.2410 +(let ((?x135 (mod$ ?v0 ?v1)))
  1.2411 +(= ?x135 ?x158))))))))))))
  1.2412 +))
  1.2413 +(let ((@x169 (monotonicity (rewrite (= (< 0 ?0) (not $x111))) (= (ite (< 0 ?0) ?x136 ?x150) (ite (not $x111) ?x136 ?x150)))))
  1.2414 +(let ((@x174 (trans @x169 (rewrite (= (ite (not $x111) ?x136 ?x150) ?x170)) (= (ite (< 0 ?0) ?x136 ?x150) ?x170))))
  1.2415 +(let ((@x177 (monotonicity @x174 (= (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150)) ?x175))))
  1.2416 +(let ((@x180 (monotonicity @x177 (= (= ?x135 (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150))) $x178))))
  1.2417 +(let (($x79 (< 0 ?0)))
  1.2418 +(let ((?x155 (ite $x79 ?x136 ?x150)))
  1.2419 +(let ((?x158 (ite $x78 ?1 ?x155)))
  1.2420 +(let (($x161 (= ?x135 ?x158)))
  1.2421 +(let (($x162 (= (= ?x135 (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))))) $x161)))
  1.2422 +(let ((@x146 (monotonicity (rewrite (= (- ?1) ?x90)) (rewrite (= (- ?0) ?x93)) (= (mod (- ?1) (- ?0)) ?x144))))
  1.2423 +(let ((@x154 (trans (monotonicity @x146 (= (- (mod (- ?1) (- ?0))) (- ?x144))) (rewrite (= (- ?x144) ?x150)) (= (- (mod (- ?1) (- ?0))) ?x150))))
  1.2424 +(let ((@x157 (monotonicity @x154 (= (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))) ?x155))))
  1.2425 +(let ((@x160 (monotonicity @x157 (= (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0))))) ?x158))))
  1.2426 +(let ((@x185 (trans (quant-intro (monotonicity @x160 $x162) (= $x142 $x164)) (quant-intro @x180 (= $x164 $x181)) (= $x142 $x181))))
  1.2427 +(let ((@x196 (mp~ (mp (asserted $x142) @x185 $x181) (nnf-pos (refl (~ $x178 $x178)) (~ $x181 $x181)) $x181)))
  1.2428 +(let ((@x210 (mp @x196 (quant-intro (refl (= $x178 $x178)) (= $x181 $x205)) $x205)))
  1.2429 +(let (($x270 (or (not $x205) $x264)))
  1.2430 +(let ((?x225 (* (- 1) 2)))
  1.2431 +(let ((?x224 (* (- 1) x$)))
  1.2432 +(let ((?x226 (mod ?x224 ?x225)))
  1.2433 +(let ((?x227 (* (- 1) ?x226)))
  1.2434 +(let (($x223 (<= 2 0)))
  1.2435 +(let ((?x229 (ite $x223 ?x227 ?x228)))
  1.2436 +(let (($x222 (= 2 0)))
  1.2437 +(let ((?x230 (ite $x222 x$ ?x229)))
  1.2438 +(let (($x231 (= ?x31 ?x230)))
  1.2439 +(let ((@x244 (monotonicity (monotonicity (rewrite (= ?x225 (- 2))) (= ?x226 (mod ?x224 (- 2)))) (= ?x227 (* (- 1) (mod ?x224 (- 2)))))))
  1.2440 +(let ((@x247 (monotonicity (rewrite (= $x223 false)) @x244 (= ?x229 (ite false (* (- 1) (mod ?x224 (- 2))) ?x228)))))
  1.2441 +(let ((@x251 (trans @x247 (rewrite (= (ite false (* (- 1) (mod ?x224 (- 2))) ?x228) ?x228)) (= ?x229 ?x228))))
  1.2442 +(let ((@x254 (monotonicity (rewrite (= $x222 false)) @x251 (= ?x230 (ite false x$ ?x228)))))
  1.2443 +(let ((@x261 (monotonicity (trans @x254 (rewrite (= (ite false x$ ?x228) ?x228)) (= ?x230 ?x228)) (= $x231 (= ?x31 ?x228)))))
  1.2444 +(let ((@x274 (monotonicity (trans @x261 (rewrite (= (= ?x31 ?x228) $x264)) (= $x231 $x264)) (= (or (not $x205) $x231) $x270))))
  1.2445 +(let ((@x277 (trans @x274 (rewrite (= $x270 $x270)) (= (or (not $x205) $x231) $x270))))
  1.2446 +(let ((@x278 (mp ((_ quant-inst x$ 2) (or (not $x205) $x231)) @x277 $x270)))
  1.2447 +(let ((@x337 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x264) $x280)) (unit-resolution @x278 @x210 $x264) $x280)))
  1.2448 +(let (($x305 (>= ?x228 0)))
  1.2449 +(let (($x64 (>= ?x31 0)))
  1.2450 +(let (($x67 (not $x64)))
  1.2451 +(let (($x36 (not (<= (+ x$ 1) (+ x$ (+ (* 2 ?x31) 1))))))
  1.2452 +(let ((@x69 (monotonicity (rewrite (= (>= (* 2 ?x31) 0) $x64)) (= (not (>= (* 2 ?x31) 0)) $x67))))
  1.2453 +(let ((?x32 (* 2 ?x31)))
  1.2454 +(let ((?x47 (+ 1 x$ ?x32)))
  1.2455 +(let (($x52 (<= (+ 1 x$) ?x47)))
  1.2456 +(let (($x55 (not $x52)))
  1.2457 +(let ((@x63 (monotonicity (rewrite (= $x52 (>= ?x32 0))) (= $x55 (not (>= ?x32 0))))))
  1.2458 +(let ((@x46 (monotonicity (rewrite (= (+ ?x32 1) (+ 1 ?x32))) (= (+ x$ (+ ?x32 1)) (+ x$ (+ 1 ?x32))))))
  1.2459 +(let ((@x51 (trans @x46 (rewrite (= (+ x$ (+ 1 ?x32)) ?x47)) (= (+ x$ (+ ?x32 1)) ?x47))))
  1.2460 +(let ((@x54 (monotonicity (rewrite (= (+ x$ 1) (+ 1 x$))) @x51 (= (<= (+ x$ 1) (+ x$ (+ ?x32 1))) $x52))))
  1.2461 +(let ((@x73 (trans (monotonicity @x54 (= $x36 $x55)) (trans @x63 @x69 (= $x55 $x67)) (= $x36 $x67))))
  1.2462 +(let ((@x74 (mp (asserted $x36) @x73 $x67)))
  1.2463 +((_ th-lemma arith farkas -1 1 1) @x74 (unit-resolution ((_ th-lemma arith) (or false $x305)) (true-axiom true) $x305) @x337 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.2464 +
  1.2465 +57f344c9e787868c98d1e622f158c445c1899c96 112 0
  1.2466 +unsat
  1.2467 +((set-logic <null>)
  1.2468 +(proof
  1.2469 +(let ((?x224 (mod x$ 2)))
  1.2470 +(let (($x318 (>= ?x224 2)))
  1.2471 +(let (($x319 (not $x318)))
  1.2472 +(let ((?x258 (* (- 1) ?x224)))
  1.2473 +(let ((?x29 (mod$ x$ 2)))
  1.2474 +(let ((?x259 (+ ?x29 ?x258)))
  1.2475 +(let (($x275 (<= ?x259 0)))
  1.2476 +(let (($x260 (= ?x259 0)))
  1.2477 +(let (($x201 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x132 (mod ?v0 ?v1)))
  1.2478 +(let ((?x89 (* (- 1) ?v1)))
  1.2479 +(let ((?x86 (* (- 1) ?v0)))
  1.2480 +(let ((?x140 (mod ?x86 ?x89)))
  1.2481 +(let ((?x146 (* (- 1) ?x140)))
  1.2482 +(let (($x107 (<= ?v1 0)))
  1.2483 +(let ((?x166 (ite $x107 ?x146 ?x132)))
  1.2484 +(let (($x74 (= ?v1 0)))
  1.2485 +(let ((?x171 (ite $x74 ?v0 ?x166)))
  1.2486 +(let ((?x131 (mod$ ?v0 ?v1)))
  1.2487 +(= ?x131 ?x171))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
  1.2488 +))
  1.2489 +(let (($x177 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod ?v0 ?v1)))
  1.2490 +(let ((?x89 (* (- 1) ?v1)))
  1.2491 +(let ((?x86 (* (- 1) ?v0)))
  1.2492 +(let ((?x140 (mod ?x86 ?x89)))
  1.2493 +(let ((?x146 (* (- 1) ?x140)))
  1.2494 +(let (($x107 (<= ?v1 0)))
  1.2495 +(let ((?x166 (ite $x107 ?x146 ?x132)))
  1.2496 +(let (($x74 (= ?v1 0)))
  1.2497 +(let ((?x171 (ite $x74 ?v0 ?x166)))
  1.2498 +(let ((?x131 (mod$ ?v0 ?v1)))
  1.2499 +(= ?x131 ?x171))))))))))))
  1.2500 +))
  1.2501 +(let ((?x132 (mod ?1 ?0)))
  1.2502 +(let ((?x89 (* (- 1) ?0)))
  1.2503 +(let ((?x86 (* (- 1) ?1)))
  1.2504 +(let ((?x140 (mod ?x86 ?x89)))
  1.2505 +(let ((?x146 (* (- 1) ?x140)))
  1.2506 +(let (($x107 (<= ?0 0)))
  1.2507 +(let ((?x166 (ite $x107 ?x146 ?x132)))
  1.2508 +(let (($x74 (= ?0 0)))
  1.2509 +(let ((?x171 (ite $x74 ?1 ?x166)))
  1.2510 +(let ((?x131 (mod$ ?1 ?0)))
  1.2511 +(let (($x174 (= ?x131 ?x171)))
  1.2512 +(let (($x138 (forall ((?v0 Int) (?v1 Int) )(let (($x74 (= ?v1 0)))
  1.2513 +(let ((?x136 (ite $x74 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
  1.2514 +(let ((?x131 (mod$ ?v0 ?v1)))
  1.2515 +(= ?x131 ?x136)))))
  1.2516 +))
  1.2517 +(let (($x160 (forall ((?v0 Int) (?v1 Int) )(let ((?x89 (* (- 1) ?v1)))
  1.2518 +(let ((?x86 (* (- 1) ?v0)))
  1.2519 +(let ((?x140 (mod ?x86 ?x89)))
  1.2520 +(let ((?x146 (* (- 1) ?x140)))
  1.2521 +(let ((?x132 (mod ?v0 ?v1)))
  1.2522 +(let (($x75 (< 0 ?v1)))
  1.2523 +(let ((?x151 (ite $x75 ?x132 ?x146)))
  1.2524 +(let (($x74 (= ?v1 0)))
  1.2525 +(let ((?x154 (ite $x74 ?v0 ?x151)))
  1.2526 +(let ((?x131 (mod$ ?v0 ?v1)))
  1.2527 +(= ?x131 ?x154))))))))))))
  1.2528 +))
  1.2529 +(let ((@x165 (monotonicity (rewrite (= (< 0 ?0) (not $x107))) (= (ite (< 0 ?0) ?x132 ?x146) (ite (not $x107) ?x132 ?x146)))))
  1.2530 +(let ((@x170 (trans @x165 (rewrite (= (ite (not $x107) ?x132 ?x146) ?x166)) (= (ite (< 0 ?0) ?x132 ?x146) ?x166))))
  1.2531 +(let ((@x173 (monotonicity @x170 (= (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146)) ?x171))))
  1.2532 +(let ((@x176 (monotonicity @x173 (= (= ?x131 (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146))) $x174))))
  1.2533 +(let (($x75 (< 0 ?0)))
  1.2534 +(let ((?x151 (ite $x75 ?x132 ?x146)))
  1.2535 +(let ((?x154 (ite $x74 ?1 ?x151)))
  1.2536 +(let (($x157 (= ?x131 ?x154)))
  1.2537 +(let (($x158 (= (= ?x131 (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))))) $x157)))
  1.2538 +(let ((@x142 (monotonicity (rewrite (= (- ?1) ?x86)) (rewrite (= (- ?0) ?x89)) (= (mod (- ?1) (- ?0)) ?x140))))
  1.2539 +(let ((@x150 (trans (monotonicity @x142 (= (- (mod (- ?1) (- ?0))) (- ?x140))) (rewrite (= (- ?x140) ?x146)) (= (- (mod (- ?1) (- ?0))) ?x146))))
  1.2540 +(let ((@x153 (monotonicity @x150 (= (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))) ?x151))))
  1.2541 +(let ((@x156 (monotonicity @x153 (= (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0))))) ?x154))))
  1.2542 +(let ((@x181 (trans (quant-intro (monotonicity @x156 $x158) (= $x138 $x160)) (quant-intro @x176 (= $x160 $x177)) (= $x138 $x177))))
  1.2543 +(let ((@x192 (mp~ (mp (asserted $x138) @x181 $x177) (nnf-pos (refl (~ $x174 $x174)) (~ $x177 $x177)) $x177)))
  1.2544 +(let ((@x206 (mp @x192 (quant-intro (refl (= $x174 $x174)) (= $x177 $x201)) $x201)))
  1.2545 +(let (($x266 (or (not $x201) $x260)))
  1.2546 +(let ((?x221 (* (- 1) 2)))
  1.2547 +(let ((?x220 (* (- 1) x$)))
  1.2548 +(let ((?x222 (mod ?x220 ?x221)))
  1.2549 +(let ((?x223 (* (- 1) ?x222)))
  1.2550 +(let (($x219 (<= 2 0)))
  1.2551 +(let ((?x225 (ite $x219 ?x223 ?x224)))
  1.2552 +(let (($x218 (= 2 0)))
  1.2553 +(let ((?x226 (ite $x218 x$ ?x225)))
  1.2554 +(let (($x227 (= ?x29 ?x226)))
  1.2555 +(let ((@x240 (monotonicity (monotonicity (rewrite (= ?x221 (- 2))) (= ?x222 (mod ?x220 (- 2)))) (= ?x223 (* (- 1) (mod ?x220 (- 2)))))))
  1.2556 +(let ((@x243 (monotonicity (rewrite (= $x219 false)) @x240 (= ?x225 (ite false (* (- 1) (mod ?x220 (- 2))) ?x224)))))
  1.2557 +(let ((@x247 (trans @x243 (rewrite (= (ite false (* (- 1) (mod ?x220 (- 2))) ?x224) ?x224)) (= ?x225 ?x224))))
  1.2558 +(let ((@x250 (monotonicity (rewrite (= $x218 false)) @x247 (= ?x226 (ite false x$ ?x224)))))
  1.2559 +(let ((@x257 (monotonicity (trans @x250 (rewrite (= (ite false x$ ?x224) ?x224)) (= ?x226 ?x224)) (= $x227 (= ?x29 ?x224)))))
  1.2560 +(let ((@x270 (monotonicity (trans @x257 (rewrite (= (= ?x29 ?x224) $x260)) (= $x227 $x260)) (= (or (not $x201) $x227) $x266))))
  1.2561 +(let ((@x273 (trans @x270 (rewrite (= $x266 $x266)) (= (or (not $x201) $x227) $x266))))
  1.2562 +(let ((@x274 (mp ((_ quant-inst x$ 2) (or (not $x201) $x227)) @x273 $x266)))
  1.2563 +(let ((@x336 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x260) $x275)) (unit-resolution @x274 @x206 $x260) $x275)))
  1.2564 +(let (($x63 (>= ?x29 2)))
  1.2565 +(let ((?x37 (* 2 ?x29)))
  1.2566 +(let (($x56 (>= ?x37 3)))
  1.2567 +(let (($x46 (< (+ x$ ?x37) (+ 3 x$))))
  1.2568 +(let (($x49 (not $x46)))
  1.2569 +(let ((@x58 (monotonicity (rewrite (= $x46 (not $x56))) (= $x49 (not (not $x56))))))
  1.2570 +(let ((@x67 (trans (trans @x58 (rewrite (= (not (not $x56)) $x56)) (= $x49 $x56)) (rewrite (= $x56 $x63)) (= $x49 $x63))))
  1.2571 +(let ((@x42 (monotonicity (rewrite (= (+ ?x29 ?x29) ?x37)) (= (+ x$ (+ ?x29 ?x29)) (+ x$ ?x37)))))
  1.2572 +(let ((@x48 (monotonicity @x42 (rewrite (= (+ x$ 3) (+ 3 x$))) (= (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)) $x46))))
  1.2573 +(let ((@x51 (monotonicity @x48 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x49))))
  1.2574 +(let ((@x69 (trans @x51 @x67 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x63))))
  1.2575 +(let ((@x70 (mp (asserted (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)))) @x69 $x63)))
  1.2576 +((_ th-lemma arith farkas -1 1 1) @x70 @x336 (unit-resolution ((_ th-lemma arith) (or false $x319)) (true-axiom true) $x319) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.2577 +
  1.2578 +3938db798ebafb55191dcdaf83a8615d1d59c0c3 32 0
  1.2579 +unsat
  1.2580 +((set-logic <null>)
  1.2581 +(proof
  1.2582 +(let (($x28 (= x$ 0.0)))
  1.2583 +(let (($x29 (not $x28)))
  1.2584 +(let ((@x30 (asserted $x29)))
  1.2585 +(let (($x101 (<= x$ 0.0)))
  1.2586 +(let ((?x47 (* 2.0 x$)))
  1.2587 +(let (($x99 (<= ?x47 0.0)))
  1.2588 +(let (($x95 (= ?x47 0.0)))
  1.2589 +(let (($x36 (< 1.0 (ite (< x$ 0.0) (- x$) x$))))
  1.2590 +(let (($x38 (or $x36 (not $x36))))
  1.2591 +(let ((?x41 (ite $x38 4.0 2.0)))
  1.2592 +(let (($x45 (not (not (= (+ x$ x$) (* ?x41 x$))))))
  1.2593 +(let ((@x90 (rewrite (= (not (not (= ?x47 (* 4.0 x$)))) (= ?x47 (* 4.0 x$))))))
  1.2594 +(let (($x84 (= (not (= (+ x$ x$) (* ?x41 x$))) (not (= ?x47 (* 4.0 x$))))))
  1.2595 +(let (($x57 (< 1.0 (ite (< x$ 0.0) (* (- 1.0) x$) x$))))
  1.2596 +(let (($x55 (= (ite (< x$ 0.0) (- x$) x$) (ite (< x$ 0.0) (* (- 1.0) x$) x$))))
  1.2597 +(let ((@x59 (monotonicity (monotonicity (rewrite (= (- x$) (* (- 1.0) x$))) $x55) (= $x36 $x57))))
  1.2598 +(let ((@x65 (monotonicity @x59 (monotonicity @x59 (= (not $x36) (not $x57))) (= $x38 (or $x57 (not $x57))))))
  1.2599 +(let ((@x69 (trans @x65 (rewrite (= (or $x57 (not $x57)) true)) (= $x38 true))))
  1.2600 +(let ((@x76 (trans (monotonicity @x69 (= ?x41 (ite true 4.0 2.0))) (rewrite (= (ite true 4.0 2.0) 4.0)) (= ?x41 4.0))))
  1.2601 +(let ((@x82 (monotonicity (rewrite (= (+ x$ x$) ?x47)) (monotonicity @x76 (= (* ?x41 x$) (* 4.0 x$))) (= (= (+ x$ x$) (* ?x41 x$)) (= ?x47 (* 4.0 x$))))))
  1.2602 +(let ((@x88 (monotonicity (monotonicity @x82 $x84) (= $x45 (not (not (= ?x47 (* 4.0 x$))))))))
  1.2603 +(let ((@x97 (trans (trans @x88 @x90 (= $x45 (= ?x47 (* 4.0 x$)))) (rewrite (= (= ?x47 (* 4.0 x$)) $x95)) (= $x45 $x95))))
  1.2604 +(let ((@x98 (mp (asserted $x45) @x97 $x95)))
  1.2605 +(let ((@x110 (unit-resolution ((_ th-lemma arith assign-bounds 1) (or $x101 (not $x99))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x95) $x99)) @x98 $x99) $x101)))
  1.2606 +(let (($x102 (>= x$ 0.0)))
  1.2607 +(let (($x100 (>= ?x47 0.0)))
  1.2608 +(let ((@x117 (unit-resolution ((_ th-lemma arith assign-bounds 1) (or $x102 (not $x100))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x95) $x100)) @x98 $x100) $x102)))
  1.2609 +(unit-resolution ((_ th-lemma arith triangle-eq) (or $x28 (not $x101) (not $x102))) @x117 @x110 @x30 false))))))))))))))))))))))))))))))
  1.2610 +
  1.2611 +353c8b65ed1b98772a89ffdae52f1cfae628dd6a 236 0
  1.2612 +unsat
  1.2613 +((set-logic <null>)
  1.2614 +(proof
  1.2615 +(let ((?x410 (div n$ 2)))
  1.2616 +(let ((?x704 (* (- 1) ?x410)))
  1.2617 +(let ((?x381 (div n$ 4)))
  1.2618 +(let ((?x601 (* (- 2) ?x381)))
  1.2619 +(let ((?x329 (mod n$ 4)))
  1.2620 +(let ((?x363 (* (- 1) ?x329)))
  1.2621 +(let ((?x35 (mod$ n$ 4)))
  1.2622 +(let ((?x705 (+ n$ ?x35 ?x363 ?x601 ?x704)))
  1.2623 +(let (($x706 (>= ?x705 2)))
  1.2624 +(let ((?x39 (mod$ n$ 2)))
  1.2625 +(let (($x515 (>= ?x39 1)))
  1.2626 +(let (($x725 (not $x515)))
  1.2627 +(let (($x514 (<= ?x39 1)))
  1.2628 +(let ((?x519 (mod n$ 2)))
  1.2629 +(let ((?x534 (* (- 1) ?x519)))
  1.2630 +(let ((?x535 (+ ?x39 ?x534)))
  1.2631 +(let (($x408 (<= ?x535 0)))
  1.2632 +(let (($x490 (= ?x535 0)))
  1.2633 +(let (($x191 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x108 (mod ?v0 ?v1)))
  1.2634 +(let ((?x65 (* (- 1) ?v1)))
  1.2635 +(let ((?x62 (* (- 1) ?v0)))
  1.2636 +(let ((?x116 (mod ?x62 ?x65)))
  1.2637 +(let ((?x122 (* (- 1) ?x116)))
  1.2638 +(let (($x83 (<= ?v1 0)))
  1.2639 +(let ((?x142 (ite $x83 ?x122 ?x108)))
  1.2640 +(let (($x50 (= ?v1 0)))
  1.2641 +(let ((?x147 (ite $x50 ?v0 ?x142)))
  1.2642 +(let ((?x107 (mod$ ?v0 ?v1)))
  1.2643 +(= ?x107 ?x147))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
  1.2644 +))
  1.2645 +(let (($x153 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod ?v0 ?v1)))
  1.2646 +(let ((?x65 (* (- 1) ?v1)))
  1.2647 +(let ((?x62 (* (- 1) ?v0)))
  1.2648 +(let ((?x116 (mod ?x62 ?x65)))
  1.2649 +(let ((?x122 (* (- 1) ?x116)))
  1.2650 +(let (($x83 (<= ?v1 0)))
  1.2651 +(let ((?x142 (ite $x83 ?x122 ?x108)))
  1.2652 +(let (($x50 (= ?v1 0)))
  1.2653 +(let ((?x147 (ite $x50 ?v0 ?x142)))
  1.2654 +(let ((?x107 (mod$ ?v0 ?v1)))
  1.2655 +(= ?x107 ?x147))))))))))))
  1.2656 +))
  1.2657 +(let ((?x108 (mod ?1 ?0)))
  1.2658 +(let ((?x65 (* (- 1) ?0)))
  1.2659 +(let ((?x62 (* (- 1) ?1)))
  1.2660 +(let ((?x116 (mod ?x62 ?x65)))
  1.2661 +(let ((?x122 (* (- 1) ?x116)))
  1.2662 +(let (($x83 (<= ?0 0)))
  1.2663 +(let ((?x142 (ite $x83 ?x122 ?x108)))
  1.2664 +(let (($x50 (= ?0 0)))
  1.2665 +(let ((?x147 (ite $x50 ?1 ?x142)))
  1.2666 +(let ((?x107 (mod$ ?1 ?0)))
  1.2667 +(let (($x150 (= ?x107 ?x147)))
  1.2668 +(let (($x114 (forall ((?v0 Int) (?v1 Int) )(let (($x50 (= ?v1 0)))
  1.2669 +(let ((?x112 (ite $x50 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
  1.2670 +(let ((?x107 (mod$ ?v0 ?v1)))
  1.2671 +(= ?x107 ?x112)))))
  1.2672 +))
  1.2673 +(let (($x136 (forall ((?v0 Int) (?v1 Int) )(let ((?x65 (* (- 1) ?v1)))
  1.2674 +(let ((?x62 (* (- 1) ?v0)))
  1.2675 +(let ((?x116 (mod ?x62 ?x65)))
  1.2676 +(let ((?x122 (* (- 1) ?x116)))
  1.2677 +(let ((?x108 (mod ?v0 ?v1)))
  1.2678 +(let (($x51 (< 0 ?v1)))
  1.2679 +(let ((?x127 (ite $x51 ?x108 ?x122)))
  1.2680 +(let (($x50 (= ?v1 0)))
  1.2681 +(let ((?x130 (ite $x50 ?v0 ?x127)))
  1.2682 +(let ((?x107 (mod$ ?v0 ?v1)))
  1.2683 +(= ?x107 ?x130))))))))))))
  1.2684 +))
  1.2685 +(let ((@x141 (monotonicity (rewrite (= (< 0 ?0) (not $x83))) (= (ite (< 0 ?0) ?x108 ?x122) (ite (not $x83) ?x108 ?x122)))))
  1.2686 +(let ((@x146 (trans @x141 (rewrite (= (ite (not $x83) ?x108 ?x122) ?x142)) (= (ite (< 0 ?0) ?x108 ?x122) ?x142))))
  1.2687 +(let ((@x149 (monotonicity @x146 (= (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122)) ?x147))))
  1.2688 +(let ((@x152 (monotonicity @x149 (= (= ?x107 (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122))) $x150))))
  1.2689 +(let (($x51 (< 0 ?0)))
  1.2690 +(let ((?x127 (ite $x51 ?x108 ?x122)))
  1.2691 +(let ((?x130 (ite $x50 ?1 ?x127)))
  1.2692 +(let (($x133 (= ?x107 ?x130)))
  1.2693 +(let (($x134 (= (= ?x107 (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))))) $x133)))
  1.2694 +(let ((@x118 (monotonicity (rewrite (= (- ?1) ?x62)) (rewrite (= (- ?0) ?x65)) (= (mod (- ?1) (- ?0)) ?x116))))
  1.2695 +(let ((@x126 (trans (monotonicity @x118 (= (- (mod (- ?1) (- ?0))) (- ?x116))) (rewrite (= (- ?x116) ?x122)) (= (- (mod (- ?1) (- ?0))) ?x122))))
  1.2696 +(let ((@x129 (monotonicity @x126 (= (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))) ?x127))))
  1.2697 +(let ((@x132 (monotonicity @x129 (= (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0))))) ?x130))))
  1.2698 +(let ((@x157 (trans (quant-intro (monotonicity @x132 $x134) (= $x114 $x136)) (quant-intro @x152 (= $x136 $x153)) (= $x114 $x153))))
  1.2699 +(let ((@x168 (mp~ (mp (asserted $x114) @x157 $x153) (nnf-pos (refl (~ $x150 $x150)) (~ $x153 $x153)) $x153)))
  1.2700 +(let ((@x196 (mp @x168 (quant-intro (refl (= $x150 $x150)) (= $x153 $x191)) $x191)))
  1.2701 +(let (($x260 (not $x191)))
  1.2702 +(let (($x541 (or $x260 $x490)))
  1.2703 +(let ((?x211 (* (- 1) 2)))
  1.2704 +(let ((?x222 (* (- 1) n$)))
  1.2705 +(let ((?x517 (mod ?x222 ?x211)))
  1.2706 +(let ((?x518 (* (- 1) ?x517)))
  1.2707 +(let (($x209 (<= 2 0)))
  1.2708 +(let ((?x520 (ite $x209 ?x518 ?x519)))
  1.2709 +(let (($x208 (= 2 0)))
  1.2710 +(let ((?x521 (ite $x208 n$ ?x520)))
  1.2711 +(let (($x485 (= ?x39 ?x521)))
  1.2712 +(let ((@x593 (monotonicity (monotonicity (rewrite (= ?x211 (- 2))) (= ?x517 (mod ?x222 (- 2)))) (= ?x518 (* (- 1) (mod ?x222 (- 2)))))))
  1.2713 +(let ((@x221 (rewrite (= $x209 false))))
  1.2714 +(let ((@x596 (monotonicity @x221 @x593 (= ?x520 (ite false (* (- 1) (mod ?x222 (- 2))) ?x519)))))
  1.2715 +(let ((@x599 (trans @x596 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 2))) ?x519) ?x519)) (= ?x520 ?x519))))
  1.2716 +(let ((@x219 (rewrite (= $x208 false))))
  1.2717 +(let ((@x487 (trans (monotonicity @x219 @x599 (= ?x521 (ite false n$ ?x519))) (rewrite (= (ite false n$ ?x519) ?x519)) (= ?x521 ?x519))))
  1.2718 +(let ((@x538 (trans (monotonicity @x487 (= $x485 (= ?x39 ?x519))) (rewrite (= (= ?x39 ?x519) $x490)) (= $x485 $x490))))
  1.2719 +(let ((@x406 (trans (monotonicity @x538 (= (or $x260 $x485) $x541)) (rewrite (= $x541 $x541)) (= (or $x260 $x485) $x541))))
  1.2720 +(let ((@x407 (mp ((_ quant-inst n$ 2) (or $x260 $x485)) @x406 $x541)))
  1.2721 +(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x408)) (unit-resolution @x407 @x196 $x490) $x408)))
  1.2722 +(let (($x303 (>= ?x519 2)))
  1.2723 +(let (($x304 (not $x303)))
  1.2724 +(let ((@x26 (true-axiom true)))
  1.2725 +(let ((@x722 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x514 $x303 (not $x408))) (unit-resolution ((_ th-lemma arith) (or false $x304)) @x26 $x304) @x715 $x514)))
  1.2726 +(let (($x41 (= ?x39 1)))
  1.2727 +(let (($x169 (not $x41)))
  1.2728 +(let ((?x42 (mod$ m$ 2)))
  1.2729 +(let (($x43 (= ?x42 1)))
  1.2730 +(let ((?x29 (+ n$ m$)))
  1.2731 +(let ((?x214 (mod ?x29 2)))
  1.2732 +(let ((?x253 (* (- 1) ?x214)))
  1.2733 +(let ((?x31 (mod$ ?x29 2)))
  1.2734 +(let ((?x603 (+ n$ m$ ?x31 ?x35 ?x253 (* (- 1) (div ?x29 2)) ?x363 ?x601 (* (- 1) (div m$ 2)))))
  1.2735 +(let (($x604 (>= ?x603 2)))
  1.2736 +(let (($x523 (>= ?x42 1)))
  1.2737 +(let (($x609 (not $x523)))
  1.2738 +(let (($x522 (<= ?x42 1)))
  1.2739 +(let ((?x439 (mod m$ 2)))
  1.2740 +(let ((?x466 (* (- 1) ?x439)))
  1.2741 +(let ((?x467 (+ ?x42 ?x466)))
  1.2742 +(let (($x482 (<= ?x467 0)))
  1.2743 +(let (($x468 (= ?x467 0)))
  1.2744 +(let (($x473 (or $x260 $x468)))
  1.2745 +(let ((?x440 (ite $x209 (* (- 1) (mod (* (- 1) m$) ?x211)) ?x439)))
  1.2746 +(let ((?x441 (ite $x208 m$ ?x440)))
  1.2747 +(let (($x442 (= ?x42 ?x441)))
  1.2748 +(let ((@x453 (rewrite (= (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439) ?x439))))
  1.2749 +(let (($x447 (= (* (- 1) (mod (* (- 1) m$) ?x211)) (* (- 1) (mod (* (- 1) m$) (- 2))))))
  1.2750 +(let ((@x229 (rewrite (= ?x211 (- 2)))))
  1.2751 +(let ((@x445 (monotonicity @x229 (= (mod (* (- 1) m$) ?x211) (mod (* (- 1) m$) (- 2))))))
  1.2752 +(let ((@x451 (monotonicity @x221 (monotonicity @x445 $x447) (= ?x440 (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439)))))
  1.2753 +(let ((@x458 (monotonicity @x219 (trans @x451 @x453 (= ?x440 ?x439)) (= ?x441 (ite false m$ ?x439)))))
  1.2754 +(let ((@x465 (monotonicity (trans @x458 (rewrite (= (ite false m$ ?x439) ?x439)) (= ?x441 ?x439)) (= $x442 (= ?x42 ?x439)))))
  1.2755 +(let ((@x477 (monotonicity (trans @x465 (rewrite (= (= ?x42 ?x439) $x468)) (= $x442 $x468)) (= (or $x260 $x442) $x473))))
  1.2756 +(let ((@x481 (mp ((_ quant-inst m$ 2) (or $x260 $x442)) (trans @x477 (rewrite (= $x473 $x473)) (= (or $x260 $x442) $x473)) $x473)))
  1.2757 +(let ((@x277 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) $x482)) (unit-resolution @x481 @x196 $x468) $x482)))
  1.2758 +(let ((@x386 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x439 2)))) @x26 (not (>= ?x439 2)))))
  1.2759 +(let ((@x384 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x522 (>= ?x439 2) (not $x482))) @x386 @x277 $x522)))
  1.2760 +(let ((@x564 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x43 (not $x522) $x609)) (hypothesis (not $x43)) (or (not $x522) $x609))))
  1.2761 +(let ((?x272 (div ?x29 2)))
  1.2762 +(let ((?x288 (* (- 2) ?x272)))
  1.2763 +(let ((?x289 (+ n$ m$ ?x253 ?x288)))
  1.2764 +(let (($x294 (<= ?x289 0)))
  1.2765 +(let (($x287 (= ?x289 0)))
  1.2766 +(let ((@x617 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x294)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x294)))
  1.2767 +(let (($x433 (<= ?x31 0)))
  1.2768 +(let (($x32 (= ?x31 0)))
  1.2769 +(let ((@x33 (asserted $x32)))
  1.2770 +(let ((?x254 (+ ?x31 ?x253)))
  1.2771 +(let (($x270 (<= ?x254 0)))
  1.2772 +(let (($x255 (= ?x254 0)))
  1.2773 +(let (($x261 (or $x260 $x255)))
  1.2774 +(let ((?x215 (ite $x209 (* (- 1) (mod (* (- 1) ?x29) ?x211)) ?x214)))
  1.2775 +(let ((?x216 (ite $x208 ?x29 ?x215)))
  1.2776 +(let (($x217 (= ?x31 ?x216)))
  1.2777 +(let (($x239 (= (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214) ?x214)))
  1.2778 +(let (($x237 (= ?x215 (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214))))
  1.2779 +(let (($x234 (= (* (- 1) (mod (* (- 1) ?x29) ?x211)) (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))))))
  1.2780 +(let ((@x232 (monotonicity (rewrite (= (* (- 1) ?x29) (+ ?x222 (* (- 1) m$)))) @x229 (= (mod (* (- 1) ?x29) ?x211) (mod (+ ?x222 (* (- 1) m$)) (- 2))))))
  1.2781 +(let ((@x242 (trans (monotonicity @x221 (monotonicity @x232 $x234) $x237) (rewrite $x239) (= ?x215 ?x214))))
  1.2782 +(let ((@x249 (trans (monotonicity @x219 @x242 (= ?x216 (ite false ?x29 ?x214))) (rewrite (= (ite false ?x29 ?x214) ?x214)) (= ?x216 ?x214))))
  1.2783 +(let ((@x259 (trans (monotonicity @x249 (= $x217 (= ?x31 ?x214))) (rewrite (= (= ?x31 ?x214) $x255)) (= $x217 $x255))))
  1.2784 +(let ((@x268 (trans (monotonicity @x259 (= (or $x260 $x217) $x261)) (rewrite (= $x261 $x261)) (= (or $x260 $x217) $x261))))
  1.2785 +(let ((@x269 (mp ((_ quant-inst (+ n$ m$) 2) (or $x260 $x217)) @x268 $x261)))
  1.2786 +(let ((@x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x270)) (unit-resolution @x269 @x196 $x255) $x270)))
  1.2787 +(let ((?x498 (+ m$ ?x466 (* (- 2) (div m$ 2)))))
  1.2788 +(let (($x496 (= ?x498 0)))
  1.2789 +(let ((@x633 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (<= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (<= ?x498 0))))
  1.2790 +(let ((?x397 (* (- 4) ?x381)))
  1.2791 +(let ((?x398 (+ n$ ?x363 ?x397)))
  1.2792 +(let (($x403 (<= ?x398 0)))
  1.2793 +(let (($x396 (= ?x398 0)))
  1.2794 +(let ((@x640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x403)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x403)))
  1.2795 +(let ((?x364 (+ ?x35 ?x363)))
  1.2796 +(let (($x379 (<= ?x364 0)))
  1.2797 +(let (($x365 (= ?x364 0)))
  1.2798 +(let (($x370 (or $x260 $x365)))
  1.2799 +(let ((?x330 (ite (<= 4 0) (* (- 1) (mod ?x222 (* (- 1) 4))) ?x329)))
  1.2800 +(let ((?x331 (ite (= 4 0) n$ ?x330)))
  1.2801 +(let (($x332 (= ?x35 ?x331)))
  1.2802 +(let ((@x342 (monotonicity (rewrite (= (* (- 1) 4) (- 4))) (= (mod ?x222 (* (- 1) 4)) (mod ?x222 (- 4))))))
  1.2803 +(let ((@x345 (monotonicity @x342 (= (* (- 1) (mod ?x222 (* (- 1) 4))) (* (- 1) (mod ?x222 (- 4)))))))
  1.2804 +(let ((@x348 (monotonicity (rewrite (= (<= 4 0) false)) @x345 (= ?x330 (ite false (* (- 1) (mod ?x222 (- 4))) ?x329)))))
  1.2805 +(let ((@x352 (trans @x348 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 4))) ?x329) ?x329)) (= ?x330 ?x329))))
  1.2806 +(let ((@x355 (monotonicity (rewrite (= (= 4 0) false)) @x352 (= ?x331 (ite false n$ ?x329)))))
  1.2807 +(let ((@x362 (monotonicity (trans @x355 (rewrite (= (ite false n$ ?x329) ?x329)) (= ?x331 ?x329)) (= $x332 (= ?x35 ?x329)))))
  1.2808 +(let ((@x374 (monotonicity (trans @x362 (rewrite (= (= ?x35 ?x329) $x365)) (= $x332 $x365)) (= (or $x260 $x332) $x370))))
  1.2809 +(let ((@x378 (mp ((_ quant-inst n$ 4) (or $x260 $x332)) (trans @x374 (rewrite (= $x370 $x370)) (= (or $x260 $x332) $x370)) $x370)))
  1.2810 +(let ((@x645 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x379)) (unit-resolution @x378 @x196 $x365) $x379)))
  1.2811 +(let (($x435 (<= ?x35 3)))
  1.2812 +(let (($x37 (= ?x35 3)))
  1.2813 +(let ((@x38 (asserted $x37)))
  1.2814 +(let ((@x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) (>= ?x467 0))) (unit-resolution @x481 @x196 $x468) (>= ?x467 0))))
  1.2815 +(let ((@x656 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1 1 1 1) @x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x604) @x645 @x640 @x633 @x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x433)) @x33 $x433) @x617 (hypothesis $x609) false)))
  1.2816 +(let ((@x565 (unit-resolution (lemma @x656 (or (not $x604) $x523)) (unit-resolution @x564 @x384 $x609) (not $x604))))
  1.2817 +(let (($x295 (>= ?x289 0)))
  1.2818 +(let ((@x566 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x295)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x295)))
  1.2819 +(let (($x434 (>= ?x31 0)))
  1.2820 +(let (($x271 (>= ?x254 0)))
  1.2821 +(let ((@x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x271)) (unit-resolution @x269 @x196 $x255) $x271)))
  1.2822 +(let ((@x537 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (>= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (>= ?x498 0))))
  1.2823 +(let ((@x549 (unit-resolution ((_ th-lemma arith) (or false (>= ?x439 0))) @x26 (>= ?x439 0))))
  1.2824 +(let (($x404 (>= ?x398 0)))
  1.2825 +(let ((@x552 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x404)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x404)))
  1.2826 +(let (($x380 (>= ?x364 0)))
  1.2827 +(let ((@x273 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x380)) (unit-resolution @x378 @x196 $x365) $x380)))
  1.2828 +(let (($x436 (>= ?x35 3)))
  1.2829 +(let ((@x545 ((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x273 @x552 @x549 @x537 @x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x434)) @x33 $x434) @x566 @x565 false)))
  1.2830 +(let (($x171 (or $x169 (not $x43))))
  1.2831 +(let ((@x177 (monotonicity (rewrite (= (and $x41 $x43) (not $x171))) (= (not (and $x41 $x43)) (not (not $x171))))))
  1.2832 +(let ((@x181 (trans @x177 (rewrite (= (not (not $x171)) $x171)) (= (not (and $x41 $x43)) $x171))))
  1.2833 +(let ((@x182 (mp (asserted (not (and $x41 $x43))) @x181 $x171)))
  1.2834 +(let ((@x729 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x41 (not $x514) $x725)) (unit-resolution @x182 (lemma @x545 $x43) $x169) (or (not $x514) $x725))))
  1.2835 +(let ((?x420 (* (- 2) ?x410)))
  1.2836 +(let ((?x421 (+ n$ ?x420 ?x534)))
  1.2837 +(let (($x426 (<= ?x421 0)))
  1.2838 +(let (($x419 (= ?x421 0)))
  1.2839 +(let ((@x737 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x426)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x426)))
  1.2840 +(let (($x409 (>= ?x535 0)))
  1.2841 +(let ((@x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x409)) (unit-resolution @x407 @x196 $x490) $x409)))
  1.2842 +(let ((@x742 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1) @x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x706) @x640 @x737 @x645 (unit-resolution @x729 @x722 $x725) false)))
  1.2843 +(let (($x427 (>= ?x421 0)))
  1.2844 +(let ((@x584 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x427)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x427)))
  1.2845 +(let (($x542 (>= ?x519 0)))
  1.2846 +((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x552 (unit-resolution ((_ th-lemma arith) (or false $x542)) @x26 $x542) @x584 @x273 (lemma @x742 (not $x706)) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.2847 +
  1.2848 +dcc9b986d57d4904aeadc1233210450bb15df4d3 12 0
  1.2849 +unsat
  1.2850 +((set-logic AUFLIA)
  1.2851 +(proof
  1.2852 +(let (($x28 (exists ((?v0 Int) )false)
  1.2853 +))
  1.2854 +(let (($x27 (not $x28)))
  1.2855 +(let (($x29 (not $x27)))
  1.2856 +(let ((@x35 (monotonicity (elim-unused (= $x28 false)) (= $x27 (not false)))))
  1.2857 +(let ((@x42 (monotonicity (trans @x35 (rewrite (= (not false) true)) (= $x27 true)) (= $x29 (not true)))))
  1.2858 +(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= $x29 false))))
  1.2859 +(mp (asserted $x29) @x46 false)))))))))
  1.2860 +
  1.2861 +e33f4ac0207897c2b7abfeafedc87232f999a6d5 12 0
  1.2862 +unsat
  1.2863 +((set-logic AUFLIRA)
  1.2864 +(proof
  1.2865 +(let (($x27 (exists ((?v0 Real) )false)
  1.2866 +))
  1.2867 +(let (($x28 (not $x27)))
  1.2868 +(let (($x29 (not $x28)))
  1.2869 +(let ((@x35 (monotonicity (elim-unused (= $x27 false)) (= $x28 (not false)))))
  1.2870 +(let ((@x42 (monotonicity (trans @x35 (rewrite (= (not false) true)) (= $x28 true)) (= $x29 (not true)))))
  1.2871 +(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= $x29 false))))
  1.2872 +(mp (asserted $x29) @x46 false)))))))))
  1.2873 +
  1.2874 +ef29919c373b650f8005a5573289548ab716b089 22 0
  1.2875 +unsat
  1.2876 +((set-logic AUFLIA)
  1.2877 +(proof
  1.2878 +(let (($x52 (forall ((?v0 Int) )(<= ?v0 0))
  1.2879 +))
  1.2880 +(let (($x46 (forall ((?v0 Int) )(let (($x34 (<= ?v0 0)))
  1.2881 +(let (($x35 (not $x34)))
  1.2882 +(not $x35))))
  1.2883 +))
  1.2884 +(let ((@x54 (quant-intro (rewrite (= (not (not (<= ?0 0))) (<= ?0 0))) (= $x46 $x52))))
  1.2885 +(let (($x38 (exists ((?v0 Int) )(let (($x34 (<= ?v0 0)))
  1.2886 +(not $x34)))
  1.2887 +))
  1.2888 +(let (($x41 (not $x38)))
  1.2889 +(let ((@x48 (nnf-neg (refl (~ (not (not (<= ?0 0))) (not (not (<= ?0 0))))) (~ $x41 $x46))))
  1.2890 +(let (($x29 (exists ((?v0 Int) )(< 0 ?v0))
  1.2891 +))
  1.2892 +(let (($x30 (not $x29)))
  1.2893 +(let ((@x40 (quant-intro (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x29 $x38))))
  1.2894 +(let ((@x49 (mp~ (mp (asserted $x30) (monotonicity @x40 (= $x30 $x41)) $x41) @x48 $x46)))
  1.2895 +(mp (mp @x49 @x54 $x52) (rewrite (= $x52 false)) false)))))))))))))
  1.2896 +
  1.2897 +4d3a976164de7ccb5d4650a113f067b8a1c55b22 22 0
  1.2898 +unsat
  1.2899 +((set-logic AUFLIRA)
  1.2900 +(proof
  1.2901 +(let (($x51 (forall ((?v0 Real) )(<= ?v0 0.0))
  1.2902 +))
  1.2903 +(let (($x45 (forall ((?v0 Real) )(let (($x33 (<= ?v0 0.0)))
  1.2904 +(let (($x34 (not $x33)))
  1.2905 +(not $x34))))
  1.2906 +))
  1.2907 +(let ((@x53 (quant-intro (rewrite (= (not (not (<= ?0 0.0))) (<= ?0 0.0))) (= $x45 $x51))))
  1.2908 +(let (($x37 (exists ((?v0 Real) )(let (($x33 (<= ?v0 0.0)))
  1.2909 +(not $x33)))
  1.2910 +))
  1.2911 +(let (($x40 (not $x37)))
  1.2912 +(let ((@x47 (nnf-neg (refl (~ (not (not (<= ?0 0.0))) (not (not (<= ?0 0.0))))) (~ $x40 $x45))))
  1.2913 +(let (($x28 (exists ((?v0 Real) )(< 0.0 ?v0))
  1.2914 +))
  1.2915 +(let (($x29 (not $x28)))
  1.2916 +(let ((@x39 (quant-intro (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x28 $x37))))
  1.2917 +(let ((@x48 (mp~ (mp (asserted $x29) (monotonicity @x39 (= $x29 $x40)) $x40) @x47 $x45)))
  1.2918 +(mp (mp @x48 @x53 $x51) (rewrite (= $x51 false)) false)))))))))))))
  1.2919 +
  1.2920 +f28123a872d014e01ec45f8bb7163bb037909301 31 0
  1.2921 +unsat
  1.2922 +((set-logic AUFLIA)
  1.2923 +(declare-fun ?v0!0 () Int)
  1.2924 +(proof
  1.2925 +(let (($x71 (forall ((?v1 Int) )(<= (+ ?v1 (* (- 1) ?v0!0)) 0))
  1.2926 +))
  1.2927 +(let (($x63 (forall ((?v1 Int) )(not (not (<= (+ ?v1 (* (- 1) ?v0!0)) 0))))
  1.2928 +))
  1.2929 +(let (($x54 (<= (+ ?0 (* (- 1) ?v0!0)) 0)))
  1.2930 +(let (($x60 (not (not $x54))))
  1.2931 +(let (($x46 (forall ((?v0 Int) )(exists ((?v1 Int) )(not (<= (+ ?v1 (* (- 1) ?v0)) 0)))
  1.2932 +)
  1.2933 +))
  1.2934 +(let (($x49 (not $x46)))
  1.2935 +(let (($x56 (exists ((?v1 Int) )(let (($x54 (<= (+ ?v1 (* (- 1) ?v0!0)) 0)))
  1.2936 +(not $x54)))
  1.2937 +))
  1.2938 +(let ((@x67 (trans (sk (~ $x49 (not $x56))) (nnf-neg (refl (~ $x60 $x60)) (~ (not $x56) $x63)) (~ $x49 $x63))))
  1.2939 +(let (($x31 (forall ((?v0 Int) )(exists ((?v1 Int) )(< ?v0 ?v1))
  1.2940 +)
  1.2941 +))
  1.2942 +(let (($x32 (not $x31)))
  1.2943 +(let (($x43 (exists ((?v1 Int) )(not (<= (+ ?v1 (* (- 1) ?0)) 0)))
  1.2944 +))
  1.2945 +(let (($x30 (exists ((?v1 Int) )(< ?0 ?v1))
  1.2946 +))
  1.2947 +(let ((@x42 (rewrite (= (< ?1 ?0) (not (<= (+ ?0 (* (- 1) ?1)) 0))))))
  1.2948 +(let ((@x51 (monotonicity (quant-intro (quant-intro @x42 (= $x30 $x43)) (= $x31 $x46)) (= $x32 $x49))))
  1.2949 +(let ((@x74 (mp (mp~ (mp (asserted $x32) @x51 $x49) @x67 $x63) (quant-intro (rewrite (= $x60 $x54)) (= $x63 $x71)) $x71)))
  1.2950 +(mp @x74 (rewrite (= $x71 false)) false))))))))))))))))))
  1.2951 +
  1.2952 +574f579e644304e47945be9d8bd47347079730d4 22 0
  1.2953 +unsat
  1.2954 +((set-logic AUFLIA)
  1.2955 +(declare-fun ?v1!0 () Int)
  1.2956 +(declare-fun ?v0!1 () Int)
  1.2957 +(proof
  1.2958 +(let (($x53 (= ?v1!0 1)))
  1.2959 +(let (($x59 (not (or (not (and (= ?v0!1 0) $x53)) (not (= ?v0!1 ?v1!0))))))
  1.2960 +(let (($x43 (forall ((?v0 Int) (?v1 Int) )(or (not (and (= ?v0 0) (= ?v1 1))) (not (= ?v0 ?v1))))
  1.2961 +))
  1.2962 +(let (($x46 (not $x43)))
  1.2963 +(let (($x36 (forall ((?v0 Int) (?v1 Int) )(=> (and (= ?v0 0) (= ?v1 1)) (not (= ?v0 ?v1))))
  1.2964 +))
  1.2965 +(let (($x37 (not $x36)))
  1.2966 +(let (($x41 (= (=> (and (= ?1 0) (= ?0 1)) (not (= ?1 ?0))) (or (not (and (= ?1 0) (= ?0 1))) (not (= ?1 ?0))))))
  1.2967 +(let ((@x48 (monotonicity (quant-intro (rewrite $x41) (= $x36 $x43)) (= $x37 $x46))))
  1.2968 +(let ((@x65 (not-or-elim (mp~ (mp (asserted $x37) @x48 $x46) (sk (~ $x46 $x59)) $x59) (and (= ?v0!1 0) $x53))))
  1.2969 +(let ((@x67 (and-elim @x65 $x53)))
  1.2970 +(let (($x56 (= ?v0!1 ?v1!0)))
  1.2971 +(let ((@x68 (not-or-elim (mp~ (mp (asserted $x37) @x48 $x46) (sk (~ $x46 $x59)) $x59) $x56)))
  1.2972 +(let ((@x70 (trans (symm (and-elim @x65 (= ?v0!1 0)) (= 0 ?v0!1)) @x68 (= 0 ?v1!0))))
  1.2973 +(mp (trans @x70 @x67 (= 0 1)) (rewrite (= (= 0 1) false)) false))))))))))))))))
  1.2974 +
  1.2975 +a24ff2e4a93d06b88e1d7717852cb82258ed11ed 55 0
  1.2976 +unsat
  1.2977 +((set-logic AUFLIA)
  1.2978 +(proof
  1.2979 +(let (($x35 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
  1.2980 +(let (($x30 (< ?v1 0)))
  1.2981 +(let (($x32 (or $x30 $x31)))
  1.2982 +(let (($x29 (< ?v0 ?v1)))
  1.2983 +(=> $x29 $x32))))))
  1.2984 +)
  1.2985 +))
  1.2986 +(let (($x36 (not $x35)))
  1.2987 +(let (($x45 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
  1.2988 +(let (($x30 (< ?v1 0)))
  1.2989 +(let (($x32 (or $x30 $x31)))
  1.2990 +(let (($x29 (< ?v0 ?v1)))
  1.2991 +(let (($x38 (not $x29)))
  1.2992 +(or $x38 $x32)))))))
  1.2993 +)
  1.2994 +))
  1.2995 +(let (($x48 (not $x45)))
  1.2996 +(let (($x88 (exists ((?v0 Int) )true)
  1.2997 +))
  1.2998 +(let (($x42 (forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
  1.2999 +(let (($x30 (< ?v1 0)))
  1.3000 +(let (($x32 (or $x30 $x31)))
  1.3001 +(let (($x29 (< ?0 ?v1)))
  1.3002 +(let (($x38 (not $x29)))
  1.3003 +(or $x38 $x32)))))))
  1.3004 +))
  1.3005 +(let (($x81 (forall ((?v1 Int) )true)
  1.3006 +))
  1.3007 +(let (($x31 (<= 0 ?0)))
  1.3008 +(let (($x30 (< ?0 0)))
  1.3009 +(let (($x32 (or $x30 $x31)))
  1.3010 +(let (($x29 (< ?1 ?0)))
  1.3011 +(let (($x38 (not $x29)))
  1.3012 +(let (($x39 (or $x38 $x32)))
  1.3013 +(let (($x60 (<= (+ ?0 (* (- 1) ?1)) 0)))
  1.3014 +(let ((@x78 (rewrite (= (or $x60 (or (not (>= ?0 0)) (>= ?0 0))) true))))
  1.3015 +(let ((@x73 (monotonicity (rewrite (= $x30 (not (>= ?0 0)))) (rewrite (= $x31 (>= ?0 0))) (= $x32 (or (not (>= ?0 0)) (>= ?0 0))))))
  1.3016 +(let ((@x66 (monotonicity (rewrite (= $x29 (not $x60))) (= $x38 (not (not $x60))))))
  1.3017 +(let ((@x76 (monotonicity (trans @x66 (rewrite (= (not (not $x60)) $x60)) (= $x38 $x60)) @x73 (= $x39 (or $x60 (or (not (>= ?0 0)) (>= ?0 0)))))))
  1.3018 +(let ((@x87 (trans (quant-intro (trans @x76 @x78 (= $x39 true)) (= $x42 $x81)) (elim-unused (= $x81 true)) (= $x42 true))))
  1.3019 +(let ((@x94 (trans (quant-intro @x87 (= $x45 $x88)) (elim-unused (= $x88 true)) (= $x45 true))))
  1.3020 +(let ((@x101 (trans (monotonicity @x94 (= $x48 (not true))) (rewrite (= (not true) false)) (= $x48 false))))
  1.3021 +(let (($x34 (forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
  1.3022 +(let (($x30 (< ?v1 0)))
  1.3023 +(let (($x32 (or $x30 $x31)))
  1.3024 +(let (($x29 (< ?0 ?v1)))
  1.3025 +(=> $x29 $x32))))))
  1.3026 +))
  1.3027 +(let ((@x47 (quant-intro (quant-intro (rewrite (= (=> $x29 $x32) $x39)) (= $x34 $x42)) (= $x35 $x45))))
  1.3028 +(let ((@x50 (monotonicity @x47 (= $x36 $x48))))
  1.3029 +(mp (asserted $x36) (trans @x50 @x101 (= $x36 false)) false)))))))))))))))))))))))))))
  1.3030 +
  1.3031 +c446c8659459cda8dda1ecfd9aba54ce2a50f002 42 0
  1.3032 +unsat
  1.3033 +((set-logic AUFLIA)
  1.3034 +(proof
  1.3035 +(let (($x37 (forall ((?v0 Int) (?v1 Int) )(let ((?x34 (* 2 ?v1)))
  1.3036 +(let ((?x31 (* 2 ?v0)))
  1.3037 +(let ((?x33 (+ ?x31 1)))
  1.3038 +(let (($x35 (< ?x33 ?x34)))
  1.3039 +(let (($x29 (< ?v0 ?v1)))
  1.3040 +(=> $x29 $x35)))))))
  1.3041 +))
  1.3042 +(let (($x38 (not $x37)))
  1.3043 +(let (($x55 (forall ((?v0 Int) (?v1 Int) )(let ((?x34 (* 2 ?v1)))
  1.3044 +(let ((?x31 (* 2 ?v0)))
  1.3045 +(let ((?x40 (+ 1 ?x31)))
  1.3046 +(let (($x43 (< ?x40 ?x34)))
  1.3047 +(let (($x29 (< ?v0 ?v1)))
  1.3048 +(let (($x49 (not $x29)))
  1.3049 +(or $x49 $x43))))))))
  1.3050 +))
  1.3051 +(let (($x58 (not $x55)))
  1.3052 +(let (($x84 (forall ((?v0 Int) (?v1 Int) )true)
  1.3053 +))
  1.3054 +(let ((?x34 (* 2 ?0)))
  1.3055 +(let ((?x31 (* 2 ?1)))
  1.3056 +(let ((?x40 (+ 1 ?x31)))
  1.3057 +(let (($x43 (< ?x40 ?x34)))
  1.3058 +(let (($x29 (< ?1 ?0)))
  1.3059 +(let (($x49 (not $x29)))
  1.3060 +(let (($x50 (or $x49 $x43)))
  1.3061 +(let (($x63 (>= (+ ?1 (* (- 1) ?0)) 0)))
  1.3062 +(let (($x62 (not $x63)))
  1.3063 +(let ((@x74 (trans (monotonicity (rewrite (= $x29 $x62)) (= $x49 (not $x62))) (rewrite (= (not $x62) $x63)) (= $x49 $x63))))
  1.3064 +(let ((@x79 (monotonicity @x74 (rewrite (= $x43 $x62)) (= $x50 (or $x63 $x62)))))
  1.3065 +(let ((@x86 (quant-intro (trans @x79 (rewrite (= (or $x63 $x62) true)) (= $x50 true)) (= $x55 $x84))))
  1.3066 +(let ((@x93 (monotonicity (trans @x86 (elim-unused (= $x84 true)) (= $x55 true)) (= $x58 (not true)))))
  1.3067 +(let ((@x97 (trans @x93 (rewrite (= (not true) false)) (= $x58 false))))
  1.3068 +(let ((@x45 (monotonicity (rewrite (= (+ ?x31 1) ?x40)) (= (< (+ ?x31 1) ?x34) $x43))))
  1.3069 +(let ((@x48 (monotonicity @x45 (= (=> $x29 (< (+ ?x31 1) ?x34)) (=> $x29 $x43)))))
  1.3070 +(let ((@x54 (trans @x48 (rewrite (= (=> $x29 $x43) $x50)) (= (=> $x29 (< (+ ?x31 1) ?x34)) $x50))))
  1.3071 +(let ((@x60 (monotonicity (quant-intro @x54 (= $x37 $x55)) (= $x38 $x58))))
  1.3072 +(mp (asserted $x38) (trans @x60 @x97 (= $x38 false)) false))))))))))))))))))))))))))
  1.3073 +
  1.3074 +a6ee8724a53192e0bb5b41bbeed60d66d29cdc32 32 0
  1.3075 +unsat
  1.3076 +((set-logic AUFLIA)
  1.3077 +(proof
  1.3078 +(let (($x36 (forall ((?v0 Int) (?v1 Int) )(let ((?x33 (* 2 ?v1)))
  1.3079 +(let ((?x30 (* 2 ?v0)))
  1.3080 +(let ((?x32 (+ ?x30 1)))
  1.3081 +(let (($x34 (= ?x32 ?x33)))
  1.3082 +(not $x34))))))
  1.3083 +))
  1.3084 +(let (($x37 (not $x36)))
  1.3085 +(let (($x48 (forall ((?v0 Int) (?v1 Int) )(let ((?x33 (* 2 ?v1)))
  1.3086 +(let ((?x30 (* 2 ?v0)))
  1.3087 +(let ((?x39 (+ 1 ?x30)))
  1.3088 +(let (($x42 (= ?x39 ?x33)))
  1.3089 +(not $x42))))))
  1.3090 +))
  1.3091 +(let (($x51 (not $x48)))
  1.3092 +(let (($x63 (forall ((?v0 Int) (?v1 Int) )true)
  1.3093 +))
  1.3094 +(let ((?x33 (* 2 ?0)))
  1.3095 +(let ((?x30 (* 2 ?1)))
  1.3096 +(let ((?x39 (+ 1 ?x30)))
  1.3097 +(let (($x42 (= ?x39 ?x33)))
  1.3098 +(let (($x45 (not $x42)))
  1.3099 +(let ((@x62 (trans (monotonicity (rewrite (= $x42 false)) (= $x45 (not false))) (rewrite (= (not false) true)) (= $x45 true))))
  1.3100 +(let ((@x69 (trans (quant-intro @x62 (= $x48 $x63)) (elim-unused (= $x63 true)) (= $x48 true))))
  1.3101 +(let ((@x76 (trans (monotonicity @x69 (= $x51 (not true))) (rewrite (= (not true) false)) (= $x51 false))))
  1.3102 +(let ((@x44 (monotonicity (rewrite (= (+ ?x30 1) ?x39)) (= (= (+ ?x30 1) ?x33) $x42))))
  1.3103 +(let ((@x50 (quant-intro (monotonicity @x44 (= (not (= (+ ?x30 1) ?x33)) $x45)) (= $x36 $x48))))
  1.3104 +(let ((@x53 (monotonicity @x50 (= $x37 $x51))))
  1.3105 +(mp (asserted $x37) (trans @x53 @x76 (= $x37 false)) false)))))))))))))))))))
  1.3106 +
  1.3107 +07f4cd3fa64b76806d385c4af8945a76e01f07d9 43 0
  1.3108 +unsat
  1.3109 +((set-logic AUFLIA)
  1.3110 +(declare-fun ?v0!1 () Int)
  1.3111 +(declare-fun ?v1!0 () Int)
  1.3112 +(proof
  1.3113 +(let ((?x78 (+ ?v1!0 ?v0!1)))
  1.3114 +(let (($x90 (>= ?x78 2)))
  1.3115 +(let (($x93 (not $x90)))
  1.3116 +(let (($x87 (= ?x78 2)))
  1.3117 +(let (($x81 (<= ?x78 2)))
  1.3118 +(let (($x84 (not $x81)))
  1.3119 +(let (($x73 (or (not (<= (+ ?v0!1 ?v1!0) 2)) (= (+ ?v0!1 ?v1!0) 2) (not (>= (+ ?v0!1 ?v1!0) 2)))))
  1.3120 +(let (($x74 (not $x73)))
  1.3121 +(let ((@x80 (rewrite (= (+ ?v0!1 ?v1!0) ?x78))))
  1.3122 +(let ((@x95 (monotonicity (monotonicity @x80 (= (>= (+ ?v0!1 ?v1!0) 2) $x90)) (= (not (>= (+ ?v0!1 ?v1!0) 2)) $x93))))
  1.3123 +(let ((@x86 (monotonicity (monotonicity @x80 (= (<= (+ ?v0!1 ?v1!0) 2) $x81)) (= (not (<= (+ ?v0!1 ?v1!0) 2)) $x84))))
  1.3124 +(let ((@x98 (monotonicity @x86 (monotonicity @x80 (= (= (+ ?v0!1 ?v1!0) 2) $x87)) @x95 (= $x73 (or $x84 $x87 $x93)))))
  1.3125 +(let (($x60 (forall ((?v0 Int) (?v1 Int) )(let (($x41 (not (>= (+ ?v0 ?v1) 2))))
  1.3126 +(let ((?x30 (+ ?v0 ?v1)))
  1.3127 +(let (($x32 (= ?x30 2)))
  1.3128 +(let (($x46 (not (<= ?x30 2))))
  1.3129 +(or $x46 $x32 $x41))))))
  1.3130 +))
  1.3131 +(let (($x63 (not $x60)))
  1.3132 +(let (($x36 (forall ((?v0 Int) (?v1 Int) )(or (< 2 (+ ?v0 ?v1)) (or (= (+ ?v0 ?v1) 2) (< (+ ?v0 ?v1) 2))))
  1.3133 +))
  1.3134 +(let (($x37 (not $x36)))
  1.3135 +(let (($x41 (not (>= (+ ?1 ?0) 2))))
  1.3136 +(let ((?x30 (+ ?1 ?0)))
  1.3137 +(let (($x32 (= ?x30 2)))
  1.3138 +(let (($x46 (not (<= ?x30 2))))
  1.3139 +(let (($x55 (or $x46 $x32 $x41)))
  1.3140 +(let (($x35 (or (< 2 ?x30) (or $x32 (< ?x30 2)))))
  1.3141 +(let ((@x51 (monotonicity (rewrite (= (< ?x30 2) $x41)) (= (or $x32 (< ?x30 2)) (or $x32 $x41)))))
  1.3142 +(let ((@x54 (monotonicity (rewrite (= (< 2 ?x30) $x46)) @x51 (= $x35 (or $x46 (or $x32 $x41))))))
  1.3143 +(let ((@x59 (trans @x54 (rewrite (= (or $x46 (or $x32 $x41)) $x55)) (= $x35 $x55))))
  1.3144 +(let ((@x66 (mp (asserted $x37) (monotonicity (quant-intro @x59 (= $x36 $x60)) (= $x37 $x63)) $x63)))
  1.3145 +(let ((@x102 (mp (mp~ @x66 (sk (~ $x63 $x74)) $x74) (monotonicity @x98 (= $x74 (not (or $x84 $x87 $x93)))) (not (or $x84 $x87 $x93)))))
  1.3146 +(let ((@x105 (not-or-elim @x102 (not $x87))))
  1.3147 +(let ((@x106 (not-or-elim @x102 $x90)))
  1.3148 +(let ((@x103 (not-or-elim @x102 $x81)))
  1.3149 +(unit-resolution (unit-resolution ((_ th-lemma arith triangle-eq) (or $x87 $x84 $x93)) @x103 (or $x87 $x93)) @x106 @x105 false)))))))))))))))))))))))))))))))))
  1.3150 +
  1.3151 +e566ad249d308c74a627c15c9f02c271a6843a42 31 0
  1.3152 +unsat
  1.3153 +((set-logic AUFLIA)
  1.3154 +(proof
  1.3155 +(let (($x56 (forall ((?v0 Int) )(let (($x50 (not (<= ?v0 0))))
  1.3156 +(let (($x45 (not (>= ?v0 0))))
  1.3157 +(or $x45 $x50))))
  1.3158 +))
  1.3159 +(let (($x458 (not $x56)))
  1.3160 +(let (($x153 (<= 0 0)))
  1.3161 +(let (($x68 (not $x153)))
  1.3162 +(let (($x158 (>= 0 0)))
  1.3163 +(let (($x143 (not $x158)))
  1.3164 +(let (($x154 (or $x143 $x68)))
  1.3165 +(let (($x119 (or $x458 $x154)))
  1.3166 +(let ((@x482 (trans (monotonicity (rewrite (= $x153 true)) (= $x68 (not true))) (rewrite (= (not true) false)) (= $x68 false))))
  1.3167 +(let ((@x261 (trans (monotonicity (rewrite (= $x158 true)) (= $x143 (not true))) (rewrite (= (not true) false)) (= $x143 false))))
  1.3168 +(let ((@x116 (trans (monotonicity @x261 @x482 (= $x154 (or false false))) (rewrite (= (or false false) false)) (= $x154 false))))
  1.3169 +(let ((@x463 (trans (monotonicity @x116 (= $x119 (or $x458 false))) (rewrite (= (or $x458 false) $x458)) (= $x119 $x458))))
  1.3170 +(let ((@x464 (mp ((_ quant-inst 0) $x119) @x463 $x458)))
  1.3171 +(let (($x50 (not (<= ?0 0))))
  1.3172 +(let (($x45 (not (>= ?0 0))))
  1.3173 +(let (($x53 (or $x45 $x50)))
  1.3174 +(let (($x31 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0)))
  1.3175 +))
  1.3176 +(let (($x33 (not (ite $x31 false true))))
  1.3177 +(let ((@x55 (monotonicity (rewrite (= (< ?0 0) $x45)) (rewrite (= (< 0 ?0) $x50)) (= (or (< ?0 0) (< 0 ?0)) $x53))))
  1.3178 +(let ((@x40 (monotonicity (rewrite (= (ite $x31 false true) (not $x31))) (= $x33 (not (not $x31))))))
  1.3179 +(let ((@x60 (trans (trans @x40 (rewrite (= (not (not $x31)) $x31)) (= $x33 $x31)) (quant-intro @x55 (= $x31 $x56)) (= $x33 $x56))))
  1.3180 +(let ((@x66 (mp~ (mp (asserted $x33) @x60 $x56) (nnf-pos (refl (~ $x53 $x53)) (~ $x56 $x56)) $x56)))
  1.3181 +(unit-resolution @x66 @x464 false)))))))))))))))))))))))))
  1.3182 +
  1.3183 +7f22e563ec1d8ce90ee01f0d4b366d5b595fcdef 46 0
  1.3184 +unsat
  1.3185 +((set-logic AUFLIA)
  1.3186 +(declare-fun ?v0!0 () Int)
  1.3187 +(proof
  1.3188 +(let (($x83 (<= ?v0!0 0)))
  1.3189 +(let (($x86 (<= ?v0!0 (- 1))))
  1.3190 +(let (($x87 (not $x86)))
  1.3191 +(let ((@x105 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x87 $x83)) (hypothesis (not $x83)) $x87)))
  1.3192 +(let (($x84 (>= ?v0!0 1)))
  1.3193 +(let (($x85 (not $x84)))
  1.3194 +(let (($x88 (ite $x83 $x85 $x87)))
  1.3195 +(let (($x89 (not $x88)))
  1.3196 +(let (($x73 (forall ((?v0 Int) )(let (($x58 (not (<= ?v0 (- 1)))))
  1.3197 +(let (($x61 (not (>= ?v0 1))))
  1.3198 +(ite (<= ?v0 0) $x61 $x58))))
  1.3199 +))
  1.3200 +(let (($x76 (not $x73)))
  1.3201 +(let (($x34 (forall ((?v0 Int) )(let (($x32 (< ?v0 1)))
  1.3202 +(let (($x28 (< 0 ?v0)))
  1.3203 +(ite $x28 (< 0 (+ ?v0 1)) $x32))))
  1.3204 +))
  1.3205 +(let (($x35 (not $x34)))
  1.3206 +(let (($x46 (forall ((?v0 Int) )(let (($x32 (< ?v0 1)))
  1.3207 +(let (($x40 (< 0 (+ 1 ?v0))))
  1.3208 +(let (($x28 (< 0 ?v0)))
  1.3209 +(ite $x28 $x40 $x32)))))
  1.3210 +))
  1.3211 +(let (($x58 (not (<= ?0 (- 1)))))
  1.3212 +(let (($x61 (not (>= ?0 1))))
  1.3213 +(let (($x68 (ite (<= ?0 0) $x61 $x58)))
  1.3214 +(let (($x32 (< ?0 1)))
  1.3215 +(let (($x40 (< 0 (+ 1 ?0))))
  1.3216 +(let (($x28 (< 0 ?0)))
  1.3217 +(let (($x43 (ite $x28 $x40 $x32)))
  1.3218 +(let ((@x67 (monotonicity (rewrite (= $x28 (not (<= ?0 0)))) (rewrite (= $x40 $x58)) (rewrite (= $x32 $x61)) (= $x43 (ite (not (<= ?0 0)) $x58 $x61)))))
  1.3219 +(let ((@x72 (trans @x67 (rewrite (= (ite (not (<= ?0 0)) $x58 $x61) $x68)) (= $x43 $x68))))
  1.3220 +(let ((@x78 (monotonicity (quant-intro @x72 (= $x46 $x73)) (= (not $x46) $x76))))
  1.3221 +(let ((@x42 (monotonicity (rewrite (= (+ ?0 1) (+ 1 ?0))) (= (< 0 (+ ?0 1)) $x40))))
  1.3222 +(let ((@x45 (monotonicity @x42 (= (ite $x28 (< 0 (+ ?0 1)) $x32) $x43))))
  1.3223 +(let ((@x51 (monotonicity (quant-intro @x45 (= $x34 $x46)) (= $x35 (not $x46)))))
  1.3224 +(let ((@x92 (mp~ (mp (asserted $x35) (trans @x51 @x78 (= $x35 $x76)) $x76) (sk (~ $x76 $x89)) $x89)))
  1.3225 +(let ((@x108 (unit-resolution (unit-resolution (def-axiom (or $x88 $x83 $x86)) @x92 (or $x83 $x86)) @x105 (hypothesis (not $x83)) false)))
  1.3226 +(let ((@x109 (lemma @x108 $x83)))
  1.3227 +(let ((@x114 (unit-resolution (def-axiom (or $x88 (not $x83) $x84)) @x92 (or (not $x83) $x84))))
  1.3228 +(unit-resolution @x114 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x85 (not $x83))) @x109 $x85) @x109 false)))))))))))))))))))))))))))))))))
  1.3229 +
  1.3230 +a02ae6c9688537bbe4c3be0d3dcebbc703417864 62 0
  1.3231 +unsat
  1.3232 +((set-logic AUFLIA)
  1.3233 +(declare-fun ?v0!1 () Int)
  1.3234 +(declare-fun z3name!0 () Bool)
  1.3235 +(proof
  1.3236 +(let ((?x96 (ite z3name!0 (- 1) 3)))
  1.3237 +(let (($x99 (<= ?x96 0)))
  1.3238 +(let (($x62 (forall ((?v0 Int) )(let (($x56 (not (<= ?v0 0))))
  1.3239 +(let (($x51 (not (>= ?v0 0))))
  1.3240 +(or $x51 $x56))))
  1.3241 +))
  1.3242 +(let ((?x65 (ite $x62 (- 1) 3)))
  1.3243 +(let (($x71 (<= ?x65 0)))
  1.3244 +(let ((@x93 (intro-def (and (or (not z3name!0) $x62) (or z3name!0 (not $x62))))))
  1.3245 +(let ((@x101 (monotonicity (monotonicity (apply-def @x93 (~ $x62 z3name!0)) (= ?x65 ?x96)) (= $x71 $x99))))
  1.3246 +(let (($x31 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0)))
  1.3247 +))
  1.3248 +(let (($x37 (not (< 0 (ite $x31 (- 1) 3)))))
  1.3249 +(let (($x56 (not (<= ?0 0))))
  1.3250 +(let (($x51 (not (>= ?0 0))))
  1.3251 +(let (($x59 (or $x51 $x56)))
  1.3252 +(let ((@x61 (monotonicity (rewrite (= (< ?0 0) $x51)) (rewrite (= (< 0 ?0) $x56)) (= (or (< ?0 0) (< 0 ?0)) $x59))))
  1.3253 +(let ((@x67 (monotonicity (quant-intro @x61 (= $x31 $x62)) (= (ite $x31 (- 1) 3) ?x65))))
  1.3254 +(let ((@x70 (monotonicity @x67 (= (< 0 (ite $x31 (- 1) 3)) (< 0 ?x65)))))
  1.3255 +(let ((@x76 (trans @x70 (rewrite (= (< 0 ?x65) (not $x71))) (= (< 0 (ite $x31 (- 1) 3)) (not $x71)))))
  1.3256 +(let ((@x79 (monotonicity @x76 (= (not (< 0 (ite $x31 (- 1) 3))) (not (not $x71))))))
  1.3257 +(let ((@x83 (trans @x79 (rewrite (= (not (not $x71)) $x71)) (= (not (< 0 (ite $x31 (- 1) 3))) $x71))))
  1.3258 +(let ((?x42 (ite $x31 (- 1) 3)))
  1.3259 +(let (($x45 (< 0 ?x42)))
  1.3260 +(let ((@x44 (monotonicity (rewrite (= (- 1) (- 1))) (= (ite $x31 (- 1) 3) ?x42))))
  1.3261 +(let ((@x50 (monotonicity (monotonicity @x44 (= (< 0 (ite $x31 (- 1) 3)) $x45)) (= $x37 (not $x45)))))
  1.3262 +(let ((@x128 (mp (mp (asserted $x37) (trans @x50 @x83 (= $x37 $x71)) $x71) @x101 $x99)))
  1.3263 +(let ((@x245 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not (>= ?x96 3)) (not $x99))) @x128 (not (>= ?x96 3)))))
  1.3264 +(let (($x220 (= ?x96 3)))
  1.3265 +(let (($x88 (not z3name!0)))
  1.3266 +(let (($x90 (not $x62)))
  1.3267 +(let (($x323 (<= 0 0)))
  1.3268 +(let (($x533 (not $x323)))
  1.3269 +(let (($x542 (>= 0 0)))
  1.3270 +(let (($x179 (not $x542)))
  1.3271 +(let (($x206 (or $x179 $x533)))
  1.3272 +(let (($x529 (or $x90 $x206)))
  1.3273 +(let ((@x522 (trans (monotonicity (rewrite (= $x323 true)) (= $x533 (not true))) (rewrite (= (not true) false)) (= $x533 false))))
  1.3274 +(let ((@x200 (trans (monotonicity (rewrite (= $x542 true)) (= $x179 (not true))) (rewrite (= (not true) false)) (= $x179 false))))
  1.3275 +(let ((@x528 (trans (monotonicity @x200 @x522 (= $x206 (or false false))) (rewrite (= (or false false) false)) (= $x206 false))))
  1.3276 +(let ((@x237 (trans (monotonicity @x528 (= $x529 (or $x90 false))) (rewrite (= (or $x90 false) $x90)) (= $x529 $x90))))
  1.3277 +(let ((@x238 (mp ((_ quant-inst 0) $x529) @x237 $x90)))
  1.3278 +(let (($x89 (or $x88 $x62)))
  1.3279 +(let (($x115 (<= ?v0!1 0)))
  1.3280 +(let (($x116 (not $x115)))
  1.3281 +(let (($x113 (>= ?v0!1 0)))
  1.3282 +(let (($x114 (not $x113)))
  1.3283 +(let (($x117 (or $x114 $x116)))
  1.3284 +(let (($x118 (not $x117)))
  1.3285 +(let (($x121 (or z3name!0 $x118)))
  1.3286 +(let ((@x123 (monotonicity (refl (~ z3name!0 z3name!0)) (sk (~ $x90 $x118)) (~ (or z3name!0 $x90) $x121))))
  1.3287 +(let ((@x109 (monotonicity (refl (~ $x88 $x88)) (nnf-pos (refl (~ $x59 $x59)) (~ $x62 $x62)) (~ $x89 $x89))))
  1.3288 +(let ((@x126 (monotonicity @x109 @x123 (~ (and $x89 (or z3name!0 $x90)) (and $x89 $x121)))))
  1.3289 +(let ((@x131 (and-elim (mp~ @x93 @x126 (and $x89 $x121)) $x89)))
  1.3290 +(let ((@x515 (unit-resolution (def-axiom (or z3name!0 $x220)) (unit-resolution @x131 @x238 $x88) $x220)))
  1.3291 +(unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x220) (>= ?x96 3))) @x515 @x245 false))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.3292 +
  1.3293 +9853592ad3514c1450e40271884a9f21f57ff85b 39 0
  1.3294 +unsat
  1.3295 +((set-logic AUFLIA)
  1.3296 +(proof
  1.3297 +(let (($x38 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x33 (- 6)))
  1.3298 +(let ((?x34 (* ?x33 ?v1)))
  1.3299 +(let ((?x31 (* 4 ?v0)))
  1.3300 +(let ((?x35 (+ ?x31 ?x34)))
  1.3301 +(= ?x35 1))))))
  1.3302 +))
  1.3303 +(let (($x29 (not $x38)))
  1.3304 +(let (($x39 (not $x29)))
  1.3305 +(let (($x61 (exists ((?v0 Int) (?v1 Int) )(let ((?x58 (* (- 6) ?v1)))
  1.3306 +(let ((?x57 (* 4 ?v0)))
  1.3307 +(let ((?x59 (+ ?x57 ?x58)))
  1.3308 +(= ?x59 1)))))
  1.3309 +))
  1.3310 +(let (($x77 (exists ((?v0 Int) (?v1 Int) )false)
  1.3311 +))
  1.3312 +(let ((@x81 (quant-intro (rewrite (= (= (+ (* 4 ?1) (* (- 6) ?0)) 1) false)) (= $x61 $x77))))
  1.3313 +(let ((@x85 (trans @x81 (elim-unused (= $x77 false)) (= $x61 false))))
  1.3314 +(let (($x53 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x44 (* (- 6) ?v1)))
  1.3315 +(let ((?x31 (* 4 ?v0)))
  1.3316 +(let ((?x47 (+ ?x31 ?x44)))
  1.3317 +(= ?x47 1)))))
  1.3318 +))
  1.3319 +(let ((?x44 (* (- 6) ?1)))
  1.3320 +(let ((?x31 (* 4 ?2)))
  1.3321 +(let ((?x47 (+ ?x31 ?x44)))
  1.3322 +(let (($x50 (= ?x47 1)))
  1.3323 +(let ((?x33 (- 6)))
  1.3324 +(let ((?x34 (* ?x33 ?1)))
  1.3325 +(let ((?x35 (+ ?x31 ?x34)))
  1.3326 +(let (($x37 (= ?x35 1)))
  1.3327 +(let ((@x49 (monotonicity (monotonicity (rewrite (= ?x33 (- 6))) (= ?x34 ?x44)) (= ?x35 ?x47))))
  1.3328 +(let ((@x65 (trans (quant-intro (monotonicity @x49 (= $x37 $x50)) (= $x38 $x53)) (elim-unused (= $x53 $x61)) (= $x38 $x61))))
  1.3329 +(let ((@x71 (monotonicity (monotonicity @x65 (= $x29 (not $x61))) (= $x39 (not (not $x61))))))
  1.3330 +(let ((@x75 (trans @x71 (rewrite (= (not (not $x61)) $x61)) (= $x39 $x61))))
  1.3331 +(mp (asserted $x39) (trans @x75 @x85 (= $x39 false)) false)))))))))))))))))))))))
  1.3332 +
  1.3333 +7f619f54c20728881b08a920d22e08bbe3d76a4d 52 0
  1.3334 +unsat
  1.3335 +((set-logic AUFLIA)
  1.3336 +(declare-fun ?v1!1 () Int)
  1.3337 +(declare-fun ?v2!0 () Int)
  1.3338 +(proof
  1.3339 +(let ((?x105 (+ ?v2!0 ?v1!1)))
  1.3340 +(let (($x106 (<= ?x105 0)))
  1.3341 +(let (($x108 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0)))) (not $x106))))
  1.3342 +(let (($x88 (forall ((?v1 Int) (?v2 Int) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) (not (<= (+ ?v2 ?v1) 0))))
  1.3343 +))
  1.3344 +(let (($x91 (not $x88)))
  1.3345 +(let (($x36 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let (($x31 (and (< 0 ?v1) (< 0 ?v2))))
  1.3346 +(=> $x31 (< 0 (+ ?v1 ?v2)))))
  1.3347 +)
  1.3348 +))
  1.3349 +(let (($x37 (not $x36)))
  1.3350 +(let (($x54 (forall ((?v1 Int) (?v2 Int) )(let ((?x39 (+ ?v2 ?v1)))
  1.3351 +(let (($x42 (< 0 ?x39)))
  1.3352 +(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))))
  1.3353 +))
  1.3354 +(let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0)))) (not (<= (+ ?0 ?1) 0)))))
  1.3355 +(let ((?x39 (+ ?0 ?1)))
  1.3356 +(let (($x42 (< 0 ?x39)))
  1.3357 +(let (($x49 (or (not (and (< 0 ?1) (< 0 ?0))) $x42)))
  1.3358 +(let (($x79 (= (not (and (< 0 ?1) (< 0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0)))))))
  1.3359 +(let (($x31 (and (< 0 ?1) (< 0 ?0))))
  1.3360 +(let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0)))))))
  1.3361 +(let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?x39 0)))) (= $x49 $x85))))
  1.3362 +(let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91))))
  1.3363 +(let (($x57 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let ((?x39 (+ ?v2 ?v1)))
  1.3364 +(let (($x42 (< 0 ?x39)))
  1.3365 +(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))))
  1.3366 +)
  1.3367 +))
  1.3368 +(let (($x35 (forall ((?v1 Int) (?v2 Int) )(let (($x31 (and (< 0 ?v1) (< 0 ?v2))))
  1.3369 +(=> $x31 (< 0 (+ ?v1 ?v2)))))
  1.3370 +))
  1.3371 +(let ((@x44 (monotonicity (rewrite (= (+ ?1 ?0) ?x39)) (= (< 0 (+ ?1 ?0)) $x42))))
  1.3372 +(let ((@x47 (monotonicity @x44 (= (=> $x31 (< 0 (+ ?1 ?0))) (=> $x31 $x42)))))
  1.3373 +(let ((@x53 (trans @x47 (rewrite (= (=> $x31 $x42) $x49)) (= (=> $x31 (< 0 (+ ?1 ?0))) $x49))))
  1.3374 +(let ((@x63 (trans (quant-intro (quant-intro @x53 (= $x35 $x54)) (= $x36 $x57)) (elim-unused (= $x57 $x54)) (= $x36 $x54))))
  1.3375 +(let ((@x95 (trans (monotonicity @x63 (= $x37 (not $x54))) @x93 (= $x37 $x91))))
  1.3376 +(let ((@x112 (mp~ (mp (asserted $x37) @x95 $x91) (sk (~ $x91 (not $x108))) (not $x108))))
  1.3377 +(let ((@x118 (not-or-elim @x112 $x106)))
  1.3378 +(let (($x99 (<= ?v1!1 0)))
  1.3379 +(let (($x100 (not $x99)))
  1.3380 +(let ((@x116 (and-elim (not-or-elim @x112 (and $x100 (not (<= ?v2!0 0)))) $x100)))
  1.3381 +(let (($x101 (<= ?v2!0 0)))
  1.3382 +(let (($x102 (not $x101)))
  1.3383 +(let ((@x117 (and-elim (not-or-elim @x112 (and $x100 $x102)) $x102)))
  1.3384 +((_ th-lemma arith farkas 1 1 1) @x117 @x116 @x118 false)))))))))))))))))))))))))))))))))))
  1.3385 +
  1.3386 +9201a8009730b821ad6a3a2b64598e50ab5748ca 46 0
  1.3387 +unsat
  1.3388 +((set-logic AUFLIRA)
  1.3389 +(declare-fun ?v1!1 () Int)
  1.3390 +(declare-fun ?v2!0 () Real)
  1.3391 +(proof
  1.3392 +(let (($x105 (<= ?v1!1 (- 1))))
  1.3393 +(let (($x106 (not $x105)))
  1.3394 +(let (($x107 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0)))) $x106)))
  1.3395 +(let (($x88 (forall ((?v1 Int) (?v2 Real) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) (not (<= ?v1 (- 1)))))
  1.3396 +))
  1.3397 +(let (($x91 (not $x88)))
  1.3398 +(let (($x37 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x31 (and (< 0 ?v1) (< 0.0 ?v2))))
  1.3399 +(=> $x31 (< (- 1) ?v1))))
  1.3400 +)
  1.3401 +))
  1.3402 +(let (($x27 (not $x37)))
  1.3403 +(let (($x54 (forall ((?v1 Int) (?v2 Real) )(let (($x42 (< (- 1) ?v1)))
  1.3404 +(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)))
  1.3405 +))
  1.3406 +(let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))) (not (<= ?1 (- 1))))))
  1.3407 +(let (($x42 (< (- 1) ?1)))
  1.3408 +(let (($x49 (or (not (and (< 0 ?1) (< 0.0 ?0))) $x42)))
  1.3409 +(let (($x79 (= (not (and (< 0 ?1) (< 0.0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
  1.3410 +(let (($x31 (and (< 0 ?1) (< 0.0 ?0))))
  1.3411 +(let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
  1.3412 +(let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?1 (- 1))))) (= $x49 $x85))))
  1.3413 +(let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91))))
  1.3414 +(let (($x57 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x42 (< (- 1) ?v1)))
  1.3415 +(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)))
  1.3416 +)
  1.3417 +))
  1.3418 +(let (($x36 (forall ((?v1 Int) (?v2 Real) )(let (($x31 (and (< 0 ?v1) (< 0.0 ?v2))))
  1.3419 +(=> $x31 (< (- 1) ?v1))))
  1.3420 +))
  1.3421 +(let ((@x44 (monotonicity (rewrite (= (- 1) (- 1))) (= (< (- 1) ?1) $x42))))
  1.3422 +(let ((@x47 (monotonicity @x44 (= (=> $x31 (< (- 1) ?1)) (=> $x31 $x42)))))
  1.3423 +(let ((@x53 (trans @x47 (rewrite (= (=> $x31 $x42) $x49)) (= (=> $x31 (< (- 1) ?1)) $x49))))
  1.3424 +(let ((@x63 (trans (quant-intro (quant-intro @x53 (= $x36 $x54)) (= $x37 $x57)) (elim-unused (= $x57 $x54)) (= $x37 $x54))))
  1.3425 +(let ((@x95 (trans (monotonicity @x63 (= $x27 (not $x54))) @x93 (= $x27 $x91))))
  1.3426 +(let ((@x111 (mp~ (mp (asserted $x27) @x95 $x91) (sk (~ $x91 (not $x107))) (not $x107))))
  1.3427 +(let ((@x117 (not-or-elim @x111 $x105)))
  1.3428 +(let (($x99 (<= ?v1!1 0)))
  1.3429 +(let (($x100 (not $x99)))
  1.3430 +(let ((@x115 (and-elim (not-or-elim @x111 (and $x100 (not (<= ?v2!0 0.0)))) $x100)))
  1.3431 +(unit-resolution (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x106 $x99)) @x115 $x106) @x117 false)))))))))))))))))))))))))))))))
  1.3432 +
  1.3433 +d9fbfe5a894f4a224aaf7d1fa1f67325ad2e1497 110 0
  1.3434 +unsat
  1.3435 +((set-logic AUFLIA)
  1.3436 +(proof
  1.3437 +(let (($x152 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
  1.3438 +(let (($x69 (not $x68)))
  1.3439 +(let (($x143 (not false)))
  1.3440 +(let (($x146 (or $x143 $x69)))
  1.3441 +(not $x146))))))
  1.3442 +))
  1.3443 +(let (($x174 (forall ((?v0 Int) )false)
  1.3444 +))
  1.3445 +(let (($x68 (<= ?0 0)))
  1.3446 +(let (($x69 (not $x68)))
  1.3447 +(let (($x143 (not false)))
  1.3448 +(let (($x146 (or $x143 $x69)))
  1.3449 +(let ((@x166 (trans (monotonicity (rewrite (= $x143 true)) (= $x146 (or true $x69))) (rewrite (= (or true $x69) true)) (= $x146 true))))
  1.3450 +(let ((@x173 (trans (monotonicity @x166 (= (not $x146) (not true))) (rewrite (= (not true) false)) (= (not $x146) false))))
  1.3451 +(let ((@x180 (trans (quant-intro @x173 (= $x152 $x174)) (elim-unused (= $x174 false)) (= $x152 false))))
  1.3452 +(let (($x122 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
  1.3453 +(let (($x69 (not $x68)))
  1.3454 +(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
  1.3455 +(let (($x69 (not $x68)))
  1.3456 +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
  1.3457 +))
  1.3458 +(let (($x78 (not $x75)))
  1.3459 +(let (($x81 (or $x78 $x69)))
  1.3460 +(not $x81)))))))
  1.3461 +))
  1.3462 +(let (($x138 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
  1.3463 +(let (($x69 (not $x68)))
  1.3464 +(let (($x126 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
  1.3465 +(not $x68)))
  1.3466 +))
  1.3467 +(not (or (not $x126) $x69))))))
  1.3468 +))
  1.3469 +(let ((@x156 (trans (rewrite (= $x122 $x138)) (rewrite (= $x138 $x152)) (= $x122 $x152))))
  1.3470 +(let (($x116 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
  1.3471 +(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
  1.3472 +(let (($x69 (not $x68)))
  1.3473 +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
  1.3474 +))
  1.3475 +(and $x75 $x68))))
  1.3476 +))
  1.3477 +(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
  1.3478 +(let (($x69 (not $x68)))
  1.3479 +(or (not (>= (+ ?v1 (* (- 1) ?0)) 0)) $x69))))
  1.3480 +))
  1.3481 +(let (($x78 (not $x75)))
  1.3482 +(let (($x81 (or $x78 $x69)))
  1.3483 +(let (($x104 (not $x81)))
  1.3484 +(let (($x113 (and $x75 $x68)))
  1.3485 +(let (($x107 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
  1.3486 +(let (($x69 (not $x68)))
  1.3487 +(let (($x100 (not $x69)))
  1.3488 +(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
  1.3489 +(let (($x69 (not $x68)))
  1.3490 +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
  1.3491 +))
  1.3492 +(and $x75 $x100))))))
  1.3493 +))
  1.3494 +(let ((@x115 (monotonicity (rewrite (= (not $x69) $x68)) (= (and $x75 (not $x69)) $x113))))
  1.3495 +(let (($x84 (exists ((?v0 Int) )(let (($x68 (<= ?v0 0)))
  1.3496 +(let (($x69 (not $x68)))
  1.3497 +(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
  1.3498 +(let (($x69 (not $x68)))
  1.3499 +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
  1.3500 +))
  1.3501 +(let (($x78 (not $x75)))
  1.3502 +(or $x78 $x69))))))
  1.3503 +))
  1.3504 +(let (($x87 (not $x84)))
  1.3505 +(let (($x72 (or (not (>= (+ ?0 (* (- 1) ?1)) 0)) $x69)))
  1.3506 +(let ((@x99 (nnf-neg (nnf-pos (refl (~ $x72 $x72)) (~ $x75 $x75)) (~ (not $x78) $x75))))
  1.3507 +(let ((@x106 (nnf-neg @x99 (refl (~ (not $x69) (not $x69))) (~ $x104 (and $x75 (not $x69))))))
  1.3508 +(let (($x34 (exists ((?v0 Int) )(let (($x30 (< 0 ?v0)))
  1.3509 +(let (($x32 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
  1.3510 +(let (($x29 (<= ?v0 ?v1)))
  1.3511 +(=> $x29 $x30))))
  1.3512 +))
  1.3513 +(=> $x32 $x30))))
  1.3514 +))
  1.3515 +(let (($x35 (not $x34)))
  1.3516 +(let (($x53 (exists ((?v0 Int) )(let (($x30 (< 0 ?v0)))
  1.3517 +(let (($x41 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
  1.3518 +(or (not (<= ?v0 ?v1)) $x30)))
  1.3519 +))
  1.3520 +(or (not $x41) $x30))))
  1.3521 +))
  1.3522 +(let (($x30 (< 0 ?0)))
  1.3523 +(let (($x41 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
  1.3524 +(or (not (<= ?0 ?v1)) $x30)))
  1.3525 +))
  1.3526 +(let (($x48 (or (not $x41) $x30)))
  1.3527 +(let ((@x67 (monotonicity (rewrite (= (<= ?1 ?0) (>= (+ ?0 (* (- 1) ?1)) 0))) (= (not (<= ?1 ?0)) (not (>= (+ ?0 (* (- 1) ?1)) 0))))))
  1.3528 +(let ((@x74 (monotonicity @x67 (rewrite (= $x30 $x69)) (= (or (not (<= ?1 ?0)) $x30) $x72))))
  1.3529 +(let ((@x80 (monotonicity (quant-intro @x74 (= $x41 $x75)) (= (not $x41) $x78))))
  1.3530 +(let ((@x86 (quant-intro (monotonicity @x80 (rewrite (= $x30 $x69)) (= $x48 $x81)) (= $x53 $x84))))
  1.3531 +(let (($x32 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
  1.3532 +(let (($x29 (<= ?0 ?v1)))
  1.3533 +(=> $x29 $x30))))
  1.3534 +))
  1.3535 +(let (($x33 (=> $x32 $x30)))
  1.3536 +(let ((@x40 (rewrite (= (=> (<= ?1 ?0) $x30) (or (not (<= ?1 ?0)) $x30)))))
  1.3537 +(let ((@x46 (monotonicity (quant-intro @x40 (= $x32 $x41)) (= $x33 (=> $x41 $x30)))))
  1.3538 +(let ((@x55 (quant-intro (trans @x46 (rewrite (= (=> $x41 $x30) $x48)) (= $x33 $x48)) (= $x34 $x53))))
  1.3539 +(let ((@x91 (trans (monotonicity @x55 (= $x35 (not $x53))) (monotonicity @x86 (= (not $x53) $x87)) (= $x35 $x87))))
  1.3540 +(let ((@x110 (mp~ (mp (asserted $x35) @x91 $x87) (nnf-neg @x106 (~ $x87 $x107)) $x107)))
  1.3541 +(let ((@x125 (mp (mp @x110 (quant-intro @x115 (= $x107 $x116)) $x116) (quant-intro (rewrite (= $x113 $x104)) (= $x116 $x122)) $x122)))
  1.3542 +(mp (mp @x125 @x156 $x152) @x180 false))))))))))))))))))))))))))))))))))))))))))))))
  1.3543 +
  1.3544 +79a22a7943e8703e97ab2cddee03d311bc7ae2a6 36 0
  1.3545 +unsat
  1.3546 +((set-logic AUFLIA)
  1.3547 +(proof
  1.3548 +(let (($x35 (forall ((?v0 Int) )(let ((?x32 (* 2 a$)))
  1.3549 +(let ((?x31 (* 2 ?v0)))
  1.3550 +(let (($x33 (< ?x31 ?x32)))
  1.3551 +(let (($x29 (< ?v0 a$)))
  1.3552 +(=> $x29 $x33))))))
  1.3553 +))
  1.3554 +(let (($x36 (not $x35)))
  1.3555 +(let (($x42 (forall ((?v0 Int) )(let ((?x32 (* 2 a$)))
  1.3556 +(let ((?x31 (* 2 ?v0)))
  1.3557 +(let (($x33 (< ?x31 ?x32)))
  1.3558 +(let (($x29 (< ?v0 a$)))
  1.3559 +(let (($x38 (not $x29)))
  1.3560 +(or $x38 $x33)))))))
  1.3561 +))
  1.3562 +(let (($x45 (not $x42)))
  1.3563 +(let (($x71 (forall ((?v0 Int) )true)
  1.3564 +))
  1.3565 +(let ((?x32 (* 2 a$)))
  1.3566 +(let ((?x31 (* 2 ?0)))
  1.3567 +(let (($x33 (< ?x31 ?x32)))
  1.3568 +(let (($x29 (< ?0 a$)))
  1.3569 +(let (($x38 (not $x29)))
  1.3570 +(let (($x39 (or $x38 $x33)))
  1.3571 +(let (($x50 (>= (+ ?0 (* (- 1) a$)) 0)))
  1.3572 +(let (($x49 (not $x50)))
  1.3573 +(let ((@x61 (trans (monotonicity (rewrite (= $x29 $x49)) (= $x38 (not $x49))) (rewrite (= (not $x49) $x50)) (= $x38 $x50))))
  1.3574 +(let ((@x66 (monotonicity @x61 (rewrite (= $x33 $x49)) (= $x39 (or $x50 $x49)))))
  1.3575 +(let ((@x73 (quant-intro (trans @x66 (rewrite (= (or $x50 $x49) true)) (= $x39 true)) (= $x42 $x71))))
  1.3576 +(let ((@x80 (monotonicity (trans @x73 (elim-unused (= $x71 true)) (= $x42 true)) (= $x45 (not true)))))
  1.3577 +(let ((@x84 (trans @x80 (rewrite (= (not true) false)) (= $x45 false))))
  1.3578 +(let ((@x47 (monotonicity (quant-intro (rewrite (= (=> $x29 $x33) $x39)) (= $x35 $x42)) (= $x36 $x45))))
  1.3579 +(mp (asserted $x36) (trans @x47 @x84 (= $x36 false)) false))))))))))))))))))))))
  1.3580 +
  1.3581 +ae4f4fb9c10608b8e3b893cc6c99e3ec5d13a86c 24 0
  1.3582 +unsat
  1.3583 +((set-logic AUFLIA)
  1.3584 +(declare-fun ?v1!0 () Int)
  1.3585 +(proof
  1.3586 +(let (($x64 (>= ?v1!0 1)))
  1.3587 +(let (($x52 (forall ((?v1 Int) )(or (not (<= ?v1 0)) (not (>= ?v1 1))))
  1.3588 +))
  1.3589 +(let (($x55 (not $x52)))
  1.3590 +(let (($x33 (forall ((?v0 Int) (?v1 Int) )(or (< 0 ?v1) (< ?v1 1)))
  1.3591 +))
  1.3592 +(let (($x27 (not $x33)))
  1.3593 +(let (($x35 (forall ((?v1 Int) )(or (< 0 ?v1) (< ?v1 1)))
  1.3594 +))
  1.3595 +(let (($x32 (or (< 0 ?0) (< ?0 1))))
  1.3596 +(let ((@x51 (monotonicity (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (rewrite (= (< ?0 1) (not (>= ?0 1)))) (= $x32 (or (not (<= ?0 0)) (not (>= ?0 1)))))))
  1.3597 +(let ((@x57 (monotonicity (quant-intro @x51 (= $x35 $x52)) (= (not $x35) $x55))))
  1.3598 +(let ((@x59 (trans (monotonicity (elim-unused (= $x33 $x35)) (= $x27 (not $x35))) @x57 (= $x27 $x55))))
  1.3599 +(let ((@x70 (mp~ (mp (asserted $x27) @x59 $x55) (sk (~ $x55 (not (or (not (<= ?v1!0 0)) (not $x64))))) (not (or (not (<= ?v1!0 0)) (not $x64))))))
  1.3600 +(let ((@x74 (not-or-elim @x70 $x64)))
  1.3601 +(let (($x65 (not $x64)))
  1.3602 +(let (($x62 (<= ?v1!0 0)))
  1.3603 +(let ((@x73 (not-or-elim @x70 $x62)))
  1.3604 +(unit-resolution (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x65 (not $x62))) @x73 $x65) @x74 false))))))))))))))))))
  1.3605 +
  1.3606 +d98ad8f668dead6f610669a52351ea0176a811b0 26 0
  1.3607 +unsat
  1.3608 +((set-logic <null>)
  1.3609 +(proof
  1.3610 +(let (($x58 (<= b$ 0)))
  1.3611 +(let (($x62 (or (not (and (not (<= a$ 0)) (not (<= (* a$ b$) 0)))) (not $x58))))
  1.3612 +(let (($x65 (not $x62)))
  1.3613 +(let (($x35 (not (=> (and (< 0 a$) (< 0 (* a$ b$))) (< 0 b$)))))
  1.3614 +(let (($x33 (< 0 b$)))
  1.3615 +(let (($x38 (or (not (and (< 0 a$) (< 0 (* a$ b$)))) $x33)))
  1.3616 +(let (($x56 (= (not (and (< 0 a$) (< 0 (* a$ b$)))) (not (and (not (<= a$ 0)) (not (<= (* a$ b$) 0)))))))
  1.3617 +(let ((?x30 (* a$ b$)))
  1.3618 +(let (($x48 (<= ?x30 0)))
  1.3619 +(let (($x49 (not $x48)))
  1.3620 +(let (($x44 (<= a$ 0)))
  1.3621 +(let (($x45 (not $x44)))
  1.3622 +(let (($x52 (and $x45 $x49)))
  1.3623 +(let (($x32 (and (< 0 a$) (< 0 ?x30))))
  1.3624 +(let ((@x54 (monotonicity (rewrite (= (< 0 a$) $x45)) (rewrite (= (< 0 ?x30) $x49)) (= $x32 $x52))))
  1.3625 +(let ((@x64 (monotonicity (monotonicity @x54 $x56) (rewrite (= $x33 (not $x58))) (= $x38 $x62))))
  1.3626 +(let ((@x43 (monotonicity (rewrite (= (=> $x32 $x33) $x38)) (= $x35 (not $x38)))))
  1.3627 +(let ((@x69 (trans @x43 (monotonicity @x64 (= (not $x38) $x65)) (= $x35 $x65))))
  1.3628 +(let ((@x74 (not-or-elim (mp (asserted $x35) @x69 $x65) $x58)))
  1.3629 +(let ((@x72 (and-elim (not-or-elim (mp (asserted $x35) @x69 $x65) $x52) $x45)))
  1.3630 +(let ((@x73 (and-elim (not-or-elim (mp (asserted $x35) @x69 $x65) $x52) $x49)))
  1.3631 +((_ th-lemma arith farkas 1 1 1) @x73 @x72 @x74 false))))))))))))))))))))))))
  1.3632 +
  1.3633 +b216c79478e44396acca3654b76845499fc18a04 23 0
  1.3634 +unsat
  1.3635 +((set-logic <null>)
  1.3636 +(proof
  1.3637 +(let ((?x36 (* 2.0 x$)))
  1.3638 +(let ((?x37 (* ?x36 y$)))
  1.3639 +(let ((?x32 (- 1.0 y$)))
  1.3640 +(let ((?x33 (* x$ ?x32)))
  1.3641 +(let ((?x30 (+ 1.0 y$)))
  1.3642 +(let ((?x31 (* x$ ?x30)))
  1.3643 +(let ((?x34 (- ?x31 ?x33)))
  1.3644 +(let (($x38 (= ?x34 ?x37)))
  1.3645 +(let (($x39 (not $x38)))
  1.3646 +(let ((@x73 (rewrite (= (= (* 2.0 (* x$ y$)) (* 2.0 (* x$ y$))) true))))
  1.3647 +(let ((?x41 (* x$ y$)))
  1.3648 +(let ((?x63 (* 2.0 ?x41)))
  1.3649 +(let ((@x56 (rewrite (= (* x$ (+ 1.0 (* (- 1.0) y$))) (+ x$ (* (- 1.0) ?x41))))))
  1.3650 +(let ((@x52 (monotonicity (rewrite (= ?x32 (+ 1.0 (* (- 1.0) y$)))) (= ?x33 (* x$ (+ 1.0 (* (- 1.0) y$)))))))
  1.3651 +(let ((@x61 (monotonicity (rewrite (= ?x31 (+ x$ ?x41))) (trans @x52 @x56 (= ?x33 (+ x$ (* (- 1.0) ?x41)))) (= ?x34 (- (+ x$ ?x41) (+ x$ (* (- 1.0) ?x41)))))))
  1.3652 +(let ((@x66 (trans @x61 (rewrite (= (- (+ x$ ?x41) (+ x$ (* (- 1.0) ?x41))) ?x63)) (= ?x34 ?x63))))
  1.3653 +(let ((@x75 (trans (monotonicity @x66 (rewrite (= ?x37 ?x63)) (= $x38 (= ?x63 ?x63))) @x73 (= $x38 true))))
  1.3654 +(let ((@x82 (trans (monotonicity @x75 (= $x39 (not true))) (rewrite (= (not true) false)) (= $x39 false))))
  1.3655 +(mp (asserted $x39) @x82 false)))))))))))))))))))))
  1.3656 +
  1.3657 +271390ea915947de195c2202e30f90bb84689d60 26 0
  1.3658 +unsat
  1.3659 +((set-logic <null>)
  1.3660 +(proof
  1.3661 +(let ((?x35 (+ y$ 1)))
  1.3662 +(let ((?x36 (* a$ ?x35)))
  1.3663 +(let ((?x34 (* a$ x$)))
  1.3664 +(let ((?x37 (+ ?x34 ?x36)))
  1.3665 +(let ((?x30 (+ x$ 1)))
  1.3666 +(let ((?x32 (+ ?x30 y$)))
  1.3667 +(let ((?x33 (* a$ ?x32)))
  1.3668 +(let (($x38 (= ?x33 ?x37)))
  1.3669 +(let (($x39 (not $x38)))
  1.3670 +(let (($x82 (= (= (+ a$ ?x34 (* a$ y$)) (+ a$ ?x34 (* a$ y$))) true)))
  1.3671 +(let (($x80 (= $x38 (= (+ a$ ?x34 (* a$ y$)) (+ a$ ?x34 (* a$ y$))))))
  1.3672 +(let ((@x76 (rewrite (= (+ ?x34 (+ a$ (* a$ y$))) (+ a$ ?x34 (* a$ y$))))))
  1.3673 +(let ((@x66 (monotonicity (rewrite (= ?x35 (+ 1 y$))) (= ?x36 (* a$ (+ 1 y$))))))
  1.3674 +(let ((@x71 (trans @x66 (rewrite (= (* a$ (+ 1 y$)) (+ a$ (* a$ y$)))) (= ?x36 (+ a$ (* a$ y$))))))
  1.3675 +(let ((@x78 (trans (monotonicity @x71 (= ?x37 (+ ?x34 (+ a$ (* a$ y$))))) @x76 (= ?x37 (+ a$ ?x34 (* a$ y$))))))
  1.3676 +(let ((@x58 (rewrite (= (* a$ (+ 1 x$ y$)) (+ a$ ?x34 (* a$ y$))))))
  1.3677 +(let ((@x46 (monotonicity (rewrite (= ?x30 (+ 1 x$))) (= ?x32 (+ (+ 1 x$) y$)))))
  1.3678 +(let ((@x51 (trans @x46 (rewrite (= (+ (+ 1 x$) y$) (+ 1 x$ y$))) (= ?x32 (+ 1 x$ y$)))))
  1.3679 +(let ((@x60 (trans (monotonicity @x51 (= ?x33 (* a$ (+ 1 x$ y$)))) @x58 (= ?x33 (+ a$ ?x34 (* a$ y$))))))
  1.3680 +(let ((@x88 (monotonicity (trans (monotonicity @x60 @x78 $x80) (rewrite $x82) (= $x38 true)) (= $x39 (not true)))))
  1.3681 +(let ((@x92 (trans @x88 (rewrite (= (not true) false)) (= $x39 false))))
  1.3682 +(mp (asserted $x39) @x92 false))))))))))))))))))))))))
  1.3683 +
  1.3684 +9df6daf3cc37f0807bf370ee01536b85d300ecce 51 0
  1.3685 +unsat
  1.3686 +((set-logic <null>)
  1.3687 +(proof
  1.3688 +(let ((?x47 (+ b$ d$)))
  1.3689 +(let ((?x48 (+ ?x47 e$)))
  1.3690 +(let ((?x30 (+ 1 p$)))
  1.3691 +(let ((?x49 (* ?x30 ?x48)))
  1.3692 +(let ((?x44 (* d$ p$)))
  1.3693 +(let ((?x42 (* ?x30 d$)))
  1.3694 +(let ((?x33 (+ b$ e$)))
  1.3695 +(let ((?x40 (* 2 ?x30)))
  1.3696 +(let ((?x41 (* ?x40 ?x33)))
  1.3697 +(let ((?x43 (+ ?x41 ?x42)))
  1.3698 +(let ((?x45 (+ ?x43 ?x44)))
  1.3699 +(let ((?x46 (+ u$ ?x45)))
  1.3700 +(let ((?x50 (- ?x46 ?x49)))
  1.3701 +(let ((?x37 (* p$ d$)))
  1.3702 +(let ((?x34 (* ?x30 ?x33)))
  1.3703 +(let ((?x35 (+ u$ ?x34)))
  1.3704 +(let ((?x38 (+ ?x35 ?x37)))
  1.3705 +(let (($x51 (= ?x38 ?x50)))
  1.3706 +(let (($x52 (not $x51)))
  1.3707 +(let ((?x55 (* p$ e$)))
  1.3708 +(let ((?x54 (* p$ b$)))
  1.3709 +(let ((?x70 (+ u$ b$ e$ ?x37 ?x54 ?x55)))
  1.3710 +(let ((?x127 (+ b$ e$ d$ ?x37 ?x54 ?x55)))
  1.3711 +(let ((?x85 (* 2 ?x55)))
  1.3712 +(let ((?x83 (* 2 ?x54)))
  1.3713 +(let ((?x84 (* 2 e$)))
  1.3714 +(let ((?x82 (* 2 b$)))
  1.3715 +(let ((?x116 (+ u$ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)))
  1.3716 +(let ((@x126 (monotonicity (rewrite (= ?x48 (+ b$ e$ d$))) (= ?x49 (* ?x30 (+ b$ e$ d$))))))
  1.3717 +(let ((@x131 (trans @x126 (rewrite (= (* ?x30 (+ b$ e$ d$)) ?x127)) (= ?x49 ?x127))))
  1.3718 +(let ((@x118 (rewrite (= (+ u$ (+ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)) ?x116))))
  1.3719 +(let ((?x108 (+ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)))
  1.3720 +(let ((?x97 (+ ?x82 ?x84 d$ ?x37 ?x83 ?x85)))
  1.3721 +(let ((@x88 (rewrite (= (* (+ 2 (* 2 p$)) ?x33) (+ ?x82 ?x84 ?x83 ?x85)))))
  1.3722 +(let ((@x81 (monotonicity (rewrite (= ?x40 (+ 2 (* 2 p$)))) (= ?x41 (* (+ 2 (* 2 p$)) ?x33)))))
  1.3723 +(let ((@x96 (monotonicity (trans @x81 @x88 (= ?x41 (+ ?x82 ?x84 ?x83 ?x85))) (rewrite (= ?x42 (+ d$ ?x37))) (= ?x43 (+ (+ ?x82 ?x84 ?x83 ?x85) (+ d$ ?x37))))))
  1.3724 +(let ((@x101 (trans @x96 (rewrite (= (+ (+ ?x82 ?x84 ?x83 ?x85) (+ d$ ?x37)) ?x97)) (= ?x43 ?x97))))
  1.3725 +(let ((@x112 (trans (monotonicity @x101 (rewrite (= ?x44 ?x37)) (= ?x45 (+ ?x97 ?x37))) (rewrite (= (+ ?x97 ?x37) ?x108)) (= ?x45 ?x108))))
  1.3726 +(let ((@x120 (trans (monotonicity @x112 (= ?x46 (+ u$ ?x108))) @x118 (= ?x46 ?x116))))
  1.3727 +(let ((@x139 (trans (monotonicity @x120 @x131 (= ?x50 (- ?x116 ?x127))) (rewrite (= (- ?x116 ?x127) ?x70)) (= ?x50 ?x70))))
  1.3728 +(let ((@x64 (rewrite (= (+ u$ (+ b$ e$ ?x54 ?x55)) (+ u$ b$ e$ ?x54 ?x55)))))
  1.3729 +(let ((@x61 (monotonicity (rewrite (= ?x34 (+ b$ e$ ?x54 ?x55))) (= ?x35 (+ u$ (+ b$ e$ ?x54 ?x55))))))
  1.3730 +(let ((@x69 (monotonicity (trans @x61 @x64 (= ?x35 (+ u$ b$ e$ ?x54 ?x55))) (= ?x38 (+ (+ u$ b$ e$ ?x54 ?x55) ?x37)))))
  1.3731 +(let ((@x74 (trans @x69 (rewrite (= (+ (+ u$ b$ e$ ?x54 ?x55) ?x37) ?x70)) (= ?x38 ?x70))))
  1.3732 +(let ((@x145 (trans (monotonicity @x74 @x139 (= $x51 (= ?x70 ?x70))) (rewrite (= (= ?x70 ?x70) true)) (= $x51 true))))
  1.3733 +(let ((@x152 (trans (monotonicity @x145 (= $x52 (not true))) (rewrite (= (not true) false)) (= $x52 false))))
  1.3734 +(mp (asserted $x52) @x152 false)))))))))))))))))))))))))))))))))))))))))))))))))
  1.3735 +
  1.3736 +5e90e9139eb4e9a7c2678bca8dda6cda05861f4c 23 0
  1.3737 +unsat
  1.3738 +((set-logic AUFLIA)
  1.3739 +(proof
  1.3740 +(let (($x40 (= x$ a$)))
  1.3741 +(let ((?x36 (pair$ x$ y$)))
  1.3742 +(let ((?x37 (fst$ ?x36)))
  1.3743 +(let (($x39 (= ?x37 a$)))
  1.3744 +(let ((@x50 (monotonicity (rewrite (= (=> $x39 $x40) (or (not $x39) $x40))) (= (not (=> $x39 $x40)) (not (or (not $x39) $x40))))))
  1.3745 +(let ((@x51 (not-or-elim (mp (asserted (not (=> $x39 $x40))) @x50 (not (or (not $x39) $x40))) $x39)))
  1.3746 +(let (($x56 (= ?x37 x$)))
  1.3747 +(let (($x478 (forall ((?v0 A$) (?v1 B$) )(!(= (fst$ (pair$ ?v0 ?v1)) ?v0) :pattern ( (pair$ ?v0 ?v1) )))
  1.3748 +))
  1.3749 +(let (($x32 (forall ((?v0 A$) (?v1 B$) )(= (fst$ (pair$ ?v0 ?v1)) ?v0))
  1.3750 +))
  1.3751 +(let (($x31 (= (fst$ (pair$ ?1 ?0)) ?1)))
  1.3752 +(let ((@x55 (mp~ (asserted $x32) (nnf-pos (refl (~ $x31 $x31)) (~ $x32 $x32)) $x32)))
  1.3753 +(let ((@x483 (mp @x55 (quant-intro (refl (= $x31 $x31)) (= $x32 $x478)) $x478)))
  1.3754 +(let (($x62 (or (not $x478) $x56)))
  1.3755 +(let ((@x149 ((_ quant-inst x$ y$) $x62)))
  1.3756 +(let ((@x150 (trans (symm (unit-resolution @x149 @x483 $x56) (= x$ ?x37)) @x51 $x40)))
  1.3757 +(let ((@x54 (not-or-elim (mp (asserted (not (=> $x39 $x40))) @x50 (not (or (not $x39) $x40))) (not $x40))))
  1.3758 +(unit-resolution @x54 @x150 false)))))))))))))))))))
  1.3759 +
  1.3760 +53d3d89ffb6e574b15fcea58a111b4eecba9beb5 42 0
  1.3761 +unsat
  1.3762 +((set-logic AUFLIA)
  1.3763 +(proof
  1.3764 +(let ((?x59 (snd$a p2$)))
  1.3765 +(let ((?x58 (fst$a p1$)))
  1.3766 +(let (($x60 (= ?x58 ?x59)))
  1.3767 +(let ((?x55 (pair$ y$ x$)))
  1.3768 +(let (($x56 (= p2$ ?x55)))
  1.3769 +(let ((?x52 (pair$a x$ y$)))
  1.3770 +(let (($x53 (= p1$ ?x52)))
  1.3771 +(let (($x57 (and $x53 $x56)))
  1.3772 +(let ((@x70 (monotonicity (rewrite (= (=> $x57 $x60) (or (not $x57) $x60))) (= (not (=> $x57 $x60)) (not (or (not $x57) $x60))))))
  1.3773 +(let ((@x71 (not-or-elim (mp (asserted (not (=> $x57 $x60))) @x70 (not (or (not $x57) $x60))) $x57)))
  1.3774 +(let ((@x74 (and-elim @x71 $x56)))
  1.3775 +(let ((@x504 (symm (monotonicity @x74 (= ?x59 (snd$a ?x55))) (= (snd$a ?x55) ?x59))))
  1.3776 +(let ((?x100 (snd$a ?x55)))
  1.3777 +(let (($x185 (= ?x100 x$)))
  1.3778 +(let (($x534 (forall ((?v0 B$) (?v1 A$) )(!(= (snd$a (pair$ ?v0 ?v1)) ?v1) :pattern ( (pair$ ?v0 ?v1) )))
  1.3779 +))
  1.3780 +(let (($x47 (forall ((?v0 B$) (?v1 A$) )(= (snd$a (pair$ ?v0 ?v1)) ?v1))
  1.3781 +))
  1.3782 +(let (($x46 (= (snd$a (pair$ ?1 ?0)) ?0)))
  1.3783 +(let ((@x96 (mp~ (asserted $x47) (nnf-pos (refl (~ $x46 $x46)) (~ $x47 $x47)) $x47)))
  1.3784 +(let ((@x539 (mp @x96 (quant-intro (refl (= $x46 $x46)) (= $x47 $x534)) $x534)))
  1.3785 +(let (($x190 (or (not $x534) $x185)))
  1.3786 +(let ((@x191 ((_ quant-inst y$ x$) $x190)))
  1.3787 +(let ((?x187 (fst$a ?x52)))
  1.3788 +(let (($x188 (= ?x187 x$)))
  1.3789 +(let (($x522 (forall ((?v0 A$) (?v1 B$) )(!(= (fst$a (pair$a ?v0 ?v1)) ?v0) :pattern ( (pair$a ?v0 ?v1) )))
  1.3790 +))
  1.3791 +(let (($x39 (forall ((?v0 A$) (?v1 B$) )(= (fst$a (pair$a ?v0 ?v1)) ?v0))
  1.3792 +))
  1.3793 +(let (($x38 (= (fst$a (pair$a ?1 ?0)) ?1)))
  1.3794 +(let ((@x90 (mp~ (asserted $x39) (nnf-pos (refl (~ $x38 $x38)) (~ $x39 $x39)) $x39)))
  1.3795 +(let ((@x527 (mp @x90 (quant-intro (refl (= $x38 $x38)) (= $x39 $x522)) $x522)))
  1.3796 +(let (($x162 (or (not $x522) $x188)))
  1.3797 +(let ((@x292 ((_ quant-inst x$ y$) $x162)))
  1.3798 +(let ((@x505 (trans (monotonicity (and-elim @x71 $x53) (= ?x58 ?x187)) (unit-resolution @x292 @x527 $x188) (= ?x58 x$))))
  1.3799 +(let ((@x489 (trans @x505 (symm (unit-resolution @x191 @x539 $x185) (= x$ ?x100)) (= ?x58 ?x100))))
  1.3800 +(let ((@x76 (not-or-elim (mp (asserted (not (=> $x57 $x60))) @x70 (not (or (not $x57) $x60))) (not $x60))))
  1.3801 +(unit-resolution @x76 (trans @x489 @x504 $x60) false))))))))))))))))))))))))))))))))))))
  1.3802 +
  1.3803 +f501ac3814a9ff559897f8057e18657ad1030d2a 60 0
  1.3804 +unsat
  1.3805 +((set-logic AUFLIA)
  1.3806 +(proof
  1.3807 +(let ((?x69 (fun_app$ f$ i$)))
  1.3808 +(let ((?x60 (fun_upd$ f$)))
  1.3809 +(let ((?x61 (fun_app$b ?x60 i1$)))
  1.3810 +(let ((?x63 (fun_app$a ?x61 v1$)))
  1.3811 +(let ((?x64 (fun_upd$ ?x63)))
  1.3812 +(let ((?x65 (fun_app$b ?x64 i2$)))
  1.3813 +(let ((?x67 (fun_app$a ?x65 v2$)))
  1.3814 +(let ((?x68 (fun_app$ ?x67 i$)))
  1.3815 +(let (($x70 (= ?x68 ?x69)))
  1.3816 +(let ((?x197 (fun_app$ ?x63 i$)))
  1.3817 +(let (($x205 (= ?x197 ?x69)))
  1.3818 +(let (($x204 (= ?x197 v1$)))
  1.3819 +(let (($x53 (= i$ i1$)))
  1.3820 +(let (($x484 (ite $x53 $x204 $x205)))
  1.3821 +(let (($x531 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(!(let ((?x46 (fun_app$ ?v0 ?v3)))
  1.3822 +(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  1.3823 +(let (($x45 (= ?v3 ?v1)))
  1.3824 +(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46))))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) )))
  1.3825 +))
  1.3826 +(let (($x102 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(let ((?x46 (fun_app$ ?v0 ?v3)))
  1.3827 +(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  1.3828 +(let (($x45 (= ?v3 ?v1)))
  1.3829 +(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46))))))
  1.3830 +))
  1.3831 +(let ((?x46 (fun_app$ ?3 ?0)))
  1.3832 +(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0)))
  1.3833 +(let (($x45 (= ?0 ?2)))
  1.3834 +(let (($x97 (ite $x45 (= ?x44 ?1) (= ?x44 ?x46))))
  1.3835 +(let (($x49 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  1.3836 +(= ?x44 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
  1.3837 +))
  1.3838 +(let ((@x104 (quant-intro (rewrite (= (= ?x44 (ite $x45 ?1 ?x46)) $x97)) (= $x49 $x102))))
  1.3839 +(let ((@x91 (refl (~ (= ?x44 (ite $x45 ?1 ?x46)) (= ?x44 (ite $x45 ?1 ?x46))))))
  1.3840 +(let ((@x105 (mp (mp~ (asserted $x49) (nnf-pos @x91 (~ $x49 $x49)) $x49) @x104 $x102)))
  1.3841 +(let ((@x536 (mp @x105 (quant-intro (refl (= $x97 $x97)) (= $x102 $x531)) $x531)))
  1.3842 +(let (($x171 (not $x531)))
  1.3843 +(let (($x486 (or $x171 $x484)))
  1.3844 +(let ((@x487 ((_ quant-inst f$ i1$ v1$ i$) $x486)))
  1.3845 +(let (($x54 (not $x53)))
  1.3846 +(let (($x56 (= i$ i2$)))
  1.3847 +(let (($x57 (not $x56)))
  1.3848 +(let (($x58 (and $x54 $x57)))
  1.3849 +(let ((@x80 (monotonicity (rewrite (= (=> $x58 $x70) (or (not $x58) $x70))) (= (not (=> $x58 $x70)) (not (or (not $x58) $x70))))))
  1.3850 +(let ((@x81 (not-or-elim (mp (asserted (not (=> $x58 $x70))) @x80 (not (or (not $x58) $x70))) $x58)))
  1.3851 +(let ((@x82 (and-elim @x81 $x54)))
  1.3852 +(let ((@x321 (unit-resolution (def-axiom (or (not $x484) $x53 $x205)) @x82 (or (not $x484) $x205))))
  1.3853 +(let (($x200 (= ?x68 ?x197)))
  1.3854 +(let (($x196 (= ?x68 v2$)))
  1.3855 +(let (($x179 (ite $x56 $x196 $x200)))
  1.3856 +(let (($x301 (or $x171 $x179)))
  1.3857 +(let ((@x511 ((_ quant-inst (fun_app$a ?x61 v1$) i2$ v2$ i$) $x301)))
  1.3858 +(let ((@x84 (and-elim @x81 $x57)))
  1.3859 +(let ((@x466 (unit-resolution (def-axiom (or (not $x179) $x56 $x200)) @x84 (or (not $x179) $x200))))
  1.3860 +(let ((@x470 (trans (unit-resolution @x466 (unit-resolution @x511 @x536 $x179) $x200) (unit-resolution @x321 (unit-resolution @x487 @x536 $x484) $x205) $x70)))
  1.3861 +(let ((@x86 (not-or-elim (mp (asserted (not (=> $x58 $x70))) @x80 (not (or (not $x58) $x70))) (not $x70))))
  1.3862 +(unit-resolution @x86 @x470 false))))))))))))))))))))))))))))))))))))))))))))))))
  1.3863 +
  1.3864 +541ab286f481dab3994e7cef5aa3ab01f0d6487a 24 0
  1.3865 +unsat
  1.3866 +((set-logic AUFLIA)
  1.3867 +(proof
  1.3868 +(let (($x29 (f$ g$ x$)))
  1.3869 +(let (($x73 (not $x29)))
  1.3870 +(let (($x65 (not (or (= $x29 (fun_app$ g$ x$)) $x29 (fun_app$ g$ x$)))))
  1.3871 +(let (($x32 (= $x29 (and (fun_app$ g$ x$) true))))
  1.3872 +(let (($x37 (not (or $x32 (or (= $x29 true) (= (fun_app$ g$ x$) true))))))
  1.3873 +(let (($x30 (fun_app$ g$ x$)))
  1.3874 +(let (($x44 (= $x29 $x30)))
  1.3875 +(let (($x56 (or $x44 (or $x29 $x30))))
  1.3876 +(let ((@x67 (monotonicity (rewrite (= $x56 (or $x44 $x29 $x30))) (= (not $x56) $x65))))
  1.3877 +(let ((@x55 (monotonicity (rewrite (= (= $x29 true) $x29)) (rewrite (= (= $x30 true) $x30)) (= (or (= $x29 true) (= $x30 true)) (or $x29 $x30)))))
  1.3878 +(let ((@x43 (monotonicity (rewrite (= (and $x30 true) $x30)) (= $x32 (= $x29 $x30)))))
  1.3879 +(let ((@x58 (monotonicity (trans @x43 (rewrite (= (= $x29 $x30) $x44)) (= $x32 $x44)) @x55 (= (or $x32 (or (= $x29 true) (= $x30 true))) $x56))))
  1.3880 +(let ((@x69 (trans (monotonicity @x58 (= $x37 (not $x56))) @x67 (= $x37 $x65))))
  1.3881 +(let ((@x70 (mp (asserted $x37) @x69 $x65)))
  1.3882 +(let ((@x87 (monotonicity (iff-false (not-or-elim @x70 (not $x30)) (= $x30 false)) (= (= $x73 $x30) (= $x73 false)))))
  1.3883 +(let ((@x91 (trans @x87 (rewrite (= (= $x73 false) $x29)) (= (= $x73 $x30) $x29))))
  1.3884 +(let ((@x93 (trans @x91 (iff-false (not-or-elim @x70 $x73) (= $x29 false)) (= (= $x73 $x30) false))))
  1.3885 +(let (($x77 (= $x73 $x30)))
  1.3886 +(let ((@x80 (mp (not-or-elim @x70 (not $x44)) (rewrite (= (not $x44) $x77)) $x77)))
  1.3887 +(mp @x80 @x93 false))))))))))))))))))))))
  1.3888 +
  1.3889 +c6761b6a026c6bf2d28c35e9faf633fc441c84c5 45 0
  1.3890 +unsat
  1.3891 +((set-logic AUFLIA)
  1.3892 +(proof
  1.3893 +(let ((?x44 (id$ x$)))
  1.3894 +(let (($x46 (= ?x44 x$)))
  1.3895 +(let (($x73 (not $x46)))
  1.3896 +(let (($x47 (id$a true)))
  1.3897 +(let (($x510 (forall ((?v0 Bool) )(!(let (($x33 (id$a ?v0)))
  1.3898 +(= $x33 ?v0)) :pattern ( (id$a ?v0) )))
  1.3899 +))
  1.3900 +(let (($x40 (forall ((?v0 Bool) )(let (($x33 (id$a ?v0)))
  1.3901 +(= $x33 ?v0)))
  1.3902 +))
  1.3903 +(let ((@x514 (quant-intro (refl (= (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (= $x40 $x510))))
  1.3904 +(let ((@x69 (nnf-pos (refl (~ (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (~ $x40 $x40))))
  1.3905 +(let (($x35 (forall ((?v0 Bool) )(let (($x33 (id$a ?v0)))
  1.3906 +(= $x33 ?v0)))
  1.3907 +))
  1.3908 +(let ((@x42 (quant-intro (rewrite (= (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (= $x35 $x40))))
  1.3909 +(let ((@x515 (mp (mp~ (mp (asserted $x35) @x42 $x40) @x69 $x40) @x514 $x510)))
  1.3910 +(let (($x87 (or (not $x510) $x47)))
  1.3911 +(let ((@x176 (monotonicity (rewrite (= (= $x47 true) $x47)) (= (or (not $x510) (= $x47 true)) $x87))))
  1.3912 +(let ((@x179 (trans @x176 (rewrite (= $x87 $x87)) (= (or (not $x510) (= $x47 true)) $x87))))
  1.3913 +(let ((@x495 (unit-resolution (mp ((_ quant-inst true) (or (not $x510) (= $x47 true))) @x179 $x87) @x515 (hypothesis (not $x47)) false)))
  1.3914 +(let (($x71 (or $x73 (not $x47))))
  1.3915 +(let ((@x79 (monotonicity (rewrite (= (and $x46 $x47) (not $x71))) (= (not (and $x46 $x47)) (not (not $x71))))))
  1.3916 +(let ((@x83 (trans @x79 (rewrite (= (not (not $x71)) $x71)) (= (not (and $x46 $x47)) $x71))))
  1.3917 +(let (($x54 (and $x46 $x47)))
  1.3918 +(let (($x57 (not $x54)))
  1.3919 +(let ((@x56 (monotonicity (rewrite (= (= $x47 true) $x47)) (= (and $x46 (= $x47 true)) $x54))))
  1.3920 +(let ((@x62 (mp (asserted (not (and $x46 (= $x47 true)))) (monotonicity @x56 (= (not (and $x46 (= $x47 true))) $x57)) $x57)))
  1.3921 +(let ((@x84 (mp @x62 @x83 $x71)))
  1.3922 +(let (($x503 (forall ((?v0 A$) )(!(let ((?x28 (id$ ?v0)))
  1.3923 +(= ?x28 ?v0)) :pattern ( (id$ ?v0) )))
  1.3924 +))
  1.3925 +(let (($x30 (forall ((?v0 A$) )(let ((?x28 (id$ ?v0)))
  1.3926 +(= ?x28 ?v0)))
  1.3927 +))
  1.3928 +(let ((@x507 (quant-intro (refl (= (= (id$ ?0) ?0) (= (id$ ?0) ?0))) (= $x30 $x503))))
  1.3929 +(let ((@x64 (nnf-pos (refl (~ (= (id$ ?0) ?0) (= (id$ ?0) ?0))) (~ $x30 $x30))))
  1.3930 +(let ((@x508 (mp (mp~ (asserted $x30) @x64 $x30) @x507 $x503)))
  1.3931 +(let (($x163 (or (not $x503) $x46)))
  1.3932 +(let ((@x496 ((_ quant-inst x$) $x163)))
  1.3933 +(unit-resolution @x496 @x508 (unit-resolution @x84 (lemma @x495 $x47) $x73) false)))))))))))))))))))))))))))))))))
  1.3934 +
  1.3935 +50e0d27d5994794dc9d5826e8afa4b3217acf731 14 0
  1.3936 +unsat
  1.3937 +((set-logic AUFLIA)
  1.3938 +(proof
  1.3939 +(let (($x29 (exists ((?v0 A$) )(g$ ?v0))
  1.3940 +))
  1.3941 +(let (($x30 (ite $x29 true false)))
  1.3942 +(let (($x31 (f$ $x30)))
  1.3943 +(let (($x32 (=> $x31 true)))
  1.3944 +(let (($x33 (not $x32)))
  1.3945 +(let ((@x42 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= $x31 (f$ $x29))) (= $x32 (=> (f$ $x29) true)))))
  1.3946 +(let ((@x46 (trans @x42 (rewrite (= (=> (f$ $x29) true) true)) (= $x32 true))))
  1.3947 +(let ((@x53 (trans (monotonicity @x46 (= $x33 (not true))) (rewrite (= (not true) false)) (= $x33 false))))
  1.3948 +(mp (asserted $x33) @x53 false)))))))))))
  1.3949 +
  1.3950 +b221de9d8dbe279344ac85e2ada07f5722636ce5 46 0
  1.3951 +unsat
  1.3952 +((set-logic AUFLIA)
  1.3953 +(proof
  1.3954 +(let ((?x61 (fun_app$a le$ 3)))
  1.3955 +(let (($x63 (fun_app$ ?x61 42)))
  1.3956 +(let (($x75 (not $x63)))
  1.3957 +(let (($x59 (= le$ uu$)))
  1.3958 +(let ((@x73 (monotonicity (rewrite (= (=> $x59 $x63) (or (not $x59) $x63))) (= (not (=> $x59 $x63)) (not (or (not $x59) $x63))))))
  1.3959 +(let ((@x74 (not-or-elim (mp (asserted (not (=> $x59 $x63))) @x73 (not (or (not $x59) $x63))) $x59)))
  1.3960 +(let ((@x482 (monotonicity (symm @x74 (= uu$ le$)) (= (fun_app$a uu$ 3) ?x61))))
  1.3961 +(let ((@x484 (symm (monotonicity @x482 (= (fun_app$ (fun_app$a uu$ 3) 42) $x63)) (= $x63 (fun_app$ (fun_app$a uu$ 3) 42)))))
  1.3962 +(let ((@x472 (monotonicity @x484 (= $x75 (not (fun_app$ (fun_app$a uu$ 3) 42))))))
  1.3963 +(let ((@x77 (not-or-elim (mp (asserted (not (=> $x59 $x63))) @x73 (not (or (not $x59) $x63))) $x75)))
  1.3964 +(let ((?x79 (fun_app$a uu$ 3)))
  1.3965 +(let (($x168 (fun_app$ ?x79 42)))
  1.3966 +(let (($x52 (forall ((?v0 Int) (?v1 Int) )(!(let (($x46 (<= (+ ?v0 (* (- 1) ?v1)) 0)))
  1.3967 +(let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1)))
  1.3968 +(= $x31 $x46))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) )))
  1.3969 +))
  1.3970 +(let (($x46 (<= (+ ?1 (* (- 1) ?0)) 0)))
  1.3971 +(let (($x31 (fun_app$ (fun_app$a uu$ ?1) ?0)))
  1.3972 +(let (($x49 (= $x31 $x46)))
  1.3973 +(let (($x35 (forall ((?v0 Int) (?v1 Int) )(!(let (($x32 (<= ?v0 ?v1)))
  1.3974 +(let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1)))
  1.3975 +(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) )))
  1.3976 +))
  1.3977 +(let (($x40 (forall ((?v0 Int) (?v1 Int) )(!(let (($x32 (<= ?v0 ?v1)))
  1.3978 +(let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1)))
  1.3979 +(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) )))
  1.3980 +))
  1.3981 +(let ((@x51 (monotonicity (rewrite (= (<= ?1 ?0) $x46)) (= (= $x31 (<= ?1 ?0)) $x49))))
  1.3982 +(let ((@x42 (quant-intro (rewrite (= (= $x31 (<= ?1 ?0)) (= $x31 (<= ?1 ?0)))) (= $x35 $x40))))
  1.3983 +(let ((@x57 (mp (asserted $x35) (trans @x42 (quant-intro @x51 (= $x40 $x52)) (= $x35 $x52)) $x52)))
  1.3984 +(let ((@x78 (mp~ @x57 (nnf-pos (refl (~ $x49 $x49)) (~ $x52 $x52)) $x52)))
  1.3985 +(let (($x134 (or (not $x52) $x168)))
  1.3986 +(let (($x137 (= (or (not $x52) (= $x168 (<= (+ 3 (* (- 1) 42)) 0))) $x134)))
  1.3987 +(let ((?x169 (* (- 1) 42)))
  1.3988 +(let ((?x170 (+ 3 ?x169)))
  1.3989 +(let (($x160 (<= ?x170 0)))
  1.3990 +(let (($x171 (= $x168 $x160)))
  1.3991 +(let ((@x158 (trans (monotonicity (rewrite (= ?x169 (- 42))) (= ?x170 (+ 3 (- 42)))) (rewrite (= (+ 3 (- 42)) (- 39))) (= ?x170 (- 39)))))
  1.3992 +(let ((@x497 (trans (monotonicity @x158 (= $x160 (<= (- 39) 0))) (rewrite (= (<= (- 39) 0) true)) (= $x160 true))))
  1.3993 +(let ((@x131 (trans (monotonicity @x497 (= $x171 (= $x168 true))) (rewrite (= (= $x168 true) $x168)) (= $x171 $x168))))
  1.3994 +(let ((@x478 (mp ((_ quant-inst 3 42) (or (not $x52) $x171)) (trans (monotonicity @x131 $x137) (rewrite (= $x134 $x134)) $x137) $x134)))
  1.3995 +(unit-resolution (unit-resolution @x478 @x78 $x168) (mp @x77 @x472 (not $x168)) false)))))))))))))))))))))))))))))))))))
  1.3996 +
  1.3997 +8b09776b03122aeacc9dd9526e1f0e5d41a07f14 14 0
  1.3998 +unsat
  1.3999 +((set-logic AUFLIA)
  1.4000 +(proof
  1.4001 +(let (($x29 (forall ((?v0 A$) )(g$ ?v0))
  1.4002 +))
  1.4003 +(let (($x30 (ite $x29 true false)))
  1.4004 +(let (($x31 (f$ $x30)))
  1.4005 +(let (($x32 (=> $x31 true)))
  1.4006 +(let (($x33 (not $x32)))
  1.4007 +(let ((@x42 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= $x31 (f$ $x29))) (= $x32 (=> (f$ $x29) true)))))
  1.4008 +(let ((@x46 (trans @x42 (rewrite (= (=> (f$ $x29) true) true)) (= $x32 true))))
  1.4009 +(let ((@x53 (trans (monotonicity @x46 (= $x33 (not true))) (rewrite (= (not true) false)) (= $x33 false))))
  1.4010 +(mp (asserted $x33) @x53 false)))))))))))
  1.4011 +
  1.4012 +5d3ccbcf168a634cad3952ad8f6d2798329d6a77 75 0
  1.4013 +unsat
  1.4014 +((set-logic AUFLIA)
  1.4015 +(proof
  1.4016 +(let ((?x78 (cons$ 2 nil$)))
  1.4017 +(let ((?x79 (cons$ 1 ?x78)))
  1.4018 +(let ((?x74 (cons$ 1 nil$)))
  1.4019 +(let ((?x75 (cons$ 0 ?x74)))
  1.4020 +(let ((?x76 (map$ uu$ ?x75)))
  1.4021 +(let (($x80 (= ?x76 ?x79)))
  1.4022 +(let ((?x185 (map$ uu$ ?x74)))
  1.4023 +(let ((?x189 (map$ uu$ nil$)))
  1.4024 +(let ((?x188 (fun_app$ uu$ 1)))
  1.4025 +(let ((?x160 (cons$ ?x188 ?x189)))
  1.4026 +(let (($x290 (= ?x185 ?x160)))
  1.4027 +(let (($x521 (forall ((?v0 Int_int_fun$) (?v1 Int) (?v2 Int_list$) )(!(= (map$ ?v0 (cons$ ?v1 ?v2)) (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2))) :pattern ( (map$ ?v0 (cons$ ?v1 ?v2)) ) :pattern ( (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2)) )))
  1.4028 +))
  1.4029 +(let (($x72 (forall ((?v0 Int_int_fun$) (?v1 Int) (?v2 Int_list$) )(= (map$ ?v0 (cons$ ?v1 ?v2)) (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2))))
  1.4030 +))
  1.4031 +(let (($x71 (= (map$ ?2 (cons$ ?1 ?0)) (cons$ (fun_app$ ?2 ?1) (map$ ?2 ?0)))))
  1.4032 +(let ((@x97 (mp~ (asserted $x72) (nnf-pos (refl (~ $x71 $x71)) (~ $x72 $x72)) $x72)))
  1.4033 +(let ((@x526 (mp @x97 (quant-intro (refl (= $x71 $x71)) (= $x72 $x521)) $x521)))
  1.4034 +(let (($x173 (or (not $x521) $x290)))
  1.4035 +(let ((@x506 ((_ quant-inst uu$ 1 nil$) $x173)))
  1.4036 +(let (($x492 (= ?x189 nil$)))
  1.4037 +(let (($x513 (forall ((?v0 Int_int_fun$) )(!(= (map$ ?v0 nil$) nil$) :pattern ( (map$ ?v0 nil$) )))
  1.4038 +))
  1.4039 +(let (($x61 (forall ((?v0 Int_int_fun$) )(= (map$ ?v0 nil$) nil$))
  1.4040 +))
  1.4041 +(let ((@x515 (refl (= (= (map$ ?0 nil$) nil$) (= (map$ ?0 nil$) nil$)))))
  1.4042 +(let ((@x83 (refl (~ (= (map$ ?0 nil$) nil$) (= (map$ ?0 nil$) nil$)))))
  1.4043 +(let ((@x518 (mp (mp~ (asserted $x61) (nnf-pos @x83 (~ $x61 $x61)) $x61) (quant-intro @x515 (= $x61 $x513)) $x513)))
  1.4044 +(let (($x495 (or (not $x513) $x492)))
  1.4045 +(let ((@x496 ((_ quant-inst uu$) $x495)))
  1.4046 +(let (($x136 (= ?x188 2)))
  1.4047 +(let (($x51 (forall ((?v0 Int) )(!(= (+ ?v0 (* (- 1) (fun_app$ uu$ ?v0))) (- 1)) :pattern ( (fun_app$ uu$ ?v0) )))
  1.4048 +))
  1.4049 +(let (($x47 (= (+ ?0 (* (- 1) (fun_app$ uu$ ?0))) (- 1))))
  1.4050 +(let (($x34 (forall ((?v0 Int) )(!(let ((?x29 (fun_app$ uu$ ?v0)))
  1.4051 +(= ?x29 (+ ?v0 1))) :pattern ( (fun_app$ uu$ ?v0) )))
  1.4052 +))
  1.4053 +(let (($x42 (forall ((?v0 Int) )(!(let ((?x29 (fun_app$ uu$ ?v0)))
  1.4054 +(= ?x29 (+ 1 ?v0))) :pattern ( (fun_app$ uu$ ?v0) )))
  1.4055 +))
  1.4056 +(let ((@x53 (quant-intro (rewrite (= (= (fun_app$ uu$ ?0) (+ 1 ?0)) $x47)) (= $x42 $x51))))
  1.4057 +(let ((?x29 (fun_app$ uu$ ?0)))
  1.4058 +(let (($x39 (= ?x29 (+ 1 ?0))))
  1.4059 +(let ((@x41 (monotonicity (rewrite (= (+ ?0 1) (+ 1 ?0))) (= (= ?x29 (+ ?0 1)) $x39))))
  1.4060 +(let ((@x56 (mp (asserted $x34) (trans (quant-intro @x41 (= $x34 $x42)) @x53 (= $x34 $x51)) $x51)))
  1.4061 +(let ((@x85 (mp~ @x56 (nnf-pos (refl (~ $x47 $x47)) (~ $x51 $x51)) $x51)))
  1.4062 +(let (($x145 (not $x51)))
  1.4063 +(let (($x499 (or $x145 $x136)))
  1.4064 +(let ((@x498 (rewrite (= (= (+ 1 (* (- 1) ?x188)) (- 1)) $x136))))
  1.4065 +(let ((@x204 (monotonicity @x498 (= (or $x145 (= (+ 1 (* (- 1) ?x188)) (- 1))) $x499))))
  1.4066 +(let ((@x207 (trans @x204 (rewrite (= $x499 $x499)) (= (or $x145 (= (+ 1 (* (- 1) ?x188)) (- 1))) $x499))))
  1.4067 +(let ((@x104 (mp ((_ quant-inst 1) (or $x145 (= (+ 1 (* (- 1) ?x188)) (- 1)))) @x207 $x499)))
  1.4068 +(let ((@x191 (monotonicity (symm (unit-resolution @x104 @x85 $x136) (= 2 ?x188)) (symm (unit-resolution @x496 @x518 $x492) (= nil$ ?x189)) (= ?x78 ?x160))))
  1.4069 +(let ((@x473 (trans @x191 (symm (unit-resolution @x506 @x526 $x290) (= ?x160 ?x185)) (= ?x78 ?x185))))
  1.4070 +(let ((?x182 (fun_app$ uu$ 0)))
  1.4071 +(let (($x163 (= ?x182 1)))
  1.4072 +(let (($x487 (or $x145 $x163)))
  1.4073 +(let ((@x501 (monotonicity (rewrite (= (+ 0 (* (- 1) ?x182)) (* (- 1) ?x182))) (= (= (+ 0 (* (- 1) ?x182)) (- 1)) (= (* (- 1) ?x182) (- 1))))))
  1.4074 +(let ((@x503 (trans @x501 (rewrite (= (= (* (- 1) ?x182) (- 1)) $x163)) (= (= (+ 0 (* (- 1) ?x182)) (- 1)) $x163))))
  1.4075 +(let ((@x151 (monotonicity @x503 (= (or $x145 (= (+ 0 (* (- 1) ?x182)) (- 1))) $x487))))
  1.4076 +(let ((@x490 (trans @x151 (rewrite (= $x487 $x487)) (= (or $x145 (= (+ 0 (* (- 1) ?x182)) (- 1))) $x487))))
  1.4077 +(let ((@x491 (mp ((_ quant-inst 0) (or $x145 (= (+ 0 (* (- 1) ?x182)) (- 1)))) @x490 $x487)))
  1.4078 +(let ((@x478 (monotonicity (symm (unit-resolution @x491 @x85 $x163) (= 1 ?x182)) @x473 (= ?x79 (cons$ ?x182 ?x185)))))
  1.4079 +(let ((?x186 (cons$ ?x182 ?x185)))
  1.4080 +(let (($x187 (= ?x76 ?x186)))
  1.4081 +(let (($x504 (or (not $x521) $x187)))
  1.4082 +(let ((@x505 ((_ quant-inst uu$ 0 (cons$ 1 nil$)) $x504)))
  1.4083 +(let ((@x466 (trans (unit-resolution @x505 @x526 $x187) (symm @x478 (= ?x186 ?x79)) $x80)))
  1.4084 +(let (($x81 (not $x80)))
  1.4085 +(let ((@x82 (asserted $x81)))
  1.4086 +(unit-resolution @x82 @x466 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.4087 +
  1.4088 +40c61a0200976d6203302a7343af5b7ad1e6ce36 11 0
  1.4089 +unsat
  1.4090 +((set-logic AUFLIA)
  1.4091 +(proof
  1.4092 +(let (($x29 (forall ((?v0 A$) )(p$ ?v0))
  1.4093 +))
  1.4094 +(let (($x30 (not $x29)))
  1.4095 +(let (($x31 (or $x29 $x30)))
  1.4096 +(let (($x32 (not $x31)))
  1.4097 +(let ((@x42 (trans (monotonicity (rewrite (= $x31 true)) (= $x32 (not true))) (rewrite (= (not true) false)) (= $x32 false))))
  1.4098 +(mp (asserted $x32) @x42 false))))))))
  1.4099 +
  1.4100 +f17a5e4d5f1a5a93fbc847f858c7c845c29d8349 109 0
  1.4101 +unsat
  1.4102 +((set-logic AUFLIA)
  1.4103 +(proof
  1.4104 +(let ((?x75 (dec_10$ 4)))
  1.4105 +(let ((?x76 (* 4 ?x75)))
  1.4106 +(let ((?x77 (dec_10$ ?x76)))
  1.4107 +(let (($x79 (= ?x77 6)))
  1.4108 +(let (($x150 (<= ?x75 4)))
  1.4109 +(let (($x174 (= ?x75 4)))
  1.4110 +(let (($x513 (forall ((?v0 Int) )(!(let (($x55 (>= ?v0 10)))
  1.4111 +(ite $x55 (= (dec_10$ ?v0) (dec_10$ (+ (- 10) ?v0))) (= (dec_10$ ?v0) ?v0))) :pattern ( (dec_10$ ?v0) )))
  1.4112 +))
  1.4113 +(let (($x92 (forall ((?v0 Int) )(let (($x55 (>= ?v0 10)))
  1.4114 +(ite $x55 (= (dec_10$ ?v0) (dec_10$ (+ (- 10) ?v0))) (= (dec_10$ ?v0) ?v0))))
  1.4115 +))
  1.4116 +(let (($x55 (>= ?0 10)))
  1.4117 +(let (($x87 (ite $x55 (= (dec_10$ ?0) (dec_10$ (+ (- 10) ?0))) (= (dec_10$ ?0) ?0))))
  1.4118 +(let (($x68 (forall ((?v0 Int) )(let ((?x38 (+ (- 10) ?v0)))
  1.4119 +(let ((?x41 (dec_10$ ?x38)))
  1.4120 +(let (($x55 (>= ?v0 10)))
  1.4121 +(let ((?x60 (ite $x55 ?x41 ?v0)))
  1.4122 +(let ((?x28 (dec_10$ ?v0)))
  1.4123 +(= ?x28 ?x60)))))))
  1.4124 +))
  1.4125 +(let ((?x38 (+ (- 10) ?0)))
  1.4126 +(let ((?x41 (dec_10$ ?x38)))
  1.4127 +(let ((?x60 (ite $x55 ?x41 ?0)))
  1.4128 +(let ((?x28 (dec_10$ ?0)))
  1.4129 +(let (($x65 (= ?x28 ?x60)))
  1.4130 +(let (($x35 (forall ((?v0 Int) )(let ((?x28 (dec_10$ ?v0)))
  1.4131 +(= ?x28 (ite (< ?v0 10) ?v0 (dec_10$ (- ?v0 10))))))
  1.4132 +))
  1.4133 +(let (($x50 (forall ((?v0 Int) )(let ((?x38 (+ (- 10) ?v0)))
  1.4134 +(let ((?x41 (dec_10$ ?x38)))
  1.4135 +(let (($x30 (< ?v0 10)))
  1.4136 +(let ((?x44 (ite $x30 ?v0 ?x41)))
  1.4137 +(let ((?x28 (dec_10$ ?v0)))
  1.4138 +(= ?x28 ?x44)))))))
  1.4139 +))
  1.4140 +(let ((@x59 (monotonicity (rewrite (= (< ?0 10) (not $x55))) (= (ite (< ?0 10) ?0 ?x41) (ite (not $x55) ?0 ?x41)))))
  1.4141 +(let ((@x64 (trans @x59 (rewrite (= (ite (not $x55) ?0 ?x41) ?x60)) (= (ite (< ?0 10) ?0 ?x41) ?x60))))
  1.4142 +(let ((@x67 (monotonicity @x64 (= (= ?x28 (ite (< ?0 10) ?0 ?x41)) $x65))))
  1.4143 +(let (($x30 (< ?0 10)))
  1.4144 +(let ((?x44 (ite $x30 ?0 ?x41)))
  1.4145 +(let (($x47 (= ?x28 ?x44)))
  1.4146 +(let ((@x43 (monotonicity (rewrite (= (- ?0 10) ?x38)) (= (dec_10$ (- ?0 10)) ?x41))))
  1.4147 +(let ((@x49 (monotonicity (monotonicity @x43 (= (ite $x30 ?0 (dec_10$ (- ?0 10))) ?x44)) (= (= ?x28 (ite $x30 ?0 (dec_10$ (- ?0 10)))) $x47))))
  1.4148 +(let ((@x72 (trans (quant-intro @x49 (= $x35 $x50)) (quant-intro @x67 (= $x50 $x68)) (= $x35 $x68))))
  1.4149 +(let ((@x86 (mp~ (mp (asserted $x35) @x72 $x68) (nnf-pos (refl (~ $x65 $x65)) (~ $x68 $x68)) $x68)))
  1.4150 +(let ((@x95 (mp @x86 (quant-intro (rewrite (= $x65 $x87)) (= $x68 $x92)) $x92)))
  1.4151 +(let ((@x518 (mp @x95 (quant-intro (refl (= $x87 $x87)) (= $x92 $x513)) $x513)))
  1.4152 +(let (($x501 (not $x513)))
  1.4153 +(let (($x163 (or $x501 $x174)))
  1.4154 +(let ((?x97 (+ (- 10) 4)))
  1.4155 +(let ((?x183 (dec_10$ ?x97)))
  1.4156 +(let (($x184 (= ?x75 ?x183)))
  1.4157 +(let (($x96 (>= 4 10)))
  1.4158 +(let (($x185 (ite $x96 $x184 $x174)))
  1.4159 +(let ((@x172 (monotonicity (monotonicity (rewrite (= ?x97 (- 6))) (= ?x183 (dec_10$ (- 6)))) (= $x184 (= ?x75 (dec_10$ (- 6)))))))
  1.4160 +(let ((@x507 (monotonicity (rewrite (= $x96 false)) @x172 (= $x185 (ite false (= ?x75 (dec_10$ (- 6))) $x174)))))
  1.4161 +(let ((@x511 (trans @x507 (rewrite (= (ite false (= ?x75 (dec_10$ (- 6))) $x174) $x174)) (= $x185 $x174))))
  1.4162 +(let ((@x148 (trans (monotonicity @x511 (= (or $x501 $x185) $x163)) (rewrite (= $x163 $x163)) (= (or $x501 $x185) $x163))))
  1.4163 +(let ((@x149 (mp ((_ quant-inst 4) (or $x501 $x185)) @x148 $x163)))
  1.4164 +(let ((@x438 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x174) $x150)) (unit-resolution @x149 @x518 $x174) $x150)))
  1.4165 +(let (($x151 (>= ?x75 4)))
  1.4166 +(let ((@x428 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x174) $x151)) (unit-resolution @x149 @x518 $x174) $x151)))
  1.4167 +(let ((?x489 (+ (- 10) ?x76)))
  1.4168 +(let ((?x490 (dec_10$ ?x489)))
  1.4169 +(let ((?x448 (* (- 1) ?x490)))
  1.4170 +(let ((?x449 (+ ?x76 ?x448)))
  1.4171 +(let (($x444 (<= ?x449 10)))
  1.4172 +(let (($x292 (= ?x449 10)))
  1.4173 +(let ((?x455 (+ (- 20) ?x76)))
  1.4174 +(let ((?x458 (dec_10$ ?x455)))
  1.4175 +(let (($x461 (= ?x490 ?x458)))
  1.4176 +(let (($x310 (>= ?x75 5)))
  1.4177 +(let (($x450 (ite $x310 $x461 $x292)))
  1.4178 +(let (($x453 (or $x501 $x450)))
  1.4179 +(let (($x470 (= ?x490 ?x489)))
  1.4180 +(let ((?x467 (+ (- 10) ?x489)))
  1.4181 +(let ((?x468 (dec_10$ ?x467)))
  1.4182 +(let (($x469 (= ?x490 ?x468)))
  1.4183 +(let (($x466 (>= ?x489 10)))
  1.4184 +(let (($x471 (ite $x466 $x469 $x470)))
  1.4185 +(let ((@x463 (monotonicity (monotonicity (rewrite (= ?x467 ?x455)) (= ?x468 ?x458)) (= $x469 $x461))))
  1.4186 +(let ((@x452 (monotonicity (rewrite (= $x466 $x310)) @x463 (rewrite (= $x470 $x292)) (= $x471 $x450))))
  1.4187 +(let ((@x442 (trans (monotonicity @x452 (= (or $x501 $x471) $x453)) (rewrite (= $x453 $x453)) (= (or $x501 $x471) $x453))))
  1.4188 +(let ((@x443 (mp ((_ quant-inst (+ (- 10) ?x76)) (or $x501 $x471)) @x442 $x453)))
  1.4189 +(let (($x346 (not $x310)))
  1.4190 +(let ((@x418 (unit-resolution (def-axiom (or (not $x450) $x310 $x292)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x346 (not $x150))) @x438 $x346) (or (not $x450) $x292))))
  1.4191 +(let ((@x422 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x292) $x444)) (unit-resolution @x418 (unit-resolution @x443 @x518 $x450) $x292) $x444)))
  1.4192 +(let (($x336 (>= ?x449 10)))
  1.4193 +(let ((@x410 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x292) $x336)) (unit-resolution @x418 (unit-resolution @x443 @x518 $x450) $x292) $x336)))
  1.4194 +(let (($x491 (= ?x77 ?x490)))
  1.4195 +(let ((?x499 (* (- 1) ?x77)))
  1.4196 +(let ((?x485 (+ ?x76 ?x499)))
  1.4197 +(let (($x497 (= ?x485 0)))
  1.4198 +(let (($x131 (>= ?x75 3)))
  1.4199 +(let (($x486 (ite $x131 $x491 $x497)))
  1.4200 +(let (($x205 (or $x501 $x486)))
  1.4201 +(let ((@x204 (monotonicity (rewrite (= (>= ?x76 10) $x131)) (rewrite (= (= ?x77 ?x76) $x497)) (= (ite (>= ?x76 10) $x491 (= ?x77 ?x76)) $x486))))
  1.4202 +(let ((@x479 (monotonicity @x204 (= (or $x501 (ite (>= ?x76 10) $x491 (= ?x77 ?x76))) $x205))))
  1.4203 +(let ((@x212 (trans @x479 (rewrite (= $x205 $x205)) (= (or $x501 (ite (>= ?x76 10) $x491 (= ?x77 ?x76))) $x205))))
  1.4204 +(let ((@x481 (mp ((_ quant-inst (* 4 ?x75)) (or $x501 (ite (>= ?x76 10) $x491 (= ?x77 ?x76)))) @x212 $x205)))
  1.4205 +(let ((@x397 (unit-resolution (def-axiom (or (not $x486) (not $x131) $x491)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x151) $x131)) @x428 $x131) (unit-resolution @x481 @x518 $x486) $x491)))
  1.4206 +(let (($x80 (not $x79)))
  1.4207 +(let ((@x81 (asserted $x80)))
  1.4208 +(unit-resolution @x81 (trans @x397 ((_ th-lemma arith eq-propagate 1 1 -4 -4) @x410 @x422 @x428 @x438 (= ?x490 6)) $x79) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.4209 +
  1.4210 +16cd6b3ca7edac6486d6ca7a72e97f4ad1c07e37 336 0
  1.4211 +unsat
  1.4212 +((set-logic <null>)
  1.4213 +(proof
  1.4214 +(let ((?x99 (mod$ l$ 2)))
  1.4215 +(let ((?x96 (map$ uu$ xs$)))
  1.4216 +(let ((?x97 (eval_dioph$ ks$ ?x96)))
  1.4217 +(let ((?x98 (mod$ ?x97 2)))
  1.4218 +(let (($x100 (= ?x98 ?x99)))
  1.4219 +(let ((?x93 (eval_dioph$ ks$ xs$)))
  1.4220 +(let (($x95 (= ?x93 l$)))
  1.4221 +(let ((?x110 (* (- 1) ?x97)))
  1.4222 +(let ((?x111 (+ l$ ?x110)))
  1.4223 +(let ((?x114 (div$ ?x111 2)))
  1.4224 +(let ((?x101 (map$ uua$ xs$)))
  1.4225 +(let ((?x102 (eval_dioph$ ks$ ?x101)))
  1.4226 +(let (($x117 (= ?x102 ?x114)))
  1.4227 +(let (($x282 (not $x117)))
  1.4228 +(let (($x281 (not $x100)))
  1.4229 +(let (($x283 (or $x281 $x282)))
  1.4230 +(let ((?x744 (div ?x93 2)))
  1.4231 +(let ((?x970 (* (- 1) ?x744)))
  1.4232 +(let ((?x699 (mod ?x93 2)))
  1.4233 +(let ((?x726 (* (- 1) ?x699)))
  1.4234 +(let ((?x516 (mod l$ 2)))
  1.4235 +(let ((?x543 (* (- 1) ?x516)))
  1.4236 +(let (($x972 (>= (+ l$ ?x99 ?x543 (* (- 1) (div l$ 2)) ?x726 ?x970) 1)))
  1.4237 +(let ((?x369 (* (- 1) l$)))
  1.4238 +(let ((?x693 (+ ?x93 ?x369)))
  1.4239 +(let (($x695 (>= ?x693 0)))
  1.4240 +(let (($x861 (not $x695)))
  1.4241 +(let (($x694 (<= ?x693 0)))
  1.4242 +(let ((?x686 (+ ?x102 (* (- 1) ?x114))))
  1.4243 +(let (($x687 (<= ?x686 0)))
  1.4244 +(let (($x284 (not $x283)))
  1.4245 +(let ((@x466 (hypothesis $x284)))
  1.4246 +(let ((@x856 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x687)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x687)))
  1.4247 +(let ((?x437 (+ l$ ?x110 (* (- 2) (div ?x111 2)) (* (- 1) (mod (+ l$ ?x97) 2)))))
  1.4248 +(let (($x443 (>= ?x437 0)))
  1.4249 +(let (($x434 (= ?x437 0)))
  1.4250 +(let ((@x26 (true-axiom true)))
  1.4251 +(let ((@x793 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) $x443)) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) $x443)))
  1.4252 +(let ((?x501 (* (- 2) ?x102)))
  1.4253 +(let ((?x502 (+ ?x93 ?x110 ?x501)))
  1.4254 +(let (($x509 (<= ?x502 0)))
  1.4255 +(let (($x503 (= ?x502 0)))
  1.4256 +(let (($x304 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(let ((?x45 (eval_dioph$ ?v0 ?v1)))
  1.4257 +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1))))))
  1.4258 +(= ?x83 0))) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ) :pattern ( (eval_dioph$ ?v0 (map$ uua$ ?v1)) )))
  1.4259 +))
  1.4260 +(let (($x85 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1)))
  1.4261 +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1))))))
  1.4262 +(= ?x83 0))))
  1.4263 +))
  1.4264 +(let ((?x45 (eval_dioph$ ?1 ?0)))
  1.4265 +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?1 (map$ uu$ ?0))) (* (- 2) (eval_dioph$ ?1 (map$ uua$ ?0))))))
  1.4266 +(let (($x79 (= ?x83 0)))
  1.4267 +(let (($x58 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1)))
  1.4268 +(let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1))))
  1.4269 +(let ((?x56 (+ (* (eval_dioph$ ?v0 (map$ uua$ ?v1)) 2) ?x48)))
  1.4270 +(= ?x56 ?x45)))))
  1.4271 +))
  1.4272 +(let (($x74 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1)))
  1.4273 +(let ((?x54 (eval_dioph$ ?v0 (map$ uua$ ?v1))))
  1.4274 +(let ((?x60 (* 2 ?x54)))
  1.4275 +(let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1))))
  1.4276 +(let ((?x66 (+ ?x48 ?x60)))
  1.4277 +(= ?x66 ?x45)))))))
  1.4278 +))
  1.4279 +(let ((?x54 (eval_dioph$ ?1 (map$ uua$ ?0))))
  1.4280 +(let ((?x60 (* 2 ?x54)))
  1.4281 +(let ((?x48 (eval_dioph$ ?1 (map$ uu$ ?0))))
  1.4282 +(let ((?x66 (+ ?x48 ?x60)))
  1.4283 +(let (($x71 (= ?x66 ?x45)))
  1.4284 +(let ((@x65 (monotonicity (rewrite (= (* ?x54 2) ?x60)) (= (+ (* ?x54 2) ?x48) (+ ?x60 ?x48)))))
  1.4285 +(let ((@x70 (trans @x65 (rewrite (= (+ ?x60 ?x48) ?x66)) (= (+ (* ?x54 2) ?x48) ?x66))))
  1.4286 +(let ((@x76 (quant-intro (monotonicity @x70 (= (= (+ (* ?x54 2) ?x48) ?x45) $x71)) (= $x58 $x74))))
  1.4287 +(let ((@x89 (trans @x76 (quant-intro (rewrite (= $x71 $x79)) (= $x74 $x85)) (= $x58 $x85))))
  1.4288 +(let ((@x270 (mp~ (mp (asserted $x58) @x89 $x85) (nnf-pos (refl (~ $x79 $x79)) (~ $x85 $x85)) $x85)))
  1.4289 +(let ((@x309 (mp @x270 (quant-intro (refl (= $x79 $x79)) (= $x85 $x304)) $x304)))
  1.4290 +(let (($x507 (or (not $x304) $x503)))
  1.4291 +(let ((@x508 ((_ quant-inst ks$ xs$) $x507)))
  1.4292 +(let ((@x800 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x509)) (unit-resolution @x508 @x309 $x503) $x509)))
  1.4293 +(let ((?x396 (+ ?x114 (* (- 1) (div ?x111 2)))))
  1.4294 +(let (($x413 (<= ?x396 0)))
  1.4295 +(let (($x397 (= ?x396 0)))
  1.4296 +(let (($x311 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x145 (div ?v0 ?v1)))
  1.4297 +(let ((?x157 (* (- 1) ?v1)))
  1.4298 +(let ((?x154 (* (- 1) ?v0)))
  1.4299 +(let ((?x160 (div ?x154 ?x157)))
  1.4300 +(let (($x175 (<= ?v1 0)))
  1.4301 +(let ((?x182 (ite $x175 ?x160 ?x145)))
  1.4302 +(let (($x143 (= ?v1 0)))
  1.4303 +(let ((?x141 (div$ ?v0 ?v1)))
  1.4304 +(= ?x141 (ite $x143 0 ?x182)))))))))) :pattern ( (div$ ?v0 ?v1) )))
  1.4305 +))
  1.4306 +(let (($x193 (forall ((?v0 Int) (?v1 Int) )(let ((?x145 (div ?v0 ?v1)))
  1.4307 +(let ((?x157 (* (- 1) ?v1)))
  1.4308 +(let ((?x154 (* (- 1) ?v0)))
  1.4309 +(let ((?x160 (div ?x154 ?x157)))
  1.4310 +(let (($x175 (<= ?v1 0)))
  1.4311 +(let ((?x182 (ite $x175 ?x160 ?x145)))
  1.4312 +(let (($x143 (= ?v1 0)))
  1.4313 +(let ((?x141 (div$ ?v0 ?v1)))
  1.4314 +(= ?x141 (ite $x143 0 ?x182)))))))))))
  1.4315 +))
  1.4316 +(let ((?x145 (div ?1 ?0)))
  1.4317 +(let ((?x157 (* (- 1) ?0)))
  1.4318 +(let ((?x154 (* (- 1) ?1)))
  1.4319 +(let ((?x160 (div ?x154 ?x157)))
  1.4320 +(let (($x175 (<= ?0 0)))
  1.4321 +(let ((?x182 (ite $x175 ?x160 ?x145)))
  1.4322 +(let (($x143 (= ?0 0)))
  1.4323 +(let ((?x141 (div$ ?1 ?0)))
  1.4324 +(let (($x190 (= ?x141 (ite $x143 0 ?x182))))
  1.4325 +(let (($x152 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0)))
  1.4326 +(let ((?x150 (ite $x143 0 (ite (< 0 ?v1) (div ?v0 ?v1) (div (- ?v0) (- ?v1))))))
  1.4327 +(let ((?x141 (div$ ?v0 ?v1)))
  1.4328 +(= ?x141 ?x150)))))
  1.4329 +))
  1.4330 +(let (($x172 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1)))
  1.4331 +(let ((?x154 (* (- 1) ?v0)))
  1.4332 +(let ((?x160 (div ?x154 ?x157)))
  1.4333 +(let ((?x145 (div ?v0 ?v1)))
  1.4334 +(let (($x144 (< 0 ?v1)))
  1.4335 +(let ((?x163 (ite $x144 ?x145 ?x160)))
  1.4336 +(let (($x143 (= ?v1 0)))
  1.4337 +(let ((?x166 (ite $x143 0 ?x163)))
  1.4338 +(let ((?x141 (div$ ?v0 ?v1)))
  1.4339 +(= ?x141 ?x166)))))))))))
  1.4340 +))
  1.4341 +(let (($x144 (< 0 ?0)))
  1.4342 +(let ((?x163 (ite $x144 ?x145 ?x160)))
  1.4343 +(let ((?x166 (ite $x143 0 ?x163)))
  1.4344 +(let ((@x181 (monotonicity (rewrite (= $x144 (not $x175))) (= ?x163 (ite (not $x175) ?x145 ?x160)))))
  1.4345 +(let ((@x186 (trans @x181 (rewrite (= (ite (not $x175) ?x145 ?x160) ?x182)) (= ?x163 ?x182))))
  1.4346 +(let ((@x192 (monotonicity (monotonicity @x186 (= ?x166 (ite $x143 0 ?x182))) (= (= ?x141 ?x166) $x190))))
  1.4347 +(let (($x169 (= ?x141 ?x166)))
  1.4348 +(let (($x170 (= (= ?x141 (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0))))) $x169)))
  1.4349 +(let ((@x162 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (div (- ?1) (- ?0)) ?x160))))
  1.4350 +(let ((@x168 (monotonicity (monotonicity @x162 (= (ite $x144 ?x145 (div (- ?1) (- ?0))) ?x163)) (= (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0)))) ?x166))))
  1.4351 +(let ((@x197 (trans (quant-intro (monotonicity @x168 $x170) (= $x152 $x172)) (quant-intro @x192 (= $x172 $x193)) (= $x152 $x193))))
  1.4352 +(let ((@x275 (mp~ (mp (asserted $x152) @x197 $x193) (nnf-pos (refl (~ $x190 $x190)) (~ $x193 $x193)) $x193)))
  1.4353 +(let ((@x316 (mp @x275 (quant-intro (refl (= $x190 $x190)) (= $x193 $x311)) $x311)))
  1.4354 +(let (($x403 (or (not $x311) $x397)))
  1.4355 +(let ((?x361 (div ?x111 2)))
  1.4356 +(let (($x357 (<= 2 0)))
  1.4357 +(let ((?x362 (ite $x357 (div (* (- 1) ?x111) (* (- 1) 2)) ?x361)))
  1.4358 +(let (($x356 (= 2 0)))
  1.4359 +(let ((?x363 (ite $x356 0 ?x362)))
  1.4360 +(let (($x364 (= ?x114 ?x363)))
  1.4361 +(let ((@x374 (rewrite (= (* (- 1) 2) (- 2)))))
  1.4362 +(let ((@x377 (monotonicity (rewrite (= (* (- 1) ?x111) (+ ?x369 ?x97))) @x374 (= (div (* (- 1) ?x111) (* (- 1) 2)) (div (+ ?x369 ?x97) (- 2))))))
  1.4363 +(let ((@x368 (rewrite (= $x357 false))))
  1.4364 +(let ((@x380 (monotonicity @x368 @x377 (= ?x362 (ite false (div (+ ?x369 ?x97) (- 2)) ?x361)))))
  1.4365 +(let ((@x384 (trans @x380 (rewrite (= (ite false (div (+ ?x369 ?x97) (- 2)) ?x361) ?x361)) (= ?x362 ?x361))))
  1.4366 +(let ((@x366 (rewrite (= $x356 false))))
  1.4367 +(let ((@x391 (trans (monotonicity @x366 @x384 (= ?x363 (ite false 0 ?x361))) (rewrite (= (ite false 0 ?x361) ?x361)) (= ?x363 ?x361))))
  1.4368 +(let ((@x401 (trans (monotonicity @x391 (= $x364 (= ?x114 ?x361))) (rewrite (= (= ?x114 ?x361) $x397)) (= $x364 $x397))))
  1.4369 +(let ((@x410 (trans (monotonicity @x401 (= (or (not $x311) $x364) $x403)) (rewrite (= $x403 $x403)) (= (or (not $x311) $x364) $x403))))
  1.4370 +(let ((@x802 (unit-resolution (mp ((_ quant-inst (+ l$ ?x110) 2) (or (not $x311) $x364)) @x410 $x403) @x316 $x397)))
  1.4371 +(let ((?x425 (mod (+ l$ ?x97) 2)))
  1.4372 +(let (($x465 (>= ?x425 0)))
  1.4373 +(let ((@x810 ((_ th-lemma arith farkas 1 -2 -2 -1 1 1) (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (hypothesis $x687) @x800 (hypothesis (not $x694)) @x793 false)))
  1.4374 +(let (($x134 (not $x95)))
  1.4375 +(let (($x290 (= $x95 $x283)))
  1.4376 +(let ((@x289 (monotonicity (rewrite (= (and $x100 $x117) $x284)) (= (= $x134 (and $x100 $x117)) (= $x134 $x284)))))
  1.4377 +(let ((@x294 (trans @x289 (rewrite (= (= $x134 $x284) $x290)) (= (= $x134 (and $x100 $x117)) $x290))))
  1.4378 +(let (($x120 (and $x100 $x117)))
  1.4379 +(let (($x135 (= $x134 $x120)))
  1.4380 +(let (($x107 (= $x95 (and $x100 (= ?x102 (div$ (- l$ ?x97) 2))))))
  1.4381 +(let (($x108 (not $x107)))
  1.4382 +(let ((@x116 (monotonicity (rewrite (= (- l$ ?x97) ?x111)) (= (div$ (- l$ ?x97) 2) ?x114))))
  1.4383 +(let ((@x122 (monotonicity (monotonicity @x116 (= (= ?x102 (div$ (- l$ ?x97) 2)) $x117)) (= (and $x100 (= ?x102 (div$ (- l$ ?x97) 2))) $x120))))
  1.4384 +(let ((@x130 (trans (monotonicity @x122 (= $x107 (= $x95 $x120))) (rewrite (= (= $x95 $x120) (= $x95 $x120))) (= $x107 (= $x95 $x120)))))
  1.4385 +(let ((@x139 (trans (monotonicity @x130 (= $x108 (not (= $x95 $x120)))) (rewrite (= (not (= $x95 $x120)) $x135)) (= $x108 $x135))))
  1.4386 +(let ((@x295 (mp (mp (asserted $x108) @x139 $x135) @x294 $x290)))
  1.4387 +(let ((@x344 (unit-resolution (def-axiom (or $x134 $x283 (not $x290))) @x295 (or $x134 $x283))))
  1.4388 +(let ((@x898 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x95 (not $x694) $x861)) (unit-resolution @x344 @x466 $x134) (or (not $x694) $x861))))
  1.4389 +(let ((@x899 (unit-resolution @x898 (unit-resolution (lemma @x810 (or $x694 (not $x687))) @x856 $x694) $x861)))
  1.4390 +(let ((?x544 (+ ?x99 ?x543)))
  1.4391 +(let (($x561 (>= ?x544 0)))
  1.4392 +(let (($x545 (= ?x544 0)))
  1.4393 +(let (($x318 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x200 (mod ?v0 ?v1)))
  1.4394 +(let ((?x157 (* (- 1) ?v1)))
  1.4395 +(let ((?x154 (* (- 1) ?v0)))
  1.4396 +(let ((?x208 (mod ?x154 ?x157)))
  1.4397 +(let ((?x214 (* (- 1) ?x208)))
  1.4398 +(let (($x175 (<= ?v1 0)))
  1.4399 +(let ((?x234 (ite $x175 ?x214 ?x200)))
  1.4400 +(let (($x143 (= ?v1 0)))
  1.4401 +(let ((?x239 (ite $x143 ?v0 ?x234)))
  1.4402 +(let ((?x199 (mod$ ?v0 ?v1)))
  1.4403 +(= ?x199 ?x239))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
  1.4404 +))
  1.4405 +(let (($x245 (forall ((?v0 Int) (?v1 Int) )(let ((?x200 (mod ?v0 ?v1)))
  1.4406 +(let ((?x157 (* (- 1) ?v1)))
  1.4407 +(let ((?x154 (* (- 1) ?v0)))
  1.4408 +(let ((?x208 (mod ?x154 ?x157)))
  1.4409 +(let ((?x214 (* (- 1) ?x208)))
  1.4410 +(let (($x175 (<= ?v1 0)))
  1.4411 +(let ((?x234 (ite $x175 ?x214 ?x200)))
  1.4412 +(let (($x143 (= ?v1 0)))
  1.4413 +(let ((?x239 (ite $x143 ?v0 ?x234)))
  1.4414 +(let ((?x199 (mod$ ?v0 ?v1)))
  1.4415 +(= ?x199 ?x239))))))))))))
  1.4416 +))
  1.4417 +(let ((?x200 (mod ?1 ?0)))
  1.4418 +(let ((?x208 (mod ?x154 ?x157)))
  1.4419 +(let ((?x214 (* (- 1) ?x208)))
  1.4420 +(let ((?x234 (ite $x175 ?x214 ?x200)))
  1.4421 +(let ((?x239 (ite $x143 ?1 ?x234)))
  1.4422 +(let ((?x199 (mod$ ?1 ?0)))
  1.4423 +(let (($x242 (= ?x199 ?x239)))
  1.4424 +(let (($x206 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0)))
  1.4425 +(let ((?x204 (ite $x143 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
  1.4426 +(let ((?x199 (mod$ ?v0 ?v1)))
  1.4427 +(= ?x199 ?x204)))))
  1.4428 +))
  1.4429 +(let (($x228 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1)))
  1.4430 +(let ((?x154 (* (- 1) ?v0)))
  1.4431 +(let ((?x208 (mod ?x154 ?x157)))
  1.4432 +(let ((?x214 (* (- 1) ?x208)))
  1.4433 +(let ((?x200 (mod ?v0 ?v1)))
  1.4434 +(let (($x144 (< 0 ?v1)))
  1.4435 +(let ((?x219 (ite $x144 ?x200 ?x214)))
  1.4436 +(let (($x143 (= ?v1 0)))
  1.4437 +(let ((?x222 (ite $x143 ?v0 ?x219)))
  1.4438 +(let ((?x199 (mod$ ?v0 ?v1)))
  1.4439 +(= ?x199 ?x222))))))))))))
  1.4440 +))
  1.4441 +(let ((@x233 (monotonicity (rewrite (= $x144 (not $x175))) (= (ite $x144 ?x200 ?x214) (ite (not $x175) ?x200 ?x214)))))
  1.4442 +(let ((@x238 (trans @x233 (rewrite (= (ite (not $x175) ?x200 ?x214) ?x234)) (= (ite $x144 ?x200 ?x214) ?x234))))
  1.4443 +(let ((@x244 (monotonicity (monotonicity @x238 (= (ite $x143 ?1 (ite $x144 ?x200 ?x214)) ?x239)) (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 ?x214))) $x242))))
  1.4444 +(let ((?x219 (ite $x144 ?x200 ?x214)))
  1.4445 +(let ((?x222 (ite $x143 ?1 ?x219)))
  1.4446 +(let (($x225 (= ?x199 ?x222)))
  1.4447 +(let (($x226 (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))))) $x225)))
  1.4448 +(let ((@x210 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (mod (- ?1) (- ?0)) ?x208))))
  1.4449 +(let ((@x218 (trans (monotonicity @x210 (= (- (mod (- ?1) (- ?0))) (- ?x208))) (rewrite (= (- ?x208) ?x214)) (= (- (mod (- ?1) (- ?0))) ?x214))))
  1.4450 +(let ((@x221 (monotonicity @x218 (= (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))) ?x219))))
  1.4451 +(let ((@x224 (monotonicity @x221 (= (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0))))) ?x222))))
  1.4452 +(let ((@x249 (trans (quant-intro (monotonicity @x224 $x226) (= $x206 $x228)) (quant-intro @x244 (= $x228 $x245)) (= $x206 $x245))))
  1.4453 +(let ((@x280 (mp~ (mp (asserted $x206) @x249 $x245) (nnf-pos (refl (~ $x242 $x242)) (~ $x245 $x245)) $x245)))
  1.4454 +(let ((@x323 (mp @x280 (quant-intro (refl (= $x242 $x242)) (= $x245 $x318)) $x318)))
  1.4455 +(let (($x550 (not $x318)))
  1.4456 +(let (($x551 (or $x550 $x545)))
  1.4457 +(let ((?x359 (* (- 1) 2)))
  1.4458 +(let ((?x511 (mod ?x369 ?x359)))
  1.4459 +(let ((?x512 (* (- 1) ?x511)))
  1.4460 +(let ((?x517 (ite $x357 ?x512 ?x516)))
  1.4461 +(let ((?x518 (ite $x356 l$ ?x517)))
  1.4462 +(let (($x519 (= ?x99 ?x518)))
  1.4463 +(let ((@x525 (monotonicity (monotonicity @x374 (= ?x511 (mod ?x369 (- 2)))) (= ?x512 (* (- 1) (mod ?x369 (- 2)))))))
  1.4464 +(let ((@x528 (monotonicity @x368 @x525 (= ?x517 (ite false (* (- 1) (mod ?x369 (- 2))) ?x516)))))
  1.4465 +(let ((@x532 (trans @x528 (rewrite (= (ite false (* (- 1) (mod ?x369 (- 2))) ?x516) ?x516)) (= ?x517 ?x516))))
  1.4466 +(let ((@x539 (trans (monotonicity @x366 @x532 (= ?x518 (ite false l$ ?x516))) (rewrite (= (ite false l$ ?x516) ?x516)) (= ?x518 ?x516))))
  1.4467 +(let ((@x549 (trans (monotonicity @x539 (= $x519 (= ?x99 ?x516))) (rewrite (= (= ?x99 ?x516) $x545)) (= $x519 $x545))))
  1.4468 +(let ((@x558 (trans (monotonicity @x549 (= (or $x550 $x519) $x551)) (rewrite (= $x551 $x551)) (= (or $x550 $x519) $x551))))
  1.4469 +(let ((@x559 (mp ((_ quant-inst l$ 2) (or $x550 $x519)) @x558 $x551)))
  1.4470 +(let ((@x902 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x561)) (unit-resolution @x559 @x323 $x545) $x561)))
  1.4471 +(let ((?x757 (* (- 2) ?x744)))
  1.4472 +(let ((?x758 (+ ?x93 ?x726 ?x757)))
  1.4473 +(let (($x764 (>= ?x758 0)))
  1.4474 +(let (($x756 (= ?x758 0)))
  1.4475 +(let ((@x872 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x764)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x764)))
  1.4476 +(let ((?x562 (div l$ 2)))
  1.4477 +(let ((?x575 (* (- 2) ?x562)))
  1.4478 +(let ((?x576 (+ l$ ?x543 ?x575)))
  1.4479 +(let (($x582 (>= ?x576 0)))
  1.4480 +(let (($x574 (= ?x576 0)))
  1.4481 +(let ((@x880 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x582)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x582)))
  1.4482 +(let ((?x504 (mod$ ?x93 2)))
  1.4483 +(let ((?x727 (+ ?x504 ?x726)))
  1.4484 +(let (($x728 (= ?x727 0)))
  1.4485 +(let (($x733 (or $x550 $x728)))
  1.4486 +(let ((?x696 (* (- 1) ?x93)))
  1.4487 +(let ((?x697 (mod ?x696 ?x359)))
  1.4488 +(let ((?x698 (* (- 1) ?x697)))
  1.4489 +(let ((?x700 (ite $x357 ?x698 ?x699)))
  1.4490 +(let ((?x701 (ite $x356 ?x93 ?x700)))
  1.4491 +(let (($x702 (= ?x504 ?x701)))
  1.4492 +(let ((@x708 (monotonicity (monotonicity @x374 (= ?x697 (mod ?x696 (- 2)))) (= ?x698 (* (- 1) (mod ?x696 (- 2)))))))
  1.4493 +(let ((@x711 (monotonicity @x368 @x708 (= ?x700 (ite false (* (- 1) (mod ?x696 (- 2))) ?x699)))))
  1.4494 +(let ((@x715 (trans @x711 (rewrite (= (ite false (* (- 1) (mod ?x696 (- 2))) ?x699) ?x699)) (= ?x700 ?x699))))
  1.4495 +(let ((@x722 (trans (monotonicity @x366 @x715 (= ?x701 (ite false ?x93 ?x699))) (rewrite (= (ite false ?x93 ?x699) ?x699)) (= ?x701 ?x699))))
  1.4496 +(let ((@x732 (trans (monotonicity @x722 (= $x702 (= ?x504 ?x699))) (rewrite (= (= ?x504 ?x699) $x728)) (= $x702 $x728))))
  1.4497 +(let ((@x740 (trans (monotonicity @x732 (= (or $x550 $x702) $x733)) (rewrite (= $x733 $x733)) (= (or $x550 $x702) $x733))))
  1.4498 +(let ((@x427 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (>= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (>= ?x727 0))))
  1.4499 +(let ((?x783 (* (- 1) ?x504)))
  1.4500 +(let ((?x784 (+ ?x99 ?x783)))
  1.4501 +(let (($x786 (>= ?x784 0)))
  1.4502 +(let (($x782 (= ?x99 ?x504)))
  1.4503 +(let (($x821 (= ?x98 ?x504)))
  1.4504 +(let (($x505 (= ?x504 ?x98)))
  1.4505 +(let (($x297 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) )))
  1.4506 +))
  1.4507 +(let (($x51 (forall ((?v0 Int_list$) (?v1 Int_list$) )(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)))
  1.4508 +))
  1.4509 +(let (($x50 (= (mod$ ?x45 2) (mod$ ?x48 2))))
  1.4510 +(let ((@x265 (mp~ (asserted $x51) (nnf-pos (refl (~ $x50 $x50)) (~ $x51 $x51)) $x51)))
  1.4511 +(let ((@x302 (mp @x265 (quant-intro (refl (= $x50 $x50)) (= $x51 $x297)) $x297)))
  1.4512 +(let (($x514 (or (not $x297) $x505)))
  1.4513 +(let ((@x515 ((_ quant-inst ks$ xs$) $x514)))
  1.4514 +(let ((@x824 (symm (unit-resolution (def-axiom (or $x283 $x100)) @x466 $x100) (= ?x99 ?x98))))
  1.4515 +(let ((@x939 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x786)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x786)))
  1.4516 +(let (($x785 (<= ?x784 0)))
  1.4517 +(let ((@x887 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x785)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x785)))
  1.4518 +(let (($x688 (>= ?x686 0)))
  1.4519 +(let ((@x855 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x688)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x688)))
  1.4520 +(let ((@x979 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x425 2)))) @x26 (not (>= ?x425 2)))))
  1.4521 +(let (($x560 (<= ?x544 0)))
  1.4522 +(let ((@x461 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x560)) (unit-resolution @x559 @x323 $x545) $x560)))
  1.4523 +(let (($x763 (<= ?x758 0)))
  1.4524 +(let ((@x658 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x763)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x763)))
  1.4525 +(let (($x581 (<= ?x576 0)))
  1.4526 +(let ((@x986 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x581)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x581)))
  1.4527 +(let ((@x989 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (<= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (<= ?x727 0))))
  1.4528 +(let (($x510 (>= ?x502 0)))
  1.4529 +(let ((@x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x510)) (unit-resolution @x508 @x309 $x503) $x510)))
  1.4530 +(let ((@x998 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) (>= ?x396 0))) @x802 (>= ?x396 0))))
  1.4531 +(let ((@x1001 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) (<= ?x437 0))) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) (<= ?x437 0))))
  1.4532 +(let ((@x1002 ((_ th-lemma arith farkas 1 -2 -2 -1 -2 1 1 1 1 1 1) @x1001 @x998 (hypothesis $x688) @x994 (hypothesis $x972) (hypothesis $x785) @x989 @x986 @x658 @x461 @x979 false)))
  1.4533 +(let ((@x474 (unit-resolution (lemma @x1002 (or (not $x972) (not $x688) (not $x785))) @x855 @x887 (not $x972))))
  1.4534 +(let ((@x941 (unit-resolution @x474 ((_ th-lemma arith) @x939 @x427 @x880 @x872 @x902 @x899 $x972) false)))
  1.4535 +(let ((@x942 (lemma @x941 $x283)))
  1.4536 +(let ((@x340 (unit-resolution (def-axiom (or $x95 $x284 (not $x290))) @x295 (or $x95 $x284))))
  1.4537 +(let ((@x679 (unit-resolution @x340 @x942 $x95)))
  1.4538 +(let ((@x889 (trans (symm (unit-resolution @x515 @x302 $x505) $x821) (monotonicity @x679 (= ?x504 ?x99)) $x100)))
  1.4539 +(let (($x811 (not $x687)))
  1.4540 +(let ((@x845 ((_ th-lemma arith assign-bounds 1 -1/2 -1/2 1/2 -1/2) (or $x688 (not $x413) (not $x465) (not $x443) (not $x509) $x861))))
  1.4541 +(let ((@x892 (unit-resolution @x845 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x695)) @x679 $x695) @x793 (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) @x800 $x688)))
  1.4542 +(let ((@x935 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x117 $x811 (not $x688))) (hypothesis $x282) (or $x811 (not $x688)))))
  1.4543 +(let ((@x955 ((_ th-lemma arith farkas -2 -2 1 -1 1 1) (unit-resolution @x935 @x892 $x811) @x998 @x1001 @x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x694)) @x679 $x694) @x979 false)))
  1.4544 +(let ((@x472 (unit-resolution (unit-resolution (def-axiom (or $x284 $x281 $x282)) @x942 $x283) (lemma @x955 $x117) $x281)))
  1.4545 +(unit-resolution @x472 @x889 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.4546 +
  1.4547 +d277a40ca34ecc409672601e981711fef2d0064f 64 0
  1.4548 +unsat
  1.4549 +((set-logic AUFLIA)
  1.4550 +(proof
  1.4551 +(let ((?x108 (collect$ uu$)))
  1.4552 +(let ((?x109 (sup$ ?x108)))
  1.4553 +(let (($x117 (less_eq$ ?x109 ?x109)))
  1.4554 +(let (($x118 (not $x117)))
  1.4555 +(let ((@x119 (asserted $x118)))
  1.4556 +(let ((?x111 (collect$ uua$)))
  1.4557 +(let ((?x112 (sup$ ?x111)))
  1.4558 +(let (($x115 (less_eq$ ?x112 ?x109)))
  1.4559 +(let ((@x116 (asserted $x115)))
  1.4560 +(let (($x113 (less_eq$ ?x109 ?x112)))
  1.4561 +(let ((@x114 (asserted $x113)))
  1.4562 +(let (($x578 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(!(let (($x97 (less_eq$ ?v0 ?v2)))
  1.4563 +(let (($x95 (less_eq$ ?v1 ?v2)))
  1.4564 +(let (($x138 (not $x95)))
  1.4565 +(let (($x93 (less_eq$ ?v0 ?v1)))
  1.4566 +(let (($x137 (not $x93)))
  1.4567 +(or $x137 $x138 $x97)))))) :pattern ( (less_eq$ ?v0 ?v1) (less_eq$ ?v1 ?v2) )))
  1.4568 +))
  1.4569 +(let (($x156 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2)))
  1.4570 +(let (($x95 (less_eq$ ?v1 ?v2)))
  1.4571 +(let (($x138 (not $x95)))
  1.4572 +(let (($x93 (less_eq$ ?v0 ?v1)))
  1.4573 +(let (($x137 (not $x93)))
  1.4574 +(or $x137 $x138 $x97)))))))
  1.4575 +))
  1.4576 +(let ((@x583 (trans (rewrite (= $x156 $x578)) (rewrite (= $x578 $x578)) (= $x156 $x578))))
  1.4577 +(let (($x105 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2)))
  1.4578 +(let (($x95 (less_eq$ ?v1 ?v2)))
  1.4579 +(let (($x93 (less_eq$ ?v0 ?v1)))
  1.4580 +(let (($x96 (and $x93 $x95)))
  1.4581 +(let (($x101 (not $x96)))
  1.4582 +(or $x101 $x97)))))))
  1.4583 +))
  1.4584 +(let (($x97 (less_eq$ ?2 ?0)))
  1.4585 +(let (($x95 (less_eq$ ?1 ?0)))
  1.4586 +(let (($x138 (not $x95)))
  1.4587 +(let (($x93 (less_eq$ ?2 ?1)))
  1.4588 +(let (($x137 (not $x93)))
  1.4589 +(let (($x151 (or $x137 $x138 $x97)))
  1.4590 +(let (($x96 (and $x93 $x95)))
  1.4591 +(let (($x101 (not $x96)))
  1.4592 +(let (($x102 (or $x101 $x97)))
  1.4593 +(let ((@x143 (monotonicity (rewrite (= $x96 (not (or $x137 $x138)))) (= $x101 (not (not (or $x137 $x138)))))))
  1.4594 +(let ((@x147 (trans @x143 (rewrite (= (not (not (or $x137 $x138))) (or $x137 $x138))) (= $x101 (or $x137 $x138)))))
  1.4595 +(let ((@x155 (trans (monotonicity @x147 (= $x102 (or (or $x137 $x138) $x97))) (rewrite (= (or (or $x137 $x138) $x97) $x151)) (= $x102 $x151))))
  1.4596 +(let (($x99 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2)))
  1.4597 +(let (($x95 (less_eq$ ?v1 ?v2)))
  1.4598 +(let (($x93 (less_eq$ ?v0 ?v1)))
  1.4599 +(let (($x96 (and $x93 $x95)))
  1.4600 +(=> $x96 $x97))))))
  1.4601 +))
  1.4602 +(let ((@x110 (mp (asserted $x99) (quant-intro (rewrite (= (=> $x96 $x97) $x102)) (= $x99 $x105)) $x105)))
  1.4603 +(let ((@x159 (mp (mp~ @x110 (nnf-pos (refl (~ $x102 $x102)) (~ $x105 $x105)) $x105) (quant-intro @x155 (= $x105 $x156)) $x156)))
  1.4604 +(let ((@x584 (mp @x159 @x583 $x578)))
  1.4605 +(let (($x247 (not $x115)))
  1.4606 +(let (($x160 (not $x113)))
  1.4607 +(let (($x251 (not $x578)))
  1.4608 +(let (($x252 (or $x251 $x160 $x247 $x117)))
  1.4609 +(let ((@x570 (mp ((_ quant-inst (sup$ ?x108) (sup$ ?x111) (sup$ ?x108)) (or $x251 (or $x160 $x247 $x117))) (rewrite (= (or $x251 (or $x160 $x247 $x117)) $x252)) $x252)))
  1.4610 +(unit-resolution @x570 @x584 @x114 @x116 @x119 false)))))))))))))))))))))))))))))))))))))))
  1.4611 +
  1.4612 +4e8ab14f236ad601aa67494ca8ea18b2ba6a1a79 25 0
  1.4613 +unsat
  1.4614 +((set-logic AUFLIA)
  1.4615 +(proof
  1.4616 +(let (($x142 (pred$e 1)))
  1.4617 +(let (($x144 (not $x142)))
  1.4618 +(let ((@x145 (asserted $x144)))
  1.4619 +(let (($x615 (forall ((?v0 Int) )(!(pred$e ?v0) :pattern ( (pred$e ?v0) )))
  1.4620 +))
  1.4621 +(let (($x138 (forall ((?v0 Int) )(pred$e ?v0))
  1.4622 +))
  1.4623 +(let (($x127 (forall ((?v0 Int) )(let (($x125 (or (pred$d (cons$d ?v0 nil$d)) (not (pred$d (cons$d ?v0 nil$d))))))
  1.4624 +(let (($x119 (pred$e ?v0)))
  1.4625 +(and $x119 $x125))))
  1.4626 +))
  1.4627 +(let (($x119 (pred$e ?0)))
  1.4628 +(let (($x125 (or (pred$d (cons$d ?0 nil$d)) (not (pred$d (cons$d ?0 nil$d))))))
  1.4629 +(let (($x126 (and $x119 $x125)))
  1.4630 +(let ((@x133 (monotonicity (rewrite (= $x125 true)) (= $x126 (and $x119 true)))))
  1.4631 +(let ((@x140 (quant-intro (trans @x133 (rewrite (= (and $x119 true) $x119)) (= $x126 $x119)) (= $x127 $x138))))
  1.4632 +(let ((@x170 (mp~ (mp (asserted $x127) @x140 $x138) (nnf-pos (refl (~ $x119 $x119)) (~ $x138 $x138)) $x138)))
  1.4633 +(let ((@x620 (mp @x170 (quant-intro (refl (= $x119 $x119)) (= $x138 $x615)) $x615)))
  1.4634 +(let (($x257 (or (not $x615) $x142)))
  1.4635 +(let ((@x258 ((_ quant-inst 1) $x257)))
  1.4636 +(unit-resolution @x258 @x620 @x145 false))))))))))))))))))
  1.4637 +
  1.4638 +b4b100f728c8f0d6f96483e4de44e248cc4be1aa 101 0
  1.4639 +unsat
  1.4640 +((set-logic AUFLIA)
  1.4641 +(proof
  1.4642 +(let ((?x124 (some$a true)))
  1.4643 +(let ((?x125 (g$b ?x124)))
  1.4644 +(let ((?x122 (some$ 3)))
  1.4645 +(let ((?x123 (g$ ?x122)))
  1.4646 +(let (($x126 (= ?x123 ?x125)))
  1.4647 +(let ((?x269 (cons$a true nil$a)))
  1.4648 +(let ((?x270 (g$c ?x269)))
  1.4649 +(let (($x587 (= ?x125 ?x270)))
  1.4650 +(let (($x604 (forall ((?v0 Bool) )(!(= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a))) :pattern ( (some$a ?v0) ) :pattern ( (cons$a ?v0 nil$a) )))
  1.4651 +))
  1.4652 +(let (($x43 (forall ((?v0 Bool) )(= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a))))
  1.4653 +))
  1.4654 +(let (($x42 (= (g$b (some$a ?0)) (g$c (cons$a ?0 nil$a)))))
  1.4655 +(let ((@x160 (mp~ (asserted $x43) (nnf-pos (refl (~ $x42 $x42)) (~ $x43 $x43)) $x43)))
  1.4656 +(let ((@x609 (mp @x160 (quant-intro (refl (= $x42 $x42)) (= $x43 $x604)) $x604)))
  1.4657 +(let (($x254 (or (not $x604) $x587)))
  1.4658 +(let ((@x255 ((_ quant-inst true) $x254)))
  1.4659 +(let ((?x227 (size$ ?x269)))
  1.4660 +(let (($x569 (= ?x270 ?x227)))
  1.4661 +(let (($x612 (forall ((?v0 Bool_list$) )(!(let ((?x61 (size$ ?v0)))
  1.4662 +(let ((?x60 (g$c ?v0)))
  1.4663 +(= ?x60 ?x61))) :pattern ( (g$c ?v0) ) :pattern ( (size$ ?v0) )))
  1.4664 +))
  1.4665 +(let (($x63 (forall ((?v0 Bool_list$) )(let ((?x61 (size$ ?v0)))
  1.4666 +(let ((?x60 (g$c ?v0)))
  1.4667 +(= ?x60 ?x61))))
  1.4668 +))
  1.4669 +(let ((@x616 (quant-intro (refl (= (= (g$c ?0) (size$ ?0)) (= (g$c ?0) (size$ ?0)))) (= $x63 $x612))))
  1.4670 +(let ((@x142 (nnf-pos (refl (~ (= (g$c ?0) (size$ ?0)) (= (g$c ?0) (size$ ?0)))) (~ $x63 $x63))))
  1.4671 +(let ((@x617 (mp (mp~ (asserted $x63) @x142 $x63) @x616 $x612)))
  1.4672 +(let (($x571 (or (not $x612) $x569)))
  1.4673 +(let ((@x572 ((_ quant-inst (cons$a true nil$a)) $x571)))
  1.4674 +(let ((?x89 (suc$ zero$)))
  1.4675 +(let ((?x105 (size$ nil$a)))
  1.4676 +(let ((?x233 (plus$ ?x105 ?x89)))
  1.4677 +(let (($x570 (= ?x227 ?x233)))
  1.4678 +(let (($x657 (forall ((?v0 Bool) (?v1 Bool_list$) )(!(= (size$ (cons$a ?v0 ?v1)) (plus$ (size$ ?v1) (suc$ zero$))) :pattern ( (cons$a ?v0 ?v1) )))
  1.4679 +))
  1.4680 +(let (($x114 (forall ((?v0 Bool) (?v1 Bool_list$) )(= (size$ (cons$a ?v0 ?v1)) (plus$ (size$ ?v1) (suc$ zero$))))
  1.4681 +))
  1.4682 +(let (($x113 (= (size$ (cons$a ?1 ?0)) (plus$ (size$ ?0) ?x89))))
  1.4683 +(let ((@x173 (mp~ (asserted $x114) (nnf-pos (refl (~ $x113 $x113)) (~ $x114 $x114)) $x114)))
  1.4684 +(let ((@x662 (mp @x173 (quant-intro (refl (= $x113 $x113)) (= $x114 $x657)) $x657)))
  1.4685 +(let (($x576 (or (not $x657) $x570)))
  1.4686 +(let ((@x213 ((_ quant-inst true nil$a) $x576)))
  1.4687 +(let ((?x108 (size$a nil$)))
  1.4688 +(let (($x109 (= ?x108 zero$)))
  1.4689 +(let ((@x110 (asserted $x109)))
  1.4690 +(let (($x106 (= ?x105 zero$)))
  1.4691 +(let ((@x107 (asserted $x106)))
  1.4692 +(let ((@x287 (monotonicity (trans @x107 (symm @x110 (= zero$ ?x108)) (= ?x105 ?x108)) (= ?x233 (plus$ ?x108 ?x89)))))
  1.4693 +(let ((?x246 (plus$ ?x108 ?x89)))
  1.4694 +(let ((?x256 (cons$ 3 nil$)))
  1.4695 +(let ((?x588 (size$a ?x256)))
  1.4696 +(let (($x584 (= ?x588 ?x246)))
  1.4697 +(let (($x664 (forall ((?v0 Int) (?v1 Int_list$) )(!(= (size$a (cons$ ?v0 ?v1)) (plus$ (size$a ?v1) (suc$ zero$))) :pattern ( (cons$ ?v0 ?v1) )))
  1.4698 +))
  1.4699 +(let (($x119 (forall ((?v0 Int) (?v1 Int_list$) )(= (size$a (cons$ ?v0 ?v1)) (plus$ (size$a ?v1) (suc$ zero$))))
  1.4700 +))
  1.4701 +(let (($x118 (= (size$a (cons$ ?1 ?0)) (plus$ (size$a ?0) ?x89))))
  1.4702 +(let ((@x178 (mp~ (asserted $x119) (nnf-pos (refl (~ $x118 $x118)) (~ $x119 $x119)) $x119)))
  1.4703 +(let ((@x669 (mp @x178 (quant-intro (refl (= $x118 $x118)) (= $x119 $x664)) $x664)))
  1.4704 +(let (($x231 (or (not $x664) $x584)))
  1.4705 +(let ((@x232 ((_ quant-inst 3 nil$) $x231)))
  1.4706 +(let ((?x267 (g$a ?x256)))
  1.4707 +(let (($x592 (= ?x267 ?x588)))
  1.4708 +(let (($x620 (forall ((?v0 Int_list$) )(!(let ((?x67 (size$a ?v0)))
  1.4709 +(let ((?x66 (g$a ?v0)))
  1.4710 +(= ?x66 ?x67))) :pattern ( (g$a ?v0) ) :pattern ( (size$a ?v0) )))
  1.4711 +))
  1.4712 +(let (($x69 (forall ((?v0 Int_list$) )(let ((?x67 (size$a ?v0)))
  1.4713 +(let ((?x66 (g$a ?v0)))
  1.4714 +(= ?x66 ?x67))))
  1.4715 +))
  1.4716 +(let ((@x622 (refl (= (= (g$a ?0) (size$a ?0)) (= (g$a ?0) (size$a ?0))))))
  1.4717 +(let ((@x129 (nnf-pos (refl (~ (= (g$a ?0) (size$a ?0)) (= (g$a ?0) (size$a ?0)))) (~ $x69 $x69))))
  1.4718 +(let ((@x625 (mp (mp~ (asserted $x69) @x129 $x69) (quant-intro @x622 (= $x69 $x620)) $x620)))
  1.4719 +(let (($x248 (or (not $x620) $x592)))
  1.4720 +(let ((@x585 ((_ quant-inst (cons$ 3 nil$)) $x248)))
  1.4721 +(let (($x268 (= ?x123 ?x267)))
  1.4722 +(let (($x596 (forall ((?v0 Int) )(!(= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$))) :pattern ( (some$ ?v0) ) :pattern ( (cons$ ?v0 nil$) )))
  1.4723 +))
  1.4724 +(let (($x34 (forall ((?v0 Int) )(= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$))))
  1.4725 +))
  1.4726 +(let (($x33 (= (g$ (some$ ?0)) (g$a (cons$ ?0 nil$)))))
  1.4727 +(let ((@x157 (mp~ (asserted $x34) (nnf-pos (refl (~ $x33 $x33)) (~ $x34 $x34)) $x34)))
  1.4728 +(let ((@x601 (mp @x157 (quant-intro (refl (= $x33 $x33)) (= $x34 $x596)) $x596)))
  1.4729 +(let (($x250 (or (not $x596) $x268)))
  1.4730 +(let ((@x586 ((_ quant-inst 3) $x250)))
  1.4731 +(let ((@x275 (trans (unit-resolution @x586 @x601 $x268) (unit-resolution @x585 @x625 $x592) (= ?x123 ?x588))))
  1.4732 +(let ((@x280 (trans (trans @x275 (unit-resolution @x232 @x669 $x584) (= ?x123 ?x246)) (symm @x287 (= ?x246 ?x233)) (= ?x123 ?x233))))
  1.4733 +(let ((@x558 (trans @x280 (symm (unit-resolution @x213 @x662 $x570) (= ?x233 ?x227)) (= ?x123 ?x227))))
  1.4734 +(let ((@x560 (trans @x558 (symm (unit-resolution @x572 @x617 $x569) (= ?x227 ?x270)) (= ?x123 ?x270))))
  1.4735 +(let ((@x546 (trans @x560 (symm (unit-resolution @x255 @x609 $x587) (= ?x270 ?x125)) $x126)))
  1.4736 +(let (($x127 (not $x126)))
  1.4737 +(let ((@x128 (asserted $x127)))
  1.4738 +(unit-resolution @x128 @x546 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  1.4739 +