1.1 --- a/src/HOL/Divides.thy Wed Feb 07 17:26:04 2007 +0100
1.2 +++ b/src/HOL/Divides.thy Wed Feb 07 17:26:49 2007 +0100
1.3 @@ -32,9 +32,9 @@
1.4 mod (infixl "mod" 70)
1.5
1.6 instance nat :: "Divides.div"
1.7 - mod_def: "m mod n == wfrec (trancl pred_nat)
1.8 + mod_def: "m mod n == wfrec (pred_nat^+)
1.9 (%f j. if j<n | n=0 then j else f (j-n)) m"
1.10 - div_def: "m div n == wfrec (trancl pred_nat)
1.11 + div_def: "m div n == wfrec (pred_nat^+)
1.12 (%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m" ..
1.13
1.14 definition
1.15 @@ -61,10 +61,10 @@
1.16 standard]
1.17
1.18 lemma mod_eq: "(%m. m mod n) =
1.19 - wfrec (trancl pred_nat) (%f j. if j<n | n=0 then j else f (j-n))"
1.20 + wfrec (pred_nat^+) (%f j. if j<n | n=0 then j else f (j-n))"
1.21 by (simp add: mod_def)
1.22
1.23 -lemma div_eq: "(%m. m div n) = wfrec (trancl pred_nat)
1.24 +lemma div_eq: "(%m. m div n) = wfrec (pred_nat^+)
1.25 (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"
1.26 by (simp add: div_def)
1.27