src/HOL/Library/FinFun.thy
changeset 61384 9f5145281888
parent 60583 a645a0e6d790
child 61585 a9599d3d7610
     1.1 --- a/src/HOL/Library/FinFun.thy	Sat Oct 10 16:40:43 2015 +0200
     1.2 +++ b/src/HOL/Library/FinFun.thy	Sat Oct 10 19:22:05 2015 +0200
     1.3 @@ -76,7 +76,7 @@
     1.4  
     1.5  definition "finfun = {f::'a\<Rightarrow>'b. \<exists>b. finite {a. f a \<noteq> b}}"
     1.6  
     1.7 -typedef ('a,'b) finfun  ("(_ =>f /_)" [22, 21] 21) = "finfun :: ('a => 'b) set"
     1.8 +typedef ('a,'b) finfun  ("(_ \<Rightarrow>f /_)" [22, 21] 21) = "finfun :: ('a => 'b) set"
     1.9    morphisms finfun_apply Abs_finfun
    1.10  proof -
    1.11    have "\<exists>f. finite {x. f x \<noteq> undefined}"
    1.12 @@ -1528,9 +1528,6 @@
    1.13  text \<open>Deactivate syntax again. Import theory @{text FinFun_Syntax} to reactivate it again\<close>
    1.14  
    1.15  no_type_notation
    1.16 -  finfun ("(_ =>f /_)" [22, 21] 21)
    1.17 -
    1.18 -no_type_notation (xsymbols)
    1.19    finfun ("(_ \<Rightarrow>f /_)" [22, 21] 21)
    1.20  
    1.21  no_notation