src/HOL/Code_Numeral.thy
 changeset 66190 a41435469559 parent 64994 6e4c05e8edbb child 66801 f3fda9777f9a
```     1.1 --- a/src/HOL/Code_Numeral.thy	Sat Jun 24 09:17:33 2017 +0200
1.2 +++ b/src/HOL/Code_Numeral.thy	Sat Jun 24 09:17:35 2017 +0200
1.3 @@ -149,24 +149,19 @@
1.4    "int_of_integer (Num.sub k l) = Num.sub k l"
1.5    by transfer rule
1.6
1.7 -lift_definition integer_of_num :: "num \<Rightarrow> integer"
1.8 -  is "numeral :: num \<Rightarrow> int"
1.9 -  .
1.10 +definition integer_of_num :: "num \<Rightarrow> integer"
1.11 +  where [simp]: "integer_of_num = numeral"
1.12
1.13  lemma integer_of_num [code]:
1.14 -  "integer_of_num num.One = 1"
1.15 -  "integer_of_num (num.Bit0 n) = (let k = integer_of_num n in k + k)"
1.16 -  "integer_of_num (num.Bit1 n) = (let k = integer_of_num n in k + k + 1)"
1.17 -  by (transfer, simp only: numeral.simps Let_def)+
1.18 -
1.19 -lemma numeral_unfold_integer_of_num:
1.20 -  "numeral = integer_of_num"
1.21 -  by (simp add: integer_of_num_def map_fun_def fun_eq_iff)
1.22 +  "integer_of_num Num.One = 1"
1.23 +  "integer_of_num (Num.Bit0 n) = (let k = integer_of_num n in k + k)"
1.24 +  "integer_of_num (Num.Bit1 n) = (let k = integer_of_num n in k + k + 1)"
1.25 +  by (simp_all only: integer_of_num_def numeral.simps Let_def)
1.26
1.27  lemma integer_of_num_triv:
1.28    "integer_of_num Num.One = 1"
1.29    "integer_of_num (Num.Bit0 Num.One) = 2"
1.30 -  by (transfer, simp)+
1.31 +  by simp_all
1.32
1.33  instantiation integer :: "{linordered_idom, equal}"
1.34  begin
1.35 @@ -301,7 +296,7 @@
1.36  end
1.37
1.38  declare divmod_algorithm_code [where ?'a = integer,
1.39 -  unfolded numeral_unfold_integer_of_num, unfolded integer_of_num_triv,
1.40 +  folded integer_of_num_def, unfolded integer_of_num_triv,
1.41    code]
1.42
1.43  lemma integer_of_nat_0: "integer_of_nat 0 = 0"
```