src/ZF/bool.ML
changeset 0 a5a9c433f639
child 6 8ce8c4d13d4d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/bool.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,99 @@
+(*  Title: 	ZF/bool
+    ID:         $Id$
+    Author: 	Martin D Coen, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+For ZF/bool.thy.  Booleans in Zermelo-Fraenkel Set Theory 
+*)
+
+open Bool;
+
+val bool_defs = [bool_def,one_def,cond_def];
+
+(* Introduction rules *)
+
+goalw Bool.thy bool_defs "1 : bool";
+by (rtac (consI1 RS consI2) 1);
+val bool_1I = result();
+
+goalw Bool.thy bool_defs "0 : bool";
+by (rtac consI1 1);
+val bool_0I = result();
+
+goalw Bool.thy bool_defs "~ 1=0";
+by (rtac succ_not_0 1);
+val one_not_0 = result();
+
+(** 1=0 ==> R **)
+val one_neq_0 = one_not_0 RS notE;
+
+val prems = goalw Bool.thy bool_defs "[| c: bool;  P(1);  P(0) |] ==> P(c)";
+by (cut_facts_tac prems 1);
+by (fast_tac ZF_cs 1);
+val boolE = result();
+
+(** cond **)
+
+(*1 means true*)
+goalw Bool.thy bool_defs "cond(1,c,d) = c";
+by (rtac (refl RS if_P) 1);
+val cond_1 = result();
+
+(*0 means false*)
+goalw Bool.thy bool_defs "cond(0,c,d) = d";
+by (rtac (succ_not_0 RS not_sym RS if_not_P) 1);
+val cond_0 = result();
+
+val major::prems = goal Bool.thy 
+    "[|  b: bool;  c: A(1);  d: A(0) |] ==> cond(b,c,d): A(b)";
+by (rtac (major RS boolE) 1);
+by (rtac (cond_0 RS ssubst) 2);
+by (resolve_tac prems 2);
+by (rtac (cond_1 RS ssubst) 1);
+by (resolve_tac prems 1);
+val cond_type = result();
+
+val [cond_cong] = mk_congs Bool.thy ["cond"];
+val bool_congs = mk_congs Bool.thy ["cond","not","op and","op or","op xor"];
+
+val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c";
+by (rewtac rew);
+by (rtac cond_1 1);
+val def_cond_1 = result();
+
+val [rew] = goal Bool.thy "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d";
+by (rewtac rew);
+by (rtac cond_0 1);
+val def_cond_0 = result();
+
+fun conds def = [standard (def RS def_cond_1), standard (def RS def_cond_0)];
+
+val [not_1,not_0] = conds not_def;
+
+val [and_1,and_0] = conds and_def;
+
+val [or_1,or_0] = conds or_def;
+
+val [xor_1,xor_0] = conds xor_def;
+
+val not_type = prove_goalw Bool.thy [not_def]
+    "a:bool ==> not(a) : bool"
+ (fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]);
+
+val and_type = prove_goalw Bool.thy [and_def]
+    "[| a:bool;  b:bool |] ==> a and b : bool"
+ (fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]);
+
+val or_type = prove_goalw Bool.thy [or_def]
+    "[| a:bool;  b:bool |] ==> a or b : bool"
+ (fn prems=> [ (typechk_tac (prems@[bool_1I, bool_0I, cond_type])) ]);
+
+val xor_type = prove_goalw Bool.thy [xor_def]
+    "[| a:bool;  b:bool |] ==> a xor b : bool"
+ (fn prems=> [ (typechk_tac(prems@[bool_1I, bool_0I, cond_type, not_type])) ]);
+
+val bool_typechecks = [bool_1I, bool_0I, cond_type, not_type, and_type, 
+		       or_type, xor_type]
+
+val bool_rews = [cond_1,cond_0,not_1,not_0,and_1,and_0,or_1,or_0,xor_1,xor_0];
+