src/ZF/simpdata.ML
 changeset 0 a5a9c433f639 child 6 8ce8c4d13d4d
```--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/simpdata.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,120 @@
+(*  Title:      ZF/simpdata
+    ID:         \$Id\$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1991  University of Cambridge
+
+Rewriting for ZF set theory -- based on FOL rewriting
+*)
+
+fun prove_fun s =
+    (writeln s;  prove_goal ZF.thy s
+       (fn prems => [ (cut_facts_tac prems 1), (fast_tac ZF_cs 1) ]));
+
+val mem_rews = map prove_fun
+ [ "a:0 <-> False",
+   "a : A Un B <-> a:A | a:B",
+   "a : A Int B <-> a:A & a:B",
+   "a : A-B <-> a:A & ~a:B",
+   "a : cons(b,B) <-> a=b | a:B",
+   "i : succ(j) <-> i=j | i:j",
+   "<a,b>: Sigma(A,B) <-> a:A & b:B(a)",
+   "a : Collect(A,P) <-> a:A & P(a)" ];
+
+(** Tactics for type checking -- from CTT **)
+
+fun is_rigid_elem (Const("Trueprop",_) \$ (Const("op :",_) \$ a \$ _)) =
+  | is_rigid_elem _ = false;
+
+(*Try solving a:A by assumption provided a is rigid!*)
+val test_assume_tac = SUBGOAL(fn (prem,i) =>
+    if is_rigid_elem (Logic.strip_assums_concl prem)
+    then  assume_tac i  else  no_tac);
+
+(*Type checking solves a:?A (a rigid, ?A maybe flexible).
+  match_tac is too strict; would refuse to instantiate ?A*)
+fun typechk_step_tac tyrls =
+    FIRSTGOAL (test_assume_tac ORELSE' filt_resolve_tac tyrls 3);
+
+fun typechk_tac tyrls = REPEAT (typechk_step_tac tyrls);
+
+val ZF_typechecks = [if_type,lam_type,SigmaI,apply_type,split_type];
+
+(*To instantiate variables in typing conditions;
+  to perform type checking faster than rewriting can
+  NOT TERRIBLY USEFUL because it does not simplify conjunctions*)
+fun type_auto_tac tyrls hyps = SELECT_GOAL
+    (DEPTH_SOLVE (typechk_step_tac (tyrls@hyps)
+           ORELSE ares_tac [TrueI,ballI,allI,conjI,impI] 1));
+
+(** New version of mk_rew_rules **)
+
+(*Should False yield False<->True, or should it solve goals some other way?*)
+
+(*Analyse a rigid formula*)
+val atomize_pairs =
+  [("Ball",	[bspec]),
+   ("All",	[spec]),
+   ("op -->",	[mp]),
+   ("op &",	[conjunct1,conjunct2])];
+
+(*Analyse a:b, where b is rigid*)
+val atomize_mem_pairs =
+  [("Collect",	[CollectD1,CollectD2]),
+   ("op -",	[DiffD1,DiffD2]),
+   ("op Int",	[IntD1,IntD2])];
+
+(*Analyse a theorem to atomic rewrite rules*)
+fun atomize th =
+  let fun tryrules pairs t =
+	      Const(a,_) =>
+		(case assoc(pairs,a) of
+		     Some rls => flat (map atomize ([th] RL rls))
+		   | None     => [th])
+	    | _ => [th]
+  in case concl_of th of (*The operator below is Trueprop*)
+	_ \$ (Const("op :",_) \$ a \$ b) => tryrules atomize_mem_pairs b
+      | _ \$ (Const("True",_)) => []	(*True is DELETED*)
+      | _ \$ (Const("False",_)) => []	(*should False do something??*)
+      | _ \$ A => tryrules atomize_pairs A
+  end;
+
+fun ZF_mk_rew_rules th = map mk_eq (atomize th);
+
+
+fun auto_tac rls hyps = SELECT_GOAL (DEPTH_SOLVE_1 (ares_tac (rls@hyps) 1));
+
+structure ZF_SimpData : SIMP_DATA =
+  struct
+  val refl_thms		= FOL_SimpData.refl_thms
+  val trans_thms	= FOL_SimpData.trans_thms
+  val red1		= FOL_SimpData.red1
+  val red2		= FOL_SimpData.red2
+  val mk_rew_rules	= ZF_mk_rew_rules
+  val norm_thms		= FOL_SimpData.norm_thms
+  val subst_thms	= FOL_SimpData.subst_thms
+  val dest_red		= FOL_SimpData.dest_red
+  end;
+
+structure ZF_Simp = SimpFun(ZF_SimpData);
+
+open ZF_Simp;
+
+(*Redeclared because the previous FOL_ss belongs to a different instance
+  of type simpset*)
+		      setauto auto_tac[TrueI,ballI];
+
+(** Basic congruence and rewrite rules for ZF set theory **)
+
+val ZF_congs =
+   [ball_cong,bex_cong,Replace_cong,RepFun_cong,Collect_cong,the_cong,
+    if_cong,Sigma_cong,split_cong,Pi_cong,lam_cong] @ basic_ZF_congs;
+
+val ZF_rews = [empty_subsetI, ball_rew, if_true, if_false,
+	       beta, eta, restrict,
+	       fst_conv, snd_conv, split];
+