src/HOL/Num.thy
 changeset 49962 a8cc904a6820 parent 49690 a6814de45b69 child 50817 652731d92061
```     1.1 --- a/src/HOL/Num.thy	Fri Oct 19 10:46:42 2012 +0200
1.2 +++ b/src/HOL/Num.thy	Fri Oct 19 15:12:52 2012 +0200
1.3 @@ -138,7 +138,7 @@
1.4    "Bit1 m * Bit0 n = Bit0 (Bit1 m * n)"
1.5    "Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))"
1.7 -    nat_of_num_mult left_distrib right_distrib)
1.8 +    nat_of_num_mult distrib_right distrib_left)
1.9
1.10  lemma eq_num_simps:
1.11    "One = One \<longleftrightarrow> True"
1.12 @@ -510,7 +510,7 @@
1.13  lemma numeral_mult: "numeral (m * n) = numeral m * numeral n"
1.14    apply (induct n rule: num_induct)
1.18    done
1.19
1.20  lemma numeral_times_numeral: "numeral m * numeral n = numeral (m * n)"
1.21 @@ -532,10 +532,10 @@
1.22      simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1)
1.23
1.24  lemma mult_2: "2 * z = z + z"
1.25 -  unfolding one_add_one [symmetric] left_distrib by simp
1.26 +  unfolding one_add_one [symmetric] distrib_right by simp
1.27
1.28  lemma mult_2_right: "z * 2 = z + z"
1.29 -  unfolding one_add_one [symmetric] right_distrib by simp
1.30 +  unfolding one_add_one [symmetric] distrib_left by simp
1.31
1.32  end
1.33
```