src/HOL/HOL.ML
changeset 7357 d0e16da40ea2
parent 7030 53934985426a
child 7529 fa534e4f7e49
     1.1 --- a/src/HOL/HOL.ML	Wed Aug 25 20:46:40 1999 +0200
     1.2 +++ b/src/HOL/HOL.ML	Wed Aug 25 20:49:02 1999 +0200
     1.3 @@ -1,456 +1,31 @@
     1.4 -(*  Title:      HOL/HOL.ML
     1.5 -    ID:         $Id$
     1.6 -    Author:     Tobias Nipkow
     1.7 -    Copyright   1991  University of Cambridge
     1.8  
     1.9 -Derived rules from Appendix of Mike Gordons HOL Report, Cambridge TR 68 
    1.10 -*)
    1.11 -
    1.12 -
    1.13 -(** Equality **)
    1.14 -section "=";
    1.15 -
    1.16 -qed_goal "sym" HOL.thy "s=t ==> t=s"
    1.17 - (fn prems => [cut_facts_tac prems 1, etac subst 1, rtac refl 1]);
    1.18 -
    1.19 -(*calling "standard" reduces maxidx to 0*)
    1.20 -bind_thm ("ssubst", (sym RS subst));
    1.21 -
    1.22 -qed_goal "trans" HOL.thy "[| r=s; s=t |] ==> r=t"
    1.23 - (fn prems =>
    1.24 -        [rtac subst 1, resolve_tac prems 1, resolve_tac prems 1]);
    1.25 -
    1.26 -val prems = goal thy "(A == B) ==> A = B";
    1.27 -by (rewrite_goals_tac prems);
    1.28 -by (rtac refl 1);
    1.29 -qed "def_imp_eq";
    1.30 -
    1.31 -(*Useful with eresolve_tac for proving equalties from known equalities.
    1.32 -        a = b
    1.33 -        |   |
    1.34 -        c = d   *)
    1.35 -Goal "[| a=b;  a=c;  b=d |] ==> c=d";
    1.36 -by (rtac trans 1);
    1.37 -by (rtac trans 1);
    1.38 -by (rtac sym 1);
    1.39 -by (REPEAT (assume_tac 1)) ;
    1.40 -qed "box_equals";
    1.41 -
    1.42 -
    1.43 -(** Congruence rules for meta-application **)
    1.44 -section "Congruence";
    1.45 -
    1.46 -(*similar to AP_THM in Gordon's HOL*)
    1.47 -qed_goal "fun_cong" HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)"
    1.48 -  (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
    1.49 -
    1.50 -(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)
    1.51 -qed_goal "arg_cong" HOL.thy "x=y ==> f(x)=f(y)"
    1.52 - (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
    1.53 -
    1.54 -qed_goal "cong" HOL.thy
    1.55 -   "[| f = g; (x::'a) = y |] ==> f(x) = g(y)"
    1.56 - (fn [prem1,prem2] =>
    1.57 -   [rtac (prem1 RS subst) 1, rtac (prem2 RS subst) 1, rtac refl 1]);
    1.58 -
    1.59 -
    1.60 -(** Equality of booleans -- iff **)
    1.61 -section "iff";
    1.62 -
    1.63 -val prems = Goal
    1.64 -   "[| P ==> Q;  Q ==> P |] ==> P=Q";
    1.65 -by (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1));
    1.66 -qed "iffI";
    1.67 -
    1.68 -qed_goal "iffD2" HOL.thy "[| P=Q; Q |] ==> P"
    1.69 - (fn prems =>
    1.70 -        [rtac ssubst 1, resolve_tac prems 1, resolve_tac prems 1]);
    1.71 -
    1.72 -qed_goal "rev_iffD2" HOL.thy "!!P. [| Q; P=Q |] ==> P"
    1.73 - (fn _ => [etac iffD2 1, assume_tac 1]);
    1.74 -
    1.75 -bind_thm ("iffD1", sym RS iffD2);
    1.76 -bind_thm ("rev_iffD1", sym RSN (2, rev_iffD2));
    1.77 -
    1.78 -qed_goal "iffE" HOL.thy
    1.79 -    "[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R"
    1.80 - (fn [p1,p2] => [REPEAT(ares_tac([p1 RS iffD2, p1 RS iffD1, p2, impI])1)]);
    1.81 -
    1.82 -
    1.83 -(** True **)
    1.84 -section "True";
    1.85 -
    1.86 -qed_goalw "TrueI" HOL.thy [True_def] "True"
    1.87 -  (fn _ => [(rtac refl 1)]);
    1.88 -
    1.89 -qed_goal "eqTrueI" HOL.thy "P ==> P=True" 
    1.90 - (fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]);
    1.91 -
    1.92 -qed_goal "eqTrueE" HOL.thy "P=True ==> P" 
    1.93 - (fn prems => [REPEAT(resolve_tac (prems@[TrueI,iffD2]) 1)]);
    1.94 -
    1.95 -
    1.96 -(** Universal quantifier **)
    1.97 -section "!";
    1.98 -
    1.99 -qed_goalw "allI" HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)"
   1.100 - (fn prems => [(resolve_tac (prems RL [eqTrueI RS ext]) 1)]);
   1.101 -
   1.102 -qed_goalw "spec" HOL.thy [All_def] "! x::'a. P(x) ==> P(x)"
   1.103 - (fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]);
   1.104 -
   1.105 -val major::prems= goal HOL.thy "[| !x. P(x);  P(x) ==> R |] ==> R";
   1.106 -by (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ;
   1.107 -qed "allE";
   1.108 -
   1.109 -val prems = goal HOL.thy 
   1.110 -    "[| ! x. P(x);  [| P(x); ! x. P(x) |] ==> R |] ==> R";
   1.111 -by (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ;
   1.112 -qed "all_dupE";
   1.113 -
   1.114 -
   1.115 -(** False ** Depends upon spec; it is impossible to do propositional logic
   1.116 -             before quantifiers! **)
   1.117 -section "False";
   1.118 -
   1.119 -qed_goalw "FalseE" HOL.thy [False_def] "False ==> P"
   1.120 - (fn [major] => [rtac (major RS spec) 1]);
   1.121 -
   1.122 -qed_goal "False_neq_True" HOL.thy "False=True ==> P"
   1.123 - (fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]);
   1.124 -
   1.125 -
   1.126 -(** Negation **)
   1.127 -section "~";
   1.128 -
   1.129 -qed_goalw "notI" HOL.thy [not_def] "(P ==> False) ==> ~P"
   1.130 - (fn prems=> [rtac impI 1, eresolve_tac prems 1]);
   1.131 -
   1.132 -qed_goal "False_not_True" HOL.thy "False ~= True"
   1.133 -  (fn _ => [rtac notI 1, etac False_neq_True 1]);
   1.134 -
   1.135 -qed_goal "True_not_False" HOL.thy "True ~= False"
   1.136 -  (fn _ => [rtac notI 1, dtac sym 1, etac False_neq_True 1]);
   1.137 -
   1.138 -qed_goalw "notE" HOL.thy [not_def] "[| ~P;  P |] ==> R"
   1.139 - (fn prems => [rtac (prems MRS mp RS FalseE) 1]);
   1.140 -
   1.141 -bind_thm ("classical2", notE RS notI);
   1.142 -
   1.143 -qed_goal "rev_notE" HOL.thy "!!P R. [| P; ~P |] ==> R"
   1.144 - (fn _ => [REPEAT (ares_tac [notE] 1)]);
   1.145 -
   1.146 -
   1.147 -(** Implication **)
   1.148 -section "-->";
   1.149 -
   1.150 -val prems = Goal "[| P-->Q;  P;  Q ==> R |] ==> R";
   1.151 -by (REPEAT (resolve_tac (prems@[mp]) 1));
   1.152 -qed "impE";
   1.153 -
   1.154 -(* Reduces Q to P-->Q, allowing substitution in P. *)
   1.155 -Goal "[| P;  P --> Q |] ==> Q";
   1.156 -by (REPEAT (ares_tac [mp] 1)) ;
   1.157 -qed "rev_mp";
   1.158 -
   1.159 -val [major,minor] = Goal "[| ~Q;  P==>Q |] ==> ~P";
   1.160 -by (rtac (major RS notE RS notI) 1);
   1.161 -by (etac minor 1) ;
   1.162 -qed "contrapos";
   1.163 -
   1.164 -val [major,minor] = Goal "[| P==>Q; ~Q |] ==> ~P";
   1.165 -by (rtac (minor RS contrapos) 1);
   1.166 -by (etac major 1) ;
   1.167 -qed "rev_contrapos";
   1.168 -
   1.169 -(* ~(?t = ?s) ==> ~(?s = ?t) *)
   1.170 -bind_thm("not_sym", sym COMP rev_contrapos);
   1.171 -
   1.172 -
   1.173 -(** Existential quantifier **)
   1.174 -section "?";
   1.175 -
   1.176 -qed_goalw "exI" HOL.thy [Ex_def] "P x ==> ? x::'a. P x"
   1.177 - (fn prems => [rtac selectI 1, resolve_tac prems 1]);
   1.178 -
   1.179 -qed_goalw "exE" HOL.thy [Ex_def]
   1.180 -  "[| ? x::'a. P(x); !!x. P(x) ==> Q |] ==> Q"
   1.181 -  (fn prems => [REPEAT(resolve_tac prems 1)]);
   1.182 -
   1.183 -
   1.184 -(** Conjunction **)
   1.185 -section "&";
   1.186 -
   1.187 -qed_goalw "conjI" HOL.thy [and_def] "[| P; Q |] ==> P&Q"
   1.188 - (fn prems =>
   1.189 -  [REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]);
   1.190 -
   1.191 -qed_goalw "conjunct1" HOL.thy [and_def] "[| P & Q |] ==> P"
   1.192 - (fn prems =>
   1.193 -   [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
   1.194 -
   1.195 -qed_goalw "conjunct2" HOL.thy [and_def] "[| P & Q |] ==> Q"
   1.196 - (fn prems =>
   1.197 -   [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
   1.198 -
   1.199 -qed_goal "conjE" HOL.thy "[| P&Q;  [| P; Q |] ==> R |] ==> R"
   1.200 - (fn prems =>
   1.201 -         [cut_facts_tac prems 1, resolve_tac prems 1,
   1.202 -          etac conjunct1 1, etac conjunct2 1]);
   1.203 -
   1.204 -qed_goal "context_conjI" HOL.thy  "[| P; P ==> Q |] ==> P & Q"
   1.205 - (fn prems => [REPEAT(resolve_tac (conjI::prems) 1)]);
   1.206 -
   1.207 -
   1.208 -(** Disjunction *)
   1.209 -section "|";
   1.210 -
   1.211 -qed_goalw "disjI1" HOL.thy [or_def] "P ==> P|Q"
   1.212 - (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
   1.213 -
   1.214 -qed_goalw "disjI2" HOL.thy [or_def] "Q ==> P|Q"
   1.215 - (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
   1.216 -
   1.217 -qed_goalw "disjE" HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R"
   1.218 - (fn [a1,a2,a3] =>
   1.219 -        [rtac (mp RS mp) 1, rtac spec 1, rtac a1 1,
   1.220 -         rtac (a2 RS impI) 1, assume_tac 1, rtac (a3 RS impI) 1, assume_tac 1]);
   1.221 -
   1.222 -
   1.223 -(** CCONTR -- classical logic **)
   1.224 -section "classical logic";
   1.225 -
   1.226 -qed_goalw "classical" HOL.thy [not_def]  "(~P ==> P) ==> P"
   1.227 - (fn [prem] =>
   1.228 -   [rtac (True_or_False RS (disjE RS eqTrueE)) 1,  assume_tac 1,
   1.229 -    rtac (impI RS prem RS eqTrueI) 1,
   1.230 -    etac subst 1,  assume_tac 1]);
   1.231 -
   1.232 -val ccontr = FalseE RS classical;
   1.233 -
   1.234 -(*Double negation law*)
   1.235 -Goal "~~P ==> P";
   1.236 -by (rtac classical 1);
   1.237 -by (etac notE 1);
   1.238 -by (assume_tac 1);
   1.239 -qed "notnotD";
   1.240 -
   1.241 -val [p1,p2] = Goal "[| Q; ~ P ==> ~ Q |] ==> P";
   1.242 -by (rtac classical 1);
   1.243 -by (dtac p2 1);
   1.244 -by (etac notE 1);
   1.245 -by (rtac p1 1);
   1.246 -qed "contrapos2";
   1.247 -
   1.248 -val [p1,p2] = Goal "[| P;  Q ==> ~ P |] ==> ~ Q";
   1.249 -by (rtac notI 1);
   1.250 -by (dtac p2 1);
   1.251 -by (etac notE 1);
   1.252 -by (rtac p1 1);
   1.253 -qed "swap2";
   1.254 -
   1.255 -(** Unique existence **)
   1.256 -section "?!";
   1.257 -
   1.258 -qed_goalw "ex1I" HOL.thy [Ex1_def]
   1.259 -            "[| P(a);  !!x. P(x) ==> x=a |] ==> ?! x. P(x)"
   1.260 - (fn prems =>
   1.261 -  [REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]);
   1.262 -
   1.263 -(*Sometimes easier to use: the premises have no shared variables.  Safe!*)
   1.264 -val [ex,eq] = Goal
   1.265 -    "[| ? x. P(x);  !!x y. [| P(x); P(y) |] ==> x=y |] ==> ?! x. P(x)";
   1.266 -by (rtac (ex RS exE) 1);
   1.267 -by (REPEAT (ares_tac [ex1I,eq] 1)) ;
   1.268 -qed "ex_ex1I";
   1.269 -
   1.270 -qed_goalw "ex1E" HOL.thy [Ex1_def]
   1.271 -    "[| ?! x. P(x);  !!x. [| P(x);  ! y. P(y) --> y=x |] ==> R |] ==> R"
   1.272 - (fn major::prems =>
   1.273 -  [rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]);
   1.274 -
   1.275 -Goal "?! x. P x ==> ? x. P x";
   1.276 -by (etac ex1E 1);
   1.277 -by (rtac exI 1);
   1.278 -by (assume_tac 1);
   1.279 -qed "ex1_implies_ex";
   1.280 -
   1.281 -
   1.282 -(** Select: Hilbert's Epsilon-operator **)
   1.283 -section "@";
   1.284 -
   1.285 -(*Easier to apply than selectI: conclusion has only one occurrence of P*)
   1.286 -val prems = Goal
   1.287 -    "[| P a;  !!x. P x ==> Q x |] ==> Q (@x. P x)";
   1.288 -by (resolve_tac prems 1);
   1.289 -by (rtac selectI 1);
   1.290 -by (resolve_tac prems 1) ;
   1.291 -qed "selectI2";
   1.292 -
   1.293 -(*Easier to apply than selectI2 if witness ?a comes from an EX-formula*)
   1.294 -qed_goal "selectI2EX" HOL.thy
   1.295 -  "[| ? a. P a; !!x. P x ==> Q x |] ==> Q (Eps P)"
   1.296 -(fn [major,minor] => [rtac (major RS exE) 1, etac selectI2 1, etac minor 1]);
   1.297 -
   1.298 -val prems = Goal
   1.299 -    "[| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a";
   1.300 -by (rtac selectI2 1);
   1.301 -by (REPEAT (ares_tac prems 1)) ;
   1.302 -qed "select_equality";
   1.303 -
   1.304 -Goalw [Ex1_def] "[| ?!x. P x; P a |] ==> (@x. P x) = a";
   1.305 -by (rtac select_equality 1);
   1.306 -by (atac 1);
   1.307 -by (etac exE 1);
   1.308 -by (etac conjE 1);
   1.309 -by (rtac allE 1);
   1.310 -by (atac 1);
   1.311 -by (etac impE 1);
   1.312 -by (atac 1);
   1.313 -by (etac ssubst 1);
   1.314 -by (etac allE 1);
   1.315 -by (etac mp 1);
   1.316 -by (atac 1);
   1.317 -qed "select1_equality";
   1.318 -
   1.319 -Goal "P (@ x. P x) =  (? x. P x)";
   1.320 -by (rtac iffI 1);
   1.321 -by (etac exI 1);
   1.322 -by (etac exE 1);
   1.323 -by (etac selectI 1);
   1.324 -qed "select_eq_Ex";
   1.325 -
   1.326 -Goal "(@y. y=x) = x";
   1.327 -by (rtac select_equality 1);
   1.328 -by (rtac refl 1);
   1.329 -by (atac 1);
   1.330 -qed "Eps_eq";
   1.331 -
   1.332 -Goal "(Eps (op = x)) = x";
   1.333 -by (rtac select_equality 1);
   1.334 -by (rtac refl 1);
   1.335 -by (etac sym 1);
   1.336 -qed "Eps_sym_eq";
   1.337 -
   1.338 -(** Classical intro rules for disjunction and existential quantifiers *)
   1.339 -section "classical intro rules";
   1.340 -
   1.341 -val prems= Goal "(~Q ==> P) ==> P|Q";
   1.342 -by (rtac classical 1);
   1.343 -by (REPEAT (ares_tac (prems@[disjI1,notI]) 1));
   1.344 -by (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ;
   1.345 -qed "disjCI";
   1.346 -
   1.347 -Goal "~P | P";
   1.348 -by (REPEAT (ares_tac [disjCI] 1)) ;
   1.349 -qed "excluded_middle";
   1.350 -
   1.351 -(*For disjunctive case analysis*)
   1.352 -fun excluded_middle_tac sP =
   1.353 -    res_inst_tac [("Q",sP)] (excluded_middle RS disjE);
   1.354 -
   1.355 -(*Classical implies (-->) elimination. *)
   1.356 -val major::prems = Goal "[| P-->Q; ~P ==> R; Q ==> R |] ==> R";
   1.357 -by (rtac (excluded_middle RS disjE) 1);
   1.358 -by (REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1)));
   1.359 -qed "impCE";
   1.360 -
   1.361 -(*This version of --> elimination works on Q before P.  It works best for
   1.362 -  those cases in which P holds "almost everywhere".  Can't install as
   1.363 -  default: would break old proofs.*)
   1.364 -val major::prems = Goal
   1.365 -    "[| P-->Q;  Q ==> R;  ~P ==> R |] ==> R";
   1.366 -by (resolve_tac [excluded_middle RS disjE] 1);
   1.367 -by (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ;
   1.368 -qed "impCE'";
   1.369 -
   1.370 -(*Classical <-> elimination. *)
   1.371 -val major::prems = Goal
   1.372 -    "[| P=Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R";
   1.373 -by (rtac (major RS iffE) 1);
   1.374 -by (REPEAT (DEPTH_SOLVE_1 
   1.375 -	    (eresolve_tac ([asm_rl,impCE,notE]@prems) 1)));
   1.376 -qed "iffCE";
   1.377 -
   1.378 -val prems = Goal "(! x. ~P(x) ==> P(a)) ==> ? x. P(x)";
   1.379 -by (rtac ccontr 1);
   1.380 -by (REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1))  ;
   1.381 -qed "exCI";
   1.382 -
   1.383 -
   1.384 -(* case distinction *)
   1.385 -
   1.386 -qed_goal "case_split_thm" HOL.thy "[| P ==> Q; ~P ==> Q |] ==> Q"
   1.387 -  (fn [p1,p2] => [rtac (excluded_middle RS disjE) 1,
   1.388 -                  etac p2 1, etac p1 1]);
   1.389 -
   1.390 -fun case_tac a = res_inst_tac [("P",a)] case_split_thm;
   1.391 -
   1.392 -
   1.393 -(** Standard abbreviations **)
   1.394 -
   1.395 -(*Apply an equality or definition ONCE.
   1.396 -  Fails unless the substitution has an effect*)
   1.397 -fun stac th = 
   1.398 -  let val th' = th RS def_imp_eq handle THM _ => th
   1.399 -  in  CHANGED_GOAL (rtac (th' RS ssubst))
   1.400 -  end;
   1.401 -
   1.402 -fun strip_tac i = REPEAT(resolve_tac [impI,allI] i); 
   1.403 -
   1.404 -
   1.405 -(** strip ! and --> from proved goal while preserving !-bound var names **)
   1.406 -
   1.407 -local
   1.408 -
   1.409 -(* Use XXX to avoid forall_intr failing because of duplicate variable name *)
   1.410 -val myspec = read_instantiate [("P","?XXX")] spec;
   1.411 -val _ $ (_ $ (vx as Var(_,vxT))) = concl_of myspec;
   1.412 -val cvx = cterm_of (#sign(rep_thm myspec)) vx;
   1.413 -val aspec = forall_intr cvx myspec;
   1.414 -
   1.415 -in
   1.416 -
   1.417 -fun RSspec th =
   1.418 -  (case concl_of th of
   1.419 -     _ $ (Const("All",_) $ Abs(a,_,_)) =>
   1.420 -         let val ca = cterm_of (#sign(rep_thm th)) (Var((a,0),vxT))
   1.421 -         in th RS forall_elim ca aspec end
   1.422 -  | _ => raise THM("RSspec",0,[th]));
   1.423 -
   1.424 -fun RSmp th =
   1.425 -  (case concl_of th of
   1.426 -     _ $ (Const("op -->",_)$_$_) => th RS mp
   1.427 -  | _ => raise THM("RSmp",0,[th]));
   1.428 -
   1.429 -fun normalize_thm funs =
   1.430 -  let fun trans [] th = th
   1.431 -	| trans (f::fs) th = (trans funs (f th)) handle THM _ => trans fs th
   1.432 -  in zero_var_indexes o trans funs end;
   1.433 -
   1.434 -fun qed_spec_mp name =
   1.435 -  let val thm = normalize_thm [RSspec,RSmp] (result())
   1.436 -  in ThmDatabase.ml_store_thm(name, thm) end;
   1.437 -
   1.438 -fun qed_goal_spec_mp name thy s p = 
   1.439 -	bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goal thy s p));
   1.440 -
   1.441 -fun qed_goalw_spec_mp name thy defs s p = 
   1.442 -	bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goalw thy defs s p));
   1.443 -
   1.444 +structure HOL =
   1.445 +struct
   1.446 +  val thy = the_context ();
   1.447 +  val plusI = plusI;
   1.448 +  val minusI = minusI;
   1.449 +  val timesI = timesI;
   1.450 +  val powerI = powerI;
   1.451 +  val eq_reflection = eq_reflection;
   1.452 +  val refl = refl;
   1.453 +  val subst = subst;
   1.454 +  val ext = ext;
   1.455 +  val selectI = selectI;
   1.456 +  val impI = impI;
   1.457 +  val mp = mp;
   1.458 +  val True_def = True_def;
   1.459 +  val All_def = All_def;
   1.460 +  val Ex_def = Ex_def;
   1.461 +  val False_def = False_def;
   1.462 +  val not_def = not_def;
   1.463 +  val and_def = and_def;
   1.464 +  val or_def = or_def;
   1.465 +  val Ex1_def = Ex1_def;
   1.466 +  val iff = iff;
   1.467 +  val True_or_False = True_or_False;
   1.468 +  val Let_def = Let_def;
   1.469 +  val if_def = if_def;
   1.470 +  val arbitrary_def = arbitrary_def;
   1.471  end;
   1.472  
   1.473 -
   1.474 -(* attributes *)
   1.475 -
   1.476 -local
   1.477 -
   1.478 -fun gen_rulify x = Attrib.no_args (Drule.rule_attribute (fn _ => (normalize_thm [RSspec, RSmp]))) x;
   1.479 -
   1.480 -in
   1.481 -
   1.482 -val hol_setup =
   1.483 - [Attrib.add_attributes
   1.484 -  [("rulify", (gen_rulify, gen_rulify), "put theorem into standard rule form")]];
   1.485 -
   1.486 -end;
   1.487 +open HOL;