1.1 --- a/src/HOL/Real/HahnBanach/NormedSpace.thy Tue Jul 15 16:50:09 2008 +0200
1.2 +++ b/src/HOL/Real/HahnBanach/NormedSpace.thy Tue Jul 15 19:39:37 2008 +0200
1.3 @@ -5,7 +5,9 @@
1.4
1.5 header {* Normed vector spaces *}
1.6
1.7 -theory NormedSpace imports Subspace begin
1.8 +theory NormedSpace
1.9 +imports Subspace
1.10 +begin
1.11
1.12 subsection {* Quasinorms *}
1.13
1.14 @@ -32,7 +34,7 @@
1.15 proof -
1.16 interpret vectorspace [V] by fact
1.17 assume x: "x \<in> V" and y: "y \<in> V"
1.18 - hence "x - y = x + - 1 \<cdot> y"
1.19 + then have "x - y = x + - 1 \<cdot> y"
1.20 by (simp add: diff_eq2 negate_eq2a)
1.21 also from x y have "\<parallel>\<dots>\<parallel> \<le> \<parallel>x\<parallel> + \<parallel>- 1 \<cdot> y\<parallel>"
1.22 by (simp add: subadditive)
1.23 @@ -48,7 +50,7 @@
1.24 proof -
1.25 interpret vectorspace [V] by fact
1.26 assume x: "x \<in> V"
1.27 - hence "- x = - 1 \<cdot> x" by (simp only: negate_eq1)
1.28 + then have "- x = - 1 \<cdot> x" by (simp only: negate_eq1)
1.29 also from x have "\<parallel>\<dots>\<parallel> = \<bar>- 1\<bar> * \<parallel>x\<parallel>"
1.30 by (rule abs_homogenous)
1.31 also have "\<dots> = \<parallel>x\<parallel>" by simp
1.32 @@ -103,7 +105,8 @@
1.33 proof -
1.34 interpret subspace [F E] by fact
1.35 interpret normed_vectorspace [E norm] by fact
1.36 - show ?thesis proof
1.37 + show ?thesis
1.38 + proof
1.39 show "vectorspace F" by (rule vectorspace) unfold_locales
1.40 next
1.41 have "NormedSpace.norm E norm" by unfold_locales