1.1 --- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Tue Aug 05 16:21:27 2014 +0200
1.2 +++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Tue Aug 05 16:58:19 2014 +0200
1.3 @@ -1125,7 +1125,7 @@
1.4 note fin = this
1.5 have "(\<lambda>i. ereal (real (f i))) sums (\<Sum>i. ereal (real (f i)))"
1.6 using f
1.7 - by (auto intro!: summable_ereal_pos summable_sums simp: ereal_le_real_iff zero_ereal_def)
1.8 + by (auto intro!: summable_ereal_pos simp: ereal_le_real_iff zero_ereal_def)
1.9 also have "\<dots> = ereal r"
1.10 using fin r by (auto simp: ereal_real)
1.11 finally show "\<exists>r. (\<lambda>i. real (f i)) sums r"
1.12 @@ -1252,7 +1252,8 @@
1.13 apply (cut_tac A="ball x xa - {x}" and B="{x}" and M=f in INF_union)
1.14 apply (drule sym)
1.15 apply auto
1.16 - by (metis INF_absorb centre_in_ball)
1.17 + apply (metis INF_absorb centre_in_ball)
1.18 + done
1.19
1.20
1.21 lemma suminf_ereal_offset_le: