src/HOL/Real/RComplete.thy
 changeset 14387 e96d5c42c4b0 parent 14365 3d4df8c166ae child 14476 758e7acdea2f
```--- a/src/HOL/Real/RComplete.thy	Sat Feb 14 02:06:12 2004 +0100
+++ b/src/HOL/Real/RComplete.thy	Sun Feb 15 10:46:37 2004 +0100
@@ -8,11 +8,10 @@

header{*Completeness Theorems for Positive Reals and Reals.*}

-theory RComplete = Lubs + RealArith:
+theory RComplete = Lubs + RealDef:

lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
-apply (simp)
-done
+by simp

subsection{*Completeness of Reals by Supremum Property of type @{typ preal}*}
@@ -32,8 +31,7 @@
apply (drule bspec, assumption)
apply (frule bspec, assumption)
apply (drule order_less_trans, assumption)
-apply (drule real_gt_zero_preal_Ex [THEN iffD1])
-apply (force)
+apply (drule real_gt_zero_preal_Ex [THEN iffD1], force)
done

(*-------------------------------------------------------------
@@ -55,12 +53,10 @@
apply (case_tac "0 < ya", auto)
apply (frule real_sup_lemma2, assumption+)
apply (drule real_gt_zero_preal_Ex [THEN iffD1])
-apply (drule_tac [3] real_less_all_real2)
-apply (auto)
+apply (drule_tac [3] real_less_all_real2, auto)
apply (rule preal_complete [THEN iffD1])
apply (auto intro: order_less_imp_le)
-apply (frule real_gt_preal_preal_Ex)
-apply (force)
+apply (frule real_gt_preal_preal_Ex, force)
(* second part *)
apply (rule real_sup_lemma1 [THEN iffD2], assumption)
apply (auto dest!: real_less_all_real2 real_gt_zero_preal_Ex [THEN iffD1])
@@ -131,8 +127,7 @@
apply (subgoal_tac "\<exists>u. u\<in> {z. \<exists>x \<in>S. z = x + (-X) + 1} Int {x. 0 < x}")
apply (subgoal_tac "isUb (UNIV::real set) ({z. \<exists>x \<in>S. z = x + (-X) + 1} Int {x. 0 < x}) (Y + (-X) + 1) ")
apply (cut_tac P = S and xa = X in real_sup_lemma3)
-apply (frule posreals_complete [OF _ _ exI], blast, blast)
-apply safe
+apply (frule posreals_complete [OF _ _ exI], blast, blast, safe)
apply (rule_tac x = "t + X + (- 1) " in exI)
apply (rule isLubI2)
apply (rule_tac [2] setgeI, safe)```