src/ZF/AC.ML
changeset 760 f0200e91b272
parent 741 5b0dedadb5c2
child 1074 d60f203eeddf
--- a/src/ZF/AC.ML	Wed Dec 07 12:34:47 1994 +0100
+++ b/src/ZF/AC.ML	Wed Dec 07 13:12:04 1994 +0100
@@ -15,20 +15,20 @@
 by (asm_simp_tac (ZF_ss addsimps [Pi_empty1]) 2 THEN fast_tac ZF_cs 2);
 (*The non-trivial case*)
 by (fast_tac (eq_cs addSIs [AC, nonempty]) 1);
-val AC_Pi = result();
+qed "AC_Pi";
 
 (*Using dtac, this has the advantage of DELETING the universal quantifier*)
 goal AC.thy "!!A B. ALL x:A. EX y. y:B(x) ==> EX y. y : Pi(A,B)";
 by (resolve_tac [AC_Pi] 1);
 by (eresolve_tac [bspec] 1);
 by (assume_tac 1);
-val AC_ball_Pi = result();
+qed "AC_ball_Pi";
 
 goal AC.thy "EX f. f: (PROD X: Pow(C)-{0}. X)";
 by (res_inst_tac [("B1", "%x.x")] (AC_Pi RS exE) 1);
 by (etac exI 2);
 by (fast_tac eq_cs 1);
-val AC_Pi_Pow = result();
+qed "AC_Pi_Pow";
 
 val [nonempty] = goal AC.thy
      "[| !!x. x:A ==> (EX y. y:x)	\
@@ -36,17 +36,17 @@
 by (res_inst_tac [("B1", "%x.x")] (AC_Pi RS exE) 1);
 by (etac nonempty 1);
 by (fast_tac (ZF_cs addDs [apply_type] addIs [Pi_type]) 1);
-val AC_func = result();
+qed "AC_func";
 
 goal ZF.thy "!!x A. [| 0 ~: A;  x: A |] ==> EX y. y:x";
 by (subgoal_tac "x ~= 0" 1);
 by (ALLGOALS (fast_tac eq_cs));
-val non_empty_family = result();
+qed "non_empty_family";
 
 goal AC.thy "!!A. 0 ~: A ==> EX f: A->Union(A). ALL x:A. f`x : x";
 by (rtac AC_func 1);
 by (REPEAT (ares_tac [non_empty_family] 1));
-val AC_func0 = result();
+qed "AC_func0";
 
 goal AC.thy "EX f: (Pow(C)-{0}) -> C. ALL x:(Pow(C)-{0}). f`x : x";
 by (resolve_tac [AC_func0 RS bexE] 1);
@@ -54,5 +54,5 @@
 by (assume_tac 2);
 by (eresolve_tac [fun_weaken_type] 2);
 by (ALLGOALS (fast_tac ZF_cs));
-val AC_func_Pow = result();
+qed "AC_func_Pow";