src/HOL/Int.thy
 changeset 64272 f76b6dda2e56 parent 64267 b9a1486e79be child 64714 53bab28983f1
```     1.1 --- a/src/HOL/Int.thy	Mon Oct 17 14:37:32 2016 +0200
1.2 +++ b/src/HOL/Int.thy	Mon Oct 17 17:33:07 2016 +0200
1.3 @@ -866,7 +866,7 @@
1.4  qed
1.5
1.6
1.7 -subsection \<open>@{term sum} and @{term setprod}\<close>
1.8 +subsection \<open>@{term sum} and @{term prod}\<close>
1.9
1.10  lemma of_nat_sum [simp]: "of_nat (sum f A) = (\<Sum>x\<in>A. of_nat(f x))"
1.11    by (induct A rule: infinite_finite_induct) auto
1.12 @@ -874,14 +874,14 @@
1.13  lemma of_int_sum [simp]: "of_int (sum f A) = (\<Sum>x\<in>A. of_int(f x))"
1.14    by (induct A rule: infinite_finite_induct) auto
1.15
1.16 -lemma of_nat_setprod [simp]: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
1.17 +lemma of_nat_prod [simp]: "of_nat (prod f A) = (\<Prod>x\<in>A. of_nat(f x))"
1.18    by (induct A rule: infinite_finite_induct) auto
1.19
1.20 -lemma of_int_setprod [simp]: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
1.21 +lemma of_int_prod [simp]: "of_int (prod f A) = (\<Prod>x\<in>A. of_int(f x))"
1.22    by (induct A rule: infinite_finite_induct) auto
1.23
1.24  lemmas int_sum = of_nat_sum [where 'a=int]
1.25 -lemmas int_setprod = of_nat_setprod [where 'a=int]
1.26 +lemmas int_prod = of_nat_prod [where 'a=int]
1.27
1.28
1.29  text \<open>Legacy theorems\<close>
```