1.1 --- a/src/HOL/BNF/Examples/Stream.thy Tue Mar 05 15:43:22 2013 +0100
1.2 +++ b/src/HOL/BNF/Examples/Stream.thy Tue Mar 05 17:10:49 2013 +0100
1.3 @@ -63,6 +63,9 @@
1.4 lemma stream_set_shift[simp]: "stream_set (xs @- s) = set xs \<union> stream_set s"
1.5 by (induct xs) auto
1.6
1.7 +lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
1.8 + by (induct xs) auto
1.9 +
1.10
1.11 subsection {* set of streams with elements in some fixes set *}
1.12
1.13 @@ -89,26 +92,6 @@
1.14 qed
1.15
1.16
1.17 -subsection {* flatten a stream of lists *}
1.18 -
1.19 -definition flat where
1.20 - "flat \<equiv> stream_unfold (hd o shd) (\<lambda>s. if tl (shd s) = [] then stl s else tl (shd s) ## stl s)"
1.21 -
1.22 -lemma flat_simps[simp]:
1.23 - "shd (flat ws) = hd (shd ws)"
1.24 - "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
1.25 - unfolding flat_def by auto
1.26 -
1.27 -lemma flat_Cons[simp]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
1.28 - unfolding flat_def using stream.unfold[of "hd o shd" _ "(x # xs) ## ws"] by auto
1.29 -
1.30 -lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
1.31 - by (induct xs) auto
1.32 -
1.33 -lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
1.34 - by (cases ws) auto
1.35 -
1.36 -
1.37 subsection {* nth, take, drop for streams *}
1.38
1.39 primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
1.40 @@ -159,6 +142,9 @@
1.41 lemma sdrop_stream_map[simp]: "sdrop n (stream_map f s) = stream_map f (sdrop n s)"
1.42 by (induct n arbitrary: s) auto
1.43
1.44 +lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
1.45 + by (induct n) auto
1.46 +
1.47 lemma stake_sdrop: "stake n s @- sdrop n s = s"
1.48 by (induct n arbitrary: s) auto
1.49
1.50 @@ -201,6 +187,62 @@
1.51 unfolding stream_all_iff list_all_iff by auto
1.52
1.53
1.54 +subsection {* flatten a stream of lists *}
1.55 +
1.56 +definition flat where
1.57 + "flat \<equiv> stream_unfold (hd o shd) (\<lambda>s. if tl (shd s) = [] then stl s else tl (shd s) ## stl s)"
1.58 +
1.59 +lemma flat_simps[simp]:
1.60 + "shd (flat ws) = hd (shd ws)"
1.61 + "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
1.62 + unfolding flat_def by auto
1.63 +
1.64 +lemma flat_Cons[simp]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
1.65 + unfolding flat_def using stream.unfold[of "hd o shd" _ "(x # xs) ## ws"] by auto
1.66 +
1.67 +lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
1.68 + by (induct xs) auto
1.69 +
1.70 +lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
1.71 + by (cases ws) auto
1.72 +
1.73 +lemma flat_snth: "\<forall>xs \<in> stream_set s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then
1.74 + shd s ! n else flat (stl s) !! (n - length (shd s)))"
1.75 + by (metis flat_unfold not_less shd_stream_set shift_snth_ge shift_snth_less)
1.76 +
1.77 +lemma stream_set_flat[simp]: "\<forall>xs \<in> stream_set s. xs \<noteq> [] \<Longrightarrow>
1.78 + stream_set (flat s) = (\<Union>xs \<in> stream_set s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
1.79 +proof safe
1.80 + fix x assume ?P "x : ?L"
1.81 + then obtain m where "x = flat s !! m" by (metis image_iff stream_set_range)
1.82 + with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
1.83 + proof (atomize_elim, induct m arbitrary: s rule: less_induct)
1.84 + case (less y)
1.85 + thus ?case
1.86 + proof (cases "y < length (shd s)")
1.87 + case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
1.88 + next
1.89 + case False
1.90 + hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
1.91 + moreover
1.92 + { from less(2) have "length (shd s) > 0" by (cases s) simp_all
1.93 + moreover with False have "y > 0" by (cases y) simp_all
1.94 + ultimately have "y - length (shd s) < y" by simp
1.95 + }
1.96 + moreover have "\<forall>xs \<in> stream_set (stl s). xs \<noteq> []" using less(2) by (cases s) auto
1.97 + ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
1.98 + thus ?thesis by (metis snth.simps(2))
1.99 + qed
1.100 + qed
1.101 + thus "x \<in> ?R" by (auto simp: stream_set_range dest!: nth_mem)
1.102 +next
1.103 + fix x xs assume "xs \<in> stream_set s" ?P "x \<in> set xs" thus "x \<in> ?L"
1.104 + by (induct rule: stream_set_induct1)
1.105 + (metis UnI1 flat_unfold shift.simps(1) stream_set_shift,
1.106 + metis UnI2 flat_unfold shd_stream_set stl_stream_set stream_set_shift)
1.107 +qed
1.108 +
1.109 +
1.110 subsection {* recurring stream out of a list *}
1.111
1.112 definition cycle :: "'a list \<Rightarrow> 'a stream" where
1.113 @@ -307,6 +349,18 @@
1.114 lemma sdrop_fromN[simp]: "sdrop m (fromN n) = fromN (n + m)"
1.115 unfolding fromN_def by (induct m arbitrary: n) auto
1.116
1.117 +lemma stream_set_fromN[simp]: "stream_set (fromN n) = {n ..}" (is "?L = ?R")
1.118 +proof safe
1.119 + fix m assume "m : ?L"
1.120 + moreover
1.121 + { fix s assume "m \<in> stream_set s" "\<exists>n'\<ge>n. s = fromN n'"
1.122 + hence "n \<le> m" by (induct arbitrary: n rule: stream_set_induct1) fastforce+
1.123 + }
1.124 + ultimately show "n \<le> m" by blast
1.125 +next
1.126 + fix m assume "n \<le> m" thus "m \<in> ?L" by (metis le_iff_add snth_fromN snth_stream_set)
1.127 +qed
1.128 +
1.129 abbreviation "nats \<equiv> fromN 0"
1.130
1.131