src/HOL/Library/Fundamental_Theorem_Algebra.thy
 author haftmann Tue Nov 19 10:05:53 2013 +0100 (2013-11-19) changeset 54489 03ff4d1e6784 parent 54263 c4159fe6fa46 child 55358 85d81bc281d0 permissions -rw-r--r--
eliminiated neg_numeral in favour of - (numeral _)
1 (* Author: Amine Chaieb, TU Muenchen *)
3 header{*Fundamental Theorem of Algebra*}
5 theory Fundamental_Theorem_Algebra
6 imports Polynomial Complex_Main
7 begin
9 subsection {* Square root of complex numbers *}
10 definition csqrt :: "complex \<Rightarrow> complex" where
11 "csqrt z = (if Im z = 0 then
12             if 0 \<le> Re z then Complex (sqrt(Re z)) 0
13             else Complex 0 (sqrt(- Re z))
14            else Complex (sqrt((cmod z + Re z) /2))
15                         ((Im z / abs(Im z)) * sqrt((cmod z - Re z) /2)))"
17 lemma csqrt[algebra]: "(csqrt z)\<^sup>2 = z"
18 proof-
19   obtain x y where xy: "z = Complex x y" by (cases z)
20   {assume y0: "y = 0"
21     {assume x0: "x \<ge> 0"
22       then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
23         by (simp add: csqrt_def power2_eq_square)}
24     moreover
25     {assume "\<not> x \<ge> 0" hence x0: "- x \<ge> 0" by arith
26       then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
27         by (simp add: csqrt_def power2_eq_square) }
28     ultimately have ?thesis by blast}
29   moreover
30   {assume y0: "y\<noteq>0"
31     {fix x y
32       let ?z = "Complex x y"
33       from abs_Re_le_cmod[of ?z] have tha: "abs x \<le> cmod ?z" by auto
34       hence "cmod ?z - x \<ge> 0" "cmod ?z + x \<ge> 0" by arith+
35       hence "(sqrt (x * x + y * y) + x) / 2 \<ge> 0" "(sqrt (x * x + y * y) - x) / 2 \<ge> 0" by (simp_all add: power2_eq_square) }
36     note th = this
37     have sq4: "\<And>x::real. x\<^sup>2 / 4 = (x / 2)\<^sup>2"
38       by (simp add: power2_eq_square)
39     from th[of x y]
40     have sq4': "sqrt (((sqrt (x * x + y * y) + x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) + x) / 2"
41       "sqrt (((sqrt (x * x + y * y) - x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) - x) / 2"
42       unfolding sq4 by simp_all
43     then have th1: "sqrt ((sqrt (x * x + y * y) + x) * (sqrt (x * x + y * y) + x) / 4) - sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) - x) / 4) = x"
44       unfolding power2_eq_square by simp
45     have "sqrt 4 = sqrt (2\<^sup>2)" by simp
46     hence sqrt4: "sqrt 4 = 2" by (simp only: real_sqrt_abs)
47     have th2: "2 *(y * sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) + x) / 4)) / \<bar>y\<bar> = y"
48       using iffD2[OF real_sqrt_pow2_iff sum_power2_ge_zero[of x y]] y0
49       unfolding power2_eq_square
50       by (simp add: algebra_simps real_sqrt_divide sqrt4)
51      from y0 xy have ?thesis  apply (simp add: csqrt_def power2_eq_square)
52        apply (simp add: real_sqrt_sum_squares_mult_ge_zero[of x y] real_sqrt_pow2[OF th(1)[of x y], unfolded power2_eq_square] real_sqrt_pow2[OF th(2)[of x y], unfolded power2_eq_square] real_sqrt_mult[symmetric])
53       using th1 th2  ..}
54   ultimately show ?thesis by blast
55 qed
58 subsection{* More lemmas about module of complex numbers *}
60 lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)"
61   by (rule of_real_power [symmetric])
63 lemma real_down2: "(0::real) < d1 \<Longrightarrow> 0 < d2 ==> EX e. 0 < e & e < d1 & e < d2"
64   apply (rule exI[where x = "min d1 d2 / 2"])
65   by (simp add: field_simps min_def)
67 text{* The triangle inequality for cmod *}
68 lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
69   using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
71 subsection{* Basic lemmas about complex polynomials *}
73 lemma poly_bound_exists:
74   shows "\<exists>m. m > 0 \<and> (\<forall>z. cmod z <= r \<longrightarrow> cmod (poly p z) \<le> m)"
75 proof(induct p)
76   case 0 thus ?case by (rule exI[where x=1], simp)
77 next
78   case (pCons c cs)
79   from pCons.hyps obtain m where m: "\<forall>z. cmod z \<le> r \<longrightarrow> cmod (poly cs z) \<le> m"
80     by blast
81   let ?k = " 1 + cmod c + \<bar>r * m\<bar>"
82   have kp: "?k > 0" using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith
83   {fix z
84     assume H: "cmod z \<le> r"
85     from m H have th: "cmod (poly cs z) \<le> m" by blast
86     from H have rp: "r \<ge> 0" using norm_ge_zero[of z] by arith
87     have "cmod (poly (pCons c cs) z) \<le> cmod c + cmod (z* poly cs z)"
88       using norm_triangle_ineq[of c "z* poly cs z"] by simp
89     also have "\<dots> \<le> cmod c + r*m" using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] by (simp add: norm_mult)
90     also have "\<dots> \<le> ?k" by simp
91     finally have "cmod (poly (pCons c cs) z) \<le> ?k" .}
92   with kp show ?case by blast
93 qed
96 text{* Offsetting the variable in a polynomial gives another of same degree *}
98 definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
99 where
100   "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0"
102 lemma offset_poly_0: "offset_poly 0 h = 0"
103   by (simp add: offset_poly_def)
105 lemma offset_poly_pCons:
106   "offset_poly (pCons a p) h =
107     smult h (offset_poly p h) + pCons a (offset_poly p h)"
108   by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def)
110 lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"
111 by (simp add: offset_poly_pCons offset_poly_0)
113 lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"
114 apply (induct p)
115 apply (simp add: offset_poly_0)
116 apply (simp add: offset_poly_pCons algebra_simps)
117 done
119 lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"
120 by (induct p arbitrary: a, simp, force)
122 lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
123 apply (safe intro!: offset_poly_0)
124 apply (induct p, simp)
125 apply (simp add: offset_poly_pCons)
126 apply (frule offset_poly_eq_0_lemma, simp)
127 done
129 lemma degree_offset_poly: "degree (offset_poly p h) = degree p"
130 apply (induct p)
131 apply (simp add: offset_poly_0)
132 apply (case_tac "p = 0")
133 apply (simp add: offset_poly_0 offset_poly_pCons)
134 apply (simp add: offset_poly_pCons)
135 apply (subst degree_add_eq_right)
136 apply (rule le_less_trans [OF degree_smult_le])
137 apply (simp add: offset_poly_eq_0_iff)
138 apply (simp add: offset_poly_eq_0_iff)
139 done
141 definition
142   "psize p = (if p = 0 then 0 else Suc (degree p))"
144 lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"
145   unfolding psize_def by simp
147 lemma poly_offset: "\<exists> q. psize q = psize p \<and> (\<forall>x. poly q (x::complex) = poly p (a + x))"
148 proof (intro exI conjI)
149   show "psize (offset_poly p a) = psize p"
150     unfolding psize_def
151     by (simp add: offset_poly_eq_0_iff degree_offset_poly)
152   show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"
153     by (simp add: poly_offset_poly)
154 qed
156 text{* An alternative useful formulation of completeness of the reals *}
157 lemma real_sup_exists: assumes ex: "\<exists>x. P x" and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"
158   shows "\<exists>(s::real). \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"
159 proof
160   from bz have "bdd_above (Collect P)"
161     by (force intro: less_imp_le)
162   then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)"
163     using ex bz by (subst less_cSup_iff) auto
164 qed
166 subsection {* Fundamental theorem of algebra *}
167 lemma  unimodular_reduce_norm:
168   assumes md: "cmod z = 1"
169   shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1"
170 proof-
171   obtain x y where z: "z = Complex x y " by (cases z, auto)
172   from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1" by (simp add: cmod_def)
173   {assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"
174     from C z xy have "2*x \<le> 1" "2*x \<ge> -1" "2*y \<le> 1" "2*y \<ge> -1"
175       by (simp_all add: cmod_def power2_eq_square algebra_simps)
176     hence "abs (2*x) \<le> 1" "abs (2*y) \<le> 1" by simp_all
177     hence "(abs (2 * x))\<^sup>2 <= 1\<^sup>2" "(abs (2 * y))\<^sup>2 <= 1\<^sup>2"
178       by - (rule power_mono, simp, simp)+
179     hence th0: "4*x\<^sup>2 \<le> 1" "4*y\<^sup>2 \<le> 1"
180       by (simp_all add: power_mult_distrib)
181     from add_mono[OF th0] xy have False by simp }
182   thus ?thesis unfolding linorder_not_le[symmetric] by blast
183 qed
185 text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
186 lemma reduce_poly_simple:
187  assumes b: "b \<noteq> 0" and n: "n\<noteq>0"
188   shows "\<exists>z. cmod (1 + b * z^n) < 1"
189 using n
190 proof(induct n rule: nat_less_induct)
191   fix n
192   assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" and n: "n \<noteq> 0"
193   let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
194   {assume e: "even n"
195     hence "\<exists>m. n = 2*m" by presburger
196     then obtain m where m: "n = 2*m" by blast
197     from n m have "m\<noteq>0" "m < n" by presburger+
198     with IH[rule_format, of m] obtain z where z: "?P z m" by blast
199     from z have "?P (csqrt z) n" by (simp add: m power_mult csqrt)
200     hence "\<exists>z. ?P z n" ..}
201   moreover
202   {assume o: "odd n"
203     have th0: "cmod (complex_of_real (cmod b) / b) = 1"
204       using b by (simp add: norm_divide)
205     from o have "\<exists>m. n = Suc (2*m)" by presburger+
206     then obtain m where m: "n = Suc (2*m)" by blast
207     from unimodular_reduce_norm[OF th0] o
208     have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
209       apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1", rule_tac x="1" in exI, simp)
210       apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp)
211       apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")
212       apply (cases "even m", rule_tac x="ii" in exI, simp add: m power_mult)
213       apply (rule_tac x="- ii" in exI, simp add: m power_mult)
214       apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult)
215       apply (auto simp add: m power_mult)
216       apply (rule_tac x="ii" in exI)
217       apply (auto simp add: m power_mult)
218       done
219     then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast
220     let ?w = "v / complex_of_real (root n (cmod b))"
221     from odd_real_root_pow[OF o, of "cmod b"]
222     have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
223       by (simp add: power_divide complex_of_real_power)
224     have th2:"cmod (complex_of_real (cmod b) / b) = 1" using b by (simp add: norm_divide)
225     hence th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" by simp
226     have th4: "cmod (complex_of_real (cmod b) / b) *
227    cmod (1 + b * (v ^ n / complex_of_real (cmod b)))
228    < cmod (complex_of_real (cmod b) / b) * 1"
229       apply (simp only: norm_mult[symmetric] distrib_left)
230       using b v by (simp add: th2)
232     from mult_less_imp_less_left[OF th4 th3]
233     have "?P ?w n" unfolding th1 .
234     hence "\<exists>z. ?P z n" .. }
235   ultimately show "\<exists>z. ?P z n" by blast
236 qed
238 text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
240 lemma metric_bound_lemma: "cmod (x - y) <= \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"
241   using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ]
242   unfolding cmod_def by simp
244 lemma bolzano_weierstrass_complex_disc:
245   assumes r: "\<forall>n. cmod (s n) \<le> r"
246   shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"
247 proof-
248   from seq_monosub[of "Re o s"]
249   obtain f g where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"
250     unfolding o_def by blast
251   from seq_monosub[of "Im o s o f"]
252   obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s(f(g n))))" unfolding o_def by blast
253   let ?h = "f o g"
254   from r[rule_format, of 0] have rp: "r \<ge> 0" using norm_ge_zero[of "s 0"] by arith
255   have th:"\<forall>n. r + 1 \<ge> \<bar> Re (s n)\<bar>"
256   proof
257     fix n
258     from abs_Re_le_cmod[of "s n"] r[rule_format, of n]  show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
259   qed
260   have conv1: "convergent (\<lambda>n. Re (s ( f n)))"
261     apply (rule Bseq_monoseq_convergent)
262     apply (simp add: Bseq_def)
263     apply (rule exI[where x= "r + 1"])
264     using th rp apply simp
265     using f(2) .
266   have th:"\<forall>n. r + 1 \<ge> \<bar> Im (s n)\<bar>"
267   proof
268     fix n
269     from abs_Im_le_cmod[of "s n"] r[rule_format, of n]  show "\<bar>Im (s n)\<bar> \<le> r + 1" by arith
270   qed
272   have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
273     apply (rule Bseq_monoseq_convergent)
274     apply (simp add: Bseq_def)
275     apply (rule exI[where x= "r + 1"])
276     using th rp apply simp
277     using g(2) .
279   from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"
280     by blast
281   hence  x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r"
282     unfolding LIMSEQ_iff real_norm_def .
284   from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"
285     by blast
286   hence  y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r"
287     unfolding LIMSEQ_iff real_norm_def .
288   let ?w = "Complex x y"
289   from f(1) g(1) have hs: "subseq ?h" unfolding subseq_def by auto
290   {fix e assume ep: "e > (0::real)"
291     hence e2: "e/2 > 0" by simp
292     from x[rule_format, OF e2] y[rule_format, OF e2]
293     obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast
294     {fix n assume nN12: "n \<ge> N1 + N2"
295       hence nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" using seq_suble[OF g(1), of n] by arith+
296       from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
297       have "cmod (s (?h n) - ?w) < e"
298         using metric_bound_lemma[of "s (f (g n))" ?w] by simp }
299     hence "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast }
300   with hs show ?thesis  by blast
301 qed
303 text{* Polynomial is continuous. *}
305 lemma poly_cont:
306   assumes ep: "e > 0"
307   shows "\<exists>d >0. \<forall>w. 0 < cmod (w - z) \<and> cmod (w - z) < d \<longrightarrow> cmod (poly p w - poly p z) < e"
308 proof-
309   obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)"
310   proof
311     show "degree (offset_poly p z) = degree p"
312       by (rule degree_offset_poly)
313     show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"
314       by (rule poly_offset_poly)
315   qed
316   {fix w
317     note q(2)[of "w - z", simplified]}
318   note th = this
319   show ?thesis unfolding th[symmetric]
320   proof(induct q)
321     case 0 thus ?case  using ep by auto
322   next
323     case (pCons c cs)
324     from poly_bound_exists[of 1 "cs"]
325     obtain m where m: "m > 0" "\<And>z. cmod z \<le> 1 \<Longrightarrow> cmod (poly cs z) \<le> m" by blast
326     from ep m(1) have em0: "e/m > 0" by (simp add: field_simps)
327     have one0: "1 > (0::real)"  by arith
328     from real_lbound_gt_zero[OF one0 em0]
329     obtain d where d: "d >0" "d < 1" "d < e / m" by blast
330     from d(1,3) m(1) have dm: "d*m > 0" "d*m < e"
331       by (simp_all add: field_simps mult_pos_pos)
332     show ?case
333       proof(rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)
334         fix d w
335         assume H: "d > 0" "d < 1" "d < e/m" "w\<noteq>z" "cmod (w-z) < d"
336         hence d1: "cmod (w-z) \<le> 1" "d \<ge> 0" by simp_all
337         from H(3) m(1) have dme: "d*m < e" by (simp add: field_simps)
338         from H have th: "cmod (w-z) \<le> d" by simp
339         from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme
340         show "cmod (w - z) * cmod (poly cs (w - z)) < e" by simp
341       qed
342     qed
343 qed
345 text{* Hence a polynomial attains minimum on a closed disc
346   in the complex plane. *}
347 lemma  poly_minimum_modulus_disc:
348   "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"
349 proof-
350   {assume "\<not> r \<ge> 0" hence ?thesis unfolding linorder_not_le
351       apply -
352       apply (rule exI[where x=0])
353       apply auto
354       apply (subgoal_tac "cmod w < 0")
355       apply simp
356       apply arith
357       done }
358   moreover
359   {assume rp: "r \<ge> 0"
360     from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" by simp
361     hence mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"  by blast
362     {fix x z
363       assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not>x < 1"
364       hence "- x < 0 " by arith
365       with H(2) norm_ge_zero[of "poly p z"]  have False by simp }
366     then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" by blast
367     from real_sup_exists[OF mth1 mth2] obtain s where
368       s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow>(y < s)" by blast
369     let ?m = "-s"
370     {fix y
371       from s[rule_format, of "-y"] have
372     "(\<exists>z x. cmod z \<le> r \<and> -(- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y"
373         unfolding minus_less_iff[of y ] equation_minus_iff by blast }
374     note s1 = this[unfolded minus_minus]
375     from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"
376       by auto
377     {fix n::nat
378       from s1[rule_format, of "?m + 1/real (Suc n)"]
379       have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)"
380         by simp}
381     hence th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
382     from choice[OF th] obtain g where
383       g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m+1 /real(Suc n)"
384       by blast
385     from bolzano_weierstrass_complex_disc[OF g(1)]
386     obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
387       by blast
388     {fix w
389       assume wr: "cmod w \<le> r"
390       let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"
391       {assume e: "?e > 0"
392         hence e2: "?e/2 > 0" by simp
393         from poly_cont[OF e2, of z p] obtain d where
394           d: "d>0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" by blast
395         {fix w assume w: "cmod (w - z) < d"
396           have "cmod(poly p w - poly p z) < ?e / 2"
397             using d(2)[rule_format, of w] w e by (cases "w=z", simp_all)}
398         note th1 = this
400         from fz(2)[rule_format, OF d(1)] obtain N1 where
401           N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" by blast
402         from reals_Archimedean2[of "2/?e"] obtain N2::nat where
403           N2: "2/?e < real N2" by blast
404         have th2: "cmod(poly p (g(f(N1 + N2))) - poly p z) < ?e/2"
405           using N1[rule_format, of "N1 + N2"] th1 by simp
406         {fix a b e2 m :: real
407         have "a < e2 \<Longrightarrow> abs(b - m) < e2 \<Longrightarrow> 2 * e2 <= abs(b - m) + a
408           ==> False" by arith}
409       note th0 = this
410       have ath:
411         "\<And>m x e. m <= x \<Longrightarrow>  x < m + e ==> abs(x - m::real) < e" by arith
412       from s1m[OF g(1)[rule_format]]
413       have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
414       from seq_suble[OF fz(1), of "N1+N2"]
415       have th00: "real (Suc (N1+N2)) \<le> real (Suc (f (N1+N2)))" by simp
416       have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1+N2)) > 0"
417         using N2 by auto
418       from frac_le[OF th000 th00] have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" by simp
419       from g(2)[rule_format, of "f (N1 + N2)"]
420       have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
421       from order_less_le_trans[OF th01 th00]
422       have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
423       from N2 have "2/?e < real (Suc (N1 + N2))" by arith
424       with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
425       have "?e/2 > 1/ real (Suc (N1 + N2))" by (simp add: inverse_eq_divide)
426       with ath[OF th31 th32]
427       have thc1:"\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar>< ?e/2" by arith
428       have ath2: "\<And>(a::real) b c m. \<bar>a - b\<bar> <= c ==> \<bar>b - m\<bar> <= \<bar>a - m\<bar> + c"
429         by arith
430       have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar>
431 \<le> cmod (poly p (g (f (N1 + N2))) - poly p z)"
432         by (simp add: norm_triangle_ineq3)
433       from ath2[OF th22, of ?m]
434       have thc2: "2*(?e/2) \<le> \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" by simp
435       from th0[OF th2 thc1 thc2] have False .}
436       hence "?e = 0" by auto
437       then have "cmod (poly p z) = ?m" by simp
438       with s1m[OF wr]
439       have "cmod (poly p z) \<le> cmod (poly p w)" by simp }
440     hence ?thesis by blast}
441   ultimately show ?thesis by blast
442 qed
444 lemma "(rcis (sqrt (abs r)) (a/2))\<^sup>2 = rcis (abs r) a"
445   unfolding power2_eq_square
446   apply (simp add: rcis_mult)
447   apply (simp add: power2_eq_square[symmetric])
448   done
450 lemma cispi: "cis pi = -1"
451   unfolding cis_def
452   by simp
454 lemma "(rcis (sqrt (abs r)) ((pi + a)/2))\<^sup>2 = rcis (- abs r) a"
455   unfolding power2_eq_square
457   apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric])
458   done
460 text {* Nonzero polynomial in z goes to infinity as z does. *}
462 lemma poly_infinity:
463   assumes ex: "p \<noteq> 0"
464   shows "\<exists>r. \<forall>z. r \<le> cmod z \<longrightarrow> d \<le> cmod (poly (pCons a p) z)"
465 using ex
466 proof(induct p arbitrary: a d)
467   case (pCons c cs a d)
468   {assume H: "cs \<noteq> 0"
469     with pCons.hyps obtain r where r: "\<forall>z. r \<le> cmod z \<longrightarrow> d + cmod a \<le> cmod (poly (pCons c cs) z)" by blast
470     let ?r = "1 + \<bar>r\<bar>"
471     {fix z assume h: "1 + \<bar>r\<bar> \<le> cmod z"
472       have r0: "r \<le> cmod z" using h by arith
473       from r[rule_format, OF r0]
474       have th0: "d + cmod a \<le> 1 * cmod(poly (pCons c cs) z)" by arith
475       from h have z1: "cmod z \<ge> 1" by arith
476       from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]
477       have th1: "d \<le> cmod(z * poly (pCons c cs) z) - cmod a"
478         unfolding norm_mult by (simp add: algebra_simps)
479       from complex_mod_triangle_sub[of "z * poly (pCons c cs) z" a]
480       have th2: "cmod(z * poly (pCons c cs) z) - cmod a \<le> cmod (poly (pCons a (pCons c cs)) z)"
481         by (simp add: algebra_simps)
482       from th1 th2 have "d \<le> cmod (poly (pCons a (pCons c cs)) z)"  by arith}
483     hence ?case by blast}
484   moreover
485   {assume cs0: "\<not> (cs \<noteq> 0)"
486     with pCons.prems have c0: "c \<noteq> 0" by simp
487     from cs0 have cs0': "cs = 0" by simp
488     {fix z
489       assume h: "(\<bar>d\<bar> + cmod a) / cmod c \<le> cmod z"
490       from c0 have "cmod c > 0" by simp
491       from h c0 have th0: "\<bar>d\<bar> + cmod a \<le> cmod (z*c)"
492         by (simp add: field_simps norm_mult)
493       have ath: "\<And>mzh mazh ma. mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh" by arith
494       from complex_mod_triangle_sub[of "z*c" a ]
495       have th1: "cmod (z * c) \<le> cmod (a + z * c) + cmod a"
496         by (simp add: algebra_simps)
497       from ath[OF th1 th0] have "d \<le> cmod (poly (pCons a (pCons c cs)) z)"
498         using cs0' by simp}
499     then have ?case  by blast}
500   ultimately show ?case by blast
501 qed simp
503 text {* Hence polynomial's modulus attains its minimum somewhere. *}
504 lemma poly_minimum_modulus:
505   "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"
506 proof(induct p)
507   case (pCons c cs)
508   {assume cs0: "cs \<noteq> 0"
509     from poly_infinity[OF cs0, of "cmod (poly (pCons c cs) 0)" c]
510     obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" by blast
511     have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" by arith
512     from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]
513     obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" by blast
514     {fix z assume z: "r \<le> cmod z"
515       from v[of 0] r[OF z]
516       have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)"
517         by simp }
518     note v0 = this
519     from v0 v ath[of r] have ?case by blast}
520   moreover
521   {assume cs0: "\<not> (cs \<noteq> 0)"
522     hence th:"cs = 0" by simp
523     from th pCons.hyps have ?case by simp}
524   ultimately show ?case by blast
525 qed simp
527 text{* Constant function (non-syntactic characterization). *}
528 definition "constant f = (\<forall>x y. f x = f y)"
530 lemma nonconstant_length: "\<not> (constant (poly p)) \<Longrightarrow> psize p \<ge> 2"
531   unfolding constant_def psize_def
532   apply (induct p, auto)
533   done
535 lemma poly_replicate_append:
536   "poly (monom 1 n * p) (x::'a::{comm_ring_1}) = x^n * poly p x"
537   by (simp add: poly_monom)
539 text {* Decomposition of polynomial, skipping zero coefficients
540   after the first.  *}
542 lemma poly_decompose_lemma:
543  assumes nz: "\<not>(\<forall>z. z\<noteq>0 \<longrightarrow> poly p z = (0::'a::{idom}))"
544   shows "\<exists>k a q. a\<noteq>0 \<and> Suc (psize q + k) = psize p \<and>
545                  (\<forall>z. poly p z = z^k * poly (pCons a q) z)"
546 unfolding psize_def
547 using nz
548 proof(induct p)
549   case 0 thus ?case by simp
550 next
551   case (pCons c cs)
552   {assume c0: "c = 0"
553     from pCons.hyps pCons.prems c0 have ?case
554       apply (auto)
555       apply (rule_tac x="k+1" in exI)
556       apply (rule_tac x="a" in exI, clarsimp)
557       apply (rule_tac x="q" in exI)
558       by (auto)}
559   moreover
560   {assume c0: "c\<noteq>0"
561     hence ?case apply-
562       apply (rule exI[where x=0])
563       apply (rule exI[where x=c], clarsimp)
564       apply (rule exI[where x=cs])
565       apply auto
566       done}
567   ultimately show ?case by blast
568 qed
570 lemma poly_decompose:
571   assumes nc: "~constant(poly p)"
572   shows "\<exists>k a q. a\<noteq>(0::'a::{idom}) \<and> k\<noteq>0 \<and>
573                psize q + k + 1 = psize p \<and>
574               (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"
575 using nc
576 proof(induct p)
577   case 0 thus ?case by (simp add: constant_def)
578 next
579   case (pCons c cs)
580   {assume C:"\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
581     {fix x y
582       from C have "poly (pCons c cs) x = poly (pCons c cs) y" by (cases "x=0", auto)}
583     with pCons.prems have False by (auto simp add: constant_def)}
584   hence th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" ..
585   from poly_decompose_lemma[OF th]
586   show ?case
587     apply clarsimp
588     apply (rule_tac x="k+1" in exI)
589     apply (rule_tac x="a" in exI)
590     apply simp
591     apply (rule_tac x="q" in exI)
592     apply (auto simp add: psize_def split: if_splits)
593     done
594 qed
596 text{* Fundamental theorem of algebra *}
598 lemma fundamental_theorem_of_algebra:
599   assumes nc: "~constant(poly p)"
600   shows "\<exists>z::complex. poly p z = 0"
601 using nc
602 proof(induct "psize p" arbitrary: p rule: less_induct)
603   case less
604   let ?p = "poly p"
605   let ?ths = "\<exists>z. ?p z = 0"
607   from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" .
608   from poly_minimum_modulus obtain c where
609     c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" by blast
610   {assume pc: "?p c = 0" hence ?ths by blast}
611   moreover
612   {assume pc0: "?p c \<noteq> 0"
613     from poly_offset[of p c] obtain q where
614       q: "psize q = psize p" "\<forall>x. poly q x = ?p (c+x)" by blast
615     {assume h: "constant (poly q)"
616       from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto
617       {fix x y
618         from th have "?p x = poly q (x - c)" by auto
619         also have "\<dots> = poly q (y - c)"
620           using h unfolding constant_def by blast
621         also have "\<dots> = ?p y" using th by auto
622         finally have "?p x = ?p y" .}
623       with less(2) have False unfolding constant_def by blast }
624     hence qnc: "\<not> constant (poly q)" by blast
625     from q(2) have pqc0: "?p c = poly q 0" by simp
626     from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" by simp
627     let ?a0 = "poly q 0"
628     from pc0 pqc0 have a00: "?a0 \<noteq> 0" by simp
629     from a00
630     have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"
631       by simp
632     let ?r = "smult (inverse ?a0) q"
633     have lgqr: "psize q = psize ?r"
634       using a00 unfolding psize_def degree_def
635       by (simp add: poly_eq_iff)
636     {assume h: "\<And>x y. poly ?r x = poly ?r y"
637       {fix x y
638         from qr[rule_format, of x]
639         have "poly q x = poly ?r x * ?a0" by auto
640         also have "\<dots> = poly ?r y * ?a0" using h by simp
641         also have "\<dots> = poly q y" using qr[rule_format, of y] by simp
642         finally have "poly q x = poly q y" .}
643       with qnc have False unfolding constant_def by blast}
644     hence rnc: "\<not> constant (poly ?r)" unfolding constant_def by blast
645     from qr[rule_format, of 0] a00  have r01: "poly ?r 0 = 1" by auto
646     {fix w
647       have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
648         using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac)
649       also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
650         using a00 unfolding norm_divide by (simp add: field_simps)
651       finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .}
652     note mrmq_eq = this
653     from poly_decompose[OF rnc] obtain k a s where
654       kas: "a\<noteq>0" "k\<noteq>0" "psize s + k + 1 = psize ?r"
655       "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast
656     {assume "psize p = k + 1"
657       with kas(3) lgqr[symmetric] q(1) have s0:"s=0" by auto
658       {fix w
659         have "cmod (poly ?r w) = cmod (1 + a * w ^ k)"
660           using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)}
661       note hth = this [symmetric]
662         from reduce_poly_simple[OF kas(1,2)]
663       have "\<exists>w. cmod (poly ?r w) < 1" unfolding hth by blast}
664     moreover
665     {assume kn: "psize p \<noteq> k+1"
666       from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p" by simp
667       have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
668         unfolding constant_def poly_pCons poly_monom
669         using kas(1) apply simp
670         by (rule exI[where x=0], rule exI[where x=1], simp)
671       from kas(1) kas(2) have th02: "k+1 = psize (pCons 1 (monom a (k - 1)))"
672         by (simp add: psize_def degree_monom_eq)
673       from less(1) [OF k1n [simplified th02] th01]
674       obtain w where w: "1 + w^k * a = 0"
675         unfolding poly_pCons poly_monom
676         using kas(2) by (cases k, auto simp add: algebra_simps)
677       from poly_bound_exists[of "cmod w" s] obtain m where
678         m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
679       have w0: "w\<noteq>0" using kas(2) w by (auto simp add: power_0_left)
680       from w have "(1 + w ^ k * a) - 1 = 0 - 1" by simp
681       then have wm1: "w^k * a = - 1" by simp
682       have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"
683         using norm_ge_zero[of w] w0 m(1)
684           by (simp add: inverse_eq_divide zero_less_mult_iff)
685       with real_down2[OF zero_less_one] obtain t where
686         t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
687       let ?ct = "complex_of_real t"
688       let ?w = "?ct * w"
689       have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" using kas(1) by (simp add: algebra_simps power_mult_distrib)
690       also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"
691         unfolding wm1 by (simp)
692       finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"
693         apply -
694         apply (rule cong[OF refl[of cmod]])
695         apply assumption
696         done
697       with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]
698       have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" unfolding norm_of_real by simp
699       have ath: "\<And>x (t::real). 0\<le> x \<Longrightarrow> x < t \<Longrightarrow> t\<le>1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" by arith
700       have "t *cmod w \<le> 1 * cmod w" apply (rule mult_mono) using t(1,2) by auto
701       then have tw: "cmod ?w \<le> cmod w" using t(1) by (simp add: norm_mult)
702       from t inv0 have "t* (cmod w ^ (k + 1) * m) < 1"
703         by (simp add: inverse_eq_divide field_simps)
704       with zero_less_power[OF t(1), of k]
705       have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
706         apply - apply (rule mult_strict_left_mono) by simp_all
707       have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k+1) * cmod (poly s ?w)))"  using w0 t(1)
708         by (simp add: algebra_simps power_mult_distrib norm_power norm_mult)
709       then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
710         using t(1,2) m(2)[rule_format, OF tw] w0
711         apply (simp only: )
712         apply auto
713         done
714       with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" by simp
715       from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"
716         by auto
717       from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]
718       have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
719       from th11 th12
720       have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"  by arith
721       then have "cmod (poly ?r ?w) < 1"
722         unfolding kas(4)[rule_format, of ?w] r01 by simp
723       then have "\<exists>w. cmod (poly ?r w) < 1" by blast}
724     ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" by blast
725     from cr0_contr cq0 q(2)
726     have ?ths unfolding mrmq_eq not_less[symmetric] by auto}
727   ultimately show ?ths by blast
728 qed
730 text {* Alternative version with a syntactic notion of constant polynomial. *}
732 lemma fundamental_theorem_of_algebra_alt:
733   assumes nc: "~(\<exists>a l. a\<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"
734   shows "\<exists>z. poly p z = (0::complex)"
735 using nc
736 proof(induct p)
737   case (pCons c cs)
738   {assume "c=0" hence ?case by auto}
739   moreover
740   {assume c0: "c\<noteq>0"
741     {assume nc: "constant (poly (pCons c cs))"
742       from nc[unfolded constant_def, rule_format, of 0]
743       have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto
744       hence "cs = 0"
745         proof(induct cs)
746           case (pCons d ds)
747           {assume "d=0" hence ?case using pCons.prems pCons.hyps by simp}
748           moreover
749           {assume d0: "d\<noteq>0"
750             from poly_bound_exists[of 1 ds] obtain m where
751               m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
752             have dm: "cmod d / m > 0" using d0 m(1) by (simp add: field_simps)
753             from real_down2[OF dm zero_less_one] obtain x where
754               x: "x > 0" "x < cmod d / m" "x < 1" by blast
755             let ?x = "complex_of_real x"
756             from x have cx: "?x \<noteq> 0"  "cmod ?x \<le> 1" by simp_all
757             from pCons.prems[rule_format, OF cx(1)]
758             have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric])
759             from m(2)[rule_format, OF cx(2)] x(1)
760             have th0: "cmod (?x*poly ds ?x) \<le> x*m"
761               by (simp add: norm_mult)
762             from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps)
763             with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto
764             with cth  have ?case by blast}
765           ultimately show ?case by blast
766         qed simp}
767       then have nc: "\<not> constant (poly (pCons c cs))" using pCons.prems c0
768         by blast
769       from fundamental_theorem_of_algebra[OF nc] have ?case .}
770   ultimately show ?case by blast
771 qed simp
774 subsection{* Nullstellensatz, degrees and divisibility of polynomials *}
776 lemma nullstellensatz_lemma:
777   fixes p :: "complex poly"
778   assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
779   and "degree p = n" and "n \<noteq> 0"
780   shows "p dvd (q ^ n)"
781 using assms
782 proof(induct n arbitrary: p q rule: nat_less_induct)
783   fix n::nat fix p q :: "complex poly"
784   assume IH: "\<forall>m<n. \<forall>p q.
785                  (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>
786                  degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"
787     and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
788     and dpn: "degree p = n" and n0: "n \<noteq> 0"
789   from dpn n0 have pne: "p \<noteq> 0" by auto
790   let ?ths = "p dvd (q ^ n)"
791   {fix a assume a: "poly p a = 0"
792     {assume oa: "order a p \<noteq> 0"
793       let ?op = "order a p"
794       from pne have ap: "([:- a, 1:] ^ ?op) dvd p"
795         "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" using order by blast+
796       note oop = order_degree[OF pne, unfolded dpn]
797       {assume q0: "q = 0"
798         hence ?ths using n0
799           by (simp add: power_0_left)}
800       moreover
801       {assume q0: "q \<noteq> 0"
802         from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]
803         obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)
804         from ap(1) obtain s where
805           s: "p = [:- a, 1:] ^ ?op * s" by (rule dvdE)
806         have sne: "s \<noteq> 0"
807           using s pne by auto
808         {assume ds0: "degree s = 0"
809           from ds0 obtain k where kpn: "s = [:k:]"
810             by (cases s) (auto split: if_splits)
811           from sne kpn have k: "k \<noteq> 0" by simp
812           let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"
813           from k oop [of a] have "q ^ n = p * ?w"
814             apply -
815             apply (subst r, subst s, subst kpn)
816             apply (subst power_mult_distrib, simp)
817             apply (subst power_add [symmetric], simp)
818             done
819           hence ?ths unfolding dvd_def by blast}
820         moreover
821         {assume ds0: "degree s \<noteq> 0"
822           from ds0 sne dpn s oa
823             have dsn: "degree s < n" apply auto
824               apply (erule ssubst)
825               apply (simp add: degree_mult_eq degree_linear_power)
826               done
827             {fix x assume h: "poly s x = 0"
828               {assume xa: "x = a"
829                 from h[unfolded xa poly_eq_0_iff_dvd] obtain u where
830                   u: "s = [:- a, 1:] * u" by (rule dvdE)
831                 have "p = [:- a, 1:] ^ (Suc ?op) * u"
832                   by (subst s, subst u, simp only: power_Suc mult_ac)
833                 with ap(2)[unfolded dvd_def] have False by blast}
834               note xa = this
835               from h have "poly p x = 0" by (subst s, simp)
836               with pq0 have "poly q x = 0" by blast
837               with r xa have "poly r x = 0"
839             note impth = this
840             from IH[rule_format, OF dsn, of s r] impth ds0
841             have "s dvd (r ^ (degree s))" by blast
842             then obtain u where u: "r ^ (degree s) = s * u" ..
843             hence u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
844               by (simp only: poly_mult[symmetric] poly_power[symmetric])
845             let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"
846             from oop[of a] dsn have "q ^ n = p * ?w"
847               apply -
848               apply (subst s, subst r)
849               apply (simp only: power_mult_distrib)
850               apply (subst mult_assoc [where b=s])
851               apply (subst mult_assoc [where a=u])
852               apply (subst mult_assoc [where b=u, symmetric])
853               apply (subst u [symmetric])
854               apply (simp add: mult_ac power_add [symmetric])
855               done
856             hence ?ths unfolding dvd_def by blast}
857       ultimately have ?ths by blast }
858       ultimately have ?ths by blast}
859     then have ?ths using a order_root pne by blast}
860   moreover
861   {assume exa: "\<not> (\<exists>a. poly p a = 0)"
862     from fundamental_theorem_of_algebra_alt[of p] exa obtain c where
863       ccs: "c\<noteq>0" "p = pCons c 0" by blast
865     then have pp: "\<And>x. poly p x =  c" by simp
866     let ?w = "[:1/c:] * (q ^ n)"
867     from ccs have "(q ^ n) = (p * ?w)" by simp
868     hence ?ths unfolding dvd_def by blast}
869   ultimately show ?ths by blast
870 qed
872 lemma nullstellensatz_univariate:
873   "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>
874     p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"
875 proof-
876   {assume pe: "p = 0"
877     hence eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
878       by (auto simp add: poly_all_0_iff_0)
879     {assume "p dvd (q ^ (degree p))"
880       then obtain r where r: "q ^ (degree p) = p * r" ..
881       from r pe have False by simp}
882     with eq pe have ?thesis by blast}
883   moreover
884   {assume pe: "p \<noteq> 0"
885     {assume dp: "degree p = 0"
886       then obtain k where k: "p = [:k:]" "k\<noteq>0" using pe
887         by (cases p) (simp split: if_splits)
888       hence th1: "\<forall>x. poly p x \<noteq> 0" by simp
889       from k dp have "q ^ (degree p) = p * [:1/k:]"
890         by (simp add: one_poly_def)
891       hence th2: "p dvd (q ^ (degree p))" ..
892       from th1 th2 pe have ?thesis by blast}
893     moreover
894     {assume dp: "degree p \<noteq> 0"
895       then obtain n where n: "degree p = Suc n " by (cases "degree p", auto)
896       {assume "p dvd (q ^ (Suc n))"
897         then obtain u where u: "q ^ (Suc n) = p * u" ..
898         {fix x assume h: "poly p x = 0" "poly q x \<noteq> 0"
899           hence "poly (q ^ (Suc n)) x \<noteq> 0" by simp
900           hence False using u h(1) by (simp only: poly_mult) simp}}
901         with n nullstellensatz_lemma[of p q "degree p"] dp
902         have ?thesis by auto}
903     ultimately have ?thesis by blast}
904   ultimately show ?thesis by blast
905 qed
907 text{* Useful lemma *}
909 lemma constant_degree:
910   fixes p :: "'a::{idom,ring_char_0} poly"
911   shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")
912 proof
913   assume l: ?lhs
914   from l[unfolded constant_def, rule_format, of _ "0"]
915   have th: "poly p = poly [:poly p 0:]" apply - by (rule ext, simp)
916   then have "p = [:poly p 0:]" by (simp add: poly_eq_poly_eq_iff)
917   then have "degree p = degree [:poly p 0:]" by simp
918   then show ?rhs by simp
919 next
920   assume r: ?rhs
921   then obtain k where "p = [:k:]"
922     by (cases p) (simp split: if_splits)
923   then show ?lhs unfolding constant_def by auto
924 qed
926 lemma divides_degree: assumes pq: "p dvd (q:: complex poly)"
927   shows "degree p \<le> degree q \<or> q = 0"
928 apply (cases "q = 0", simp_all)
929 apply (erule dvd_imp_degree_le [OF pq])
930 done
932 (* Arithmetic operations on multivariate polynomials.                        *)
934 lemma mpoly_base_conv:
935   "(0::complex) \<equiv> poly 0 x" "c \<equiv> poly [:c:] x" "x \<equiv> poly [:0,1:] x" by simp_all
937 lemma mpoly_norm_conv:
938   "poly [:0:] (x::complex) \<equiv> poly 0 x" "poly [:poly 0 y:] x \<equiv> poly 0 x" by simp_all
940 lemma mpoly_sub_conv:
941   "poly p (x::complex) - poly q x \<equiv> poly p x + -1 * poly q x"
942   by simp
944 lemma poly_pad_rule: "poly p x = 0 ==> poly (pCons 0 p) x = (0::complex)" by simp
946 lemma poly_cancel_eq_conv: "p = (0::complex) \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (q = 0) \<equiv> (a * q - b * p = 0)" apply (atomize (full)) by auto
948 lemma resolve_eq_raw:  "poly 0 x \<equiv> 0" "poly [:c:] x \<equiv> (c::complex)" by auto
949 lemma  resolve_eq_then: "(P \<Longrightarrow> (Q \<equiv> Q1)) \<Longrightarrow> (\<not>P \<Longrightarrow> (Q \<equiv> Q2))
950   \<Longrightarrow> Q \<equiv> P \<and> Q1 \<or> \<not>P\<and> Q2" apply (atomize (full)) by blast
953   fixes p q :: "complex poly"
954   assumes pq: "p dvd q"
955   shows "p dvd (pCons (0::complex) q)"
956 proof-
957   have "pCons 0 q = q * [:0,1:]" by simp
958   then have "q dvd (pCons 0 q)" ..
959   with pq show ?thesis by (rule dvd_trans)
960 qed
963   fixes p q :: "complex poly"
964   assumes pq: "p dvd q"
965   shows "p dvd (smult a q)"
966 proof-
967   have "smult a q = q * [:a:]" by simp
968   then have "q dvd smult a q" ..
969   with pq show ?thesis by (rule dvd_trans)
970 qed
973 lemma poly_divides_conv0:
974   fixes p :: "complex poly"
975   assumes lgpq: "degree q < degree p" and lq:"p \<noteq> 0"
976   shows "p dvd q \<equiv> q = 0" (is "?lhs \<equiv> ?rhs")
977 proof-
978   {assume r: ?rhs
979     hence "q = p * 0" by simp
980     hence ?lhs ..}
981   moreover
982   {assume l: ?lhs
983     {assume q0: "q = 0"
984       hence ?rhs by simp}
985     moreover
986     {assume q0: "q \<noteq> 0"
987       from l q0 have "degree p \<le> degree q"
988         by (rule dvd_imp_degree_le)
989       with lgpq have ?rhs by simp }
990     ultimately have ?rhs by blast }
991   ultimately show "?lhs \<equiv> ?rhs" by - (atomize (full), blast)
992 qed
994 lemma poly_divides_conv1:
995   assumes a0: "a\<noteq> (0::complex)" and pp': "(p::complex poly) dvd p'"
996   and qrp': "smult a q - p' \<equiv> r"
997   shows "p dvd q \<equiv> p dvd (r::complex poly)" (is "?lhs \<equiv> ?rhs")
998 proof-
999   {
1000   from pp' obtain t where t: "p' = p * t" ..
1001   {assume l: ?lhs
1002     then obtain u where u: "q = p * u" ..
1003      have "r = p * (smult a u - t)"
1004        using u qrp' [symmetric] t by (simp add: algebra_simps)
1005      then have ?rhs ..}
1006   moreover
1007   {assume r: ?rhs
1008     then obtain u where u: "r = p * u" ..
1009     from u [symmetric] t qrp' [symmetric] a0
1010     have "q = p * smult (1/a) (u + t)" by (simp add: algebra_simps)
1011     hence ?lhs ..}
1012   ultimately have "?lhs = ?rhs" by blast }
1013 thus "?lhs \<equiv> ?rhs"  by - (atomize(full), blast)
1014 qed
1016 lemma basic_cqe_conv1:
1017   "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<equiv> False"
1018   "(\<exists>x. poly 0 x \<noteq> 0) \<equiv> False"
1019   "(\<exists>x. poly [:c:] x \<noteq> 0) \<equiv> c\<noteq>0"
1020   "(\<exists>x. poly 0 x = 0) \<equiv> True"
1021   "(\<exists>x. poly [:c:] x = 0) \<equiv> c = 0" by simp_all
1023 lemma basic_cqe_conv2:
1024   assumes l:"p \<noteq> 0"
1025   shows "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)) \<equiv> True"
1026 proof-
1027   {fix h t
1028     assume h: "h\<noteq>0" "t=0"  "pCons a (pCons b p) = pCons h t"
1029     with l have False by simp}
1030   hence th: "\<not> (\<exists> h t. h\<noteq>0 \<and> t=0 \<and> pCons a (pCons b p) = pCons h t)"
1031     by blast
1032   from fundamental_theorem_of_algebra_alt[OF th]
1033   show "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)) \<equiv> True" by auto
1034 qed
1036 lemma  basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> (p \<noteq> 0)"
1037 proof-
1038   have "p = 0 \<longleftrightarrow> poly p = poly 0"
1039     by (simp add: poly_eq_poly_eq_iff)
1040   also have "\<dots> \<longleftrightarrow> (\<not> (\<exists>x. poly p x \<noteq> 0))" by auto
1041   finally show "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> p \<noteq> 0"
1042     by - (atomize (full), blast)
1043 qed
1045 lemma basic_cqe_conv3:
1046   fixes p q :: "complex poly"
1047   assumes l: "p \<noteq> 0"
1048   shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((pCons a p) dvd (q ^ (psize p)))"
1049 proof-
1050   from l have dp:"degree (pCons a p) = psize p" by (simp add: psize_def)
1051   from nullstellensatz_univariate[of "pCons a p" q] l
1052   show "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((pCons a p) dvd (q ^ (psize p)))"
1053     unfolding dp
1054     by - (atomize (full), auto)
1055 qed
1057 lemma basic_cqe_conv4:
1058   fixes p q :: "complex poly"
1059   assumes h: "\<And>x. poly (q ^ n) x \<equiv> poly r x"
1060   shows "p dvd (q ^ n) \<equiv> p dvd r"
1061 proof-
1062   from h have "poly (q ^ n) = poly r" by auto
1063   then have "(q ^ n) = r" by (simp add: poly_eq_poly_eq_iff)
1064   thus "p dvd (q ^ n) \<equiv> p dvd r" by simp
1065 qed
1067 lemma pmult_Cons_Cons: "(pCons (a::complex) (pCons b p) * q = (smult a q) + (pCons 0 (pCons b p * q)))"
1068   by simp
1070 lemma elim_neg_conv: "- z \<equiv> (-1) * (z::complex)" by simp
1071 lemma eqT_intr: "PROP P \<Longrightarrow> (True \<Longrightarrow> PROP P )" "PROP P \<Longrightarrow> True" by blast+
1072 lemma negate_negate_rule: "Trueprop P \<equiv> (\<not> P \<equiv> False)" by (atomize (full), auto)
1074 lemma complex_entire: "(z::complex) \<noteq> 0 \<and> w \<noteq> 0 \<equiv> z*w \<noteq> 0" by simp
1075 lemma resolve_eq_ne: "(P \<equiv> True) \<equiv> (\<not>P \<equiv> False)" "(P \<equiv> False) \<equiv> (\<not>P \<equiv> True)"
1076   by (atomize (full)) simp_all
1077 lemma cqe_conv1: "poly 0 x = 0 \<longleftrightarrow> True"  by simp
1078 lemma cqe_conv2: "(p \<Longrightarrow> (q \<equiv> r)) \<equiv> ((p \<and> q) \<equiv> (p \<and> r))"  (is "?l \<equiv> ?r")
1079 proof
1080   assume "p \<Longrightarrow> q \<equiv> r" thus "p \<and> q \<equiv> p \<and> r" apply - apply (atomize (full)) by blast
1081 next
1082   assume "p \<and> q \<equiv> p \<and> r" "p"
1083   thus "q \<equiv> r" apply - apply (atomize (full)) apply blast done
1084 qed
1085 lemma poly_const_conv: "poly [:c:] (x::complex) = y \<longleftrightarrow> c = y" by simp
1087 end